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Abstract: Wire electrical discharge machining (WEDM) is widely preferred for machining difficult-
to-cut materials like Ti6Al4V. In the present study, current, pulse-off-duration (Toff), and pulse-on-
duration (Toff) were identified as vital input factors for the WEDM process of Ti6Al4V. Material
removal rate (MRR) and surface roughness (SR) were selected as output measures for the study. The
experiments were carried out by employing Taguchi’s L9 design at three levels. Empirical models
were generated, which give the relationship between the input and output factors of the process. To
check the acceptability of the model terms, analysis of variance (ANOVA) was used. The regression
mode was observed to be significant for the output measures. For MRR, Toff was recorded as the
highly significant factor affecting the response values with 74.95% impact, followed by Ton with
16.39%, and current with 6.56%. In the case of SR, Ton was found to be a highly significant factor
with a 50.24% impact, followed by current with 43.99%, and Toff with 1.47%. Further, multi-objective
optimization by using the HTS technique was performed. The effect of expanded graphite (EG)
nano-powder has been studied on the output factors of MRR and SR. The use of EG nano-powder
was found to improve WEDM operations as MRR was increased by 45.35%, and simultaneously, SR
was reduced by 36.16%. Lastly, the surface morphology of the machined surface was investigated by
employing SEM to understand the effect of EG nano-powder. The results have shown a reduction in
surface defects by using EG nano-powder compared to the conventional WEDM process.

Keywords: expanded graphite; Ti6Al4V; WEDM; HTS algorithm; nano-powder

1. Introduction

A highly favored titanium alloy, Ti6Al4V makes up more than half of all current
titanium products. In the 1950s, Ti6Al4V alloy was initially created for various applications
in the aerospace industry as it reduces the weight of heavily loaded constructions [1].
Ti6Al4V alloy is an ideal material for numerous aerospace components [2,3]. Ti6Al4V
has a low mass ratio, superior bio-absorbability, good anti-corrosive properties, high
endurance, and increased fracture resilience [4,5]. While the aerospace sector still prevails
in the Ti6Al4V market, other application areas like the automotive, energy, maritime,
and chemical-related sectors, load-bearing implants, fixing bone deformities, and other
biomedical sectors have seen significant growth over the past 50 years [6–9]. However,
Ti6Al4V poses many challenges during machining due to its high chemical reactivity with
cutting tool materials and limited heat conductivity [10,11]. Conventional machining of
Ti6Al4V is challenging owing to the poor thermal conductivity, increased temperature at the
cutting edges, tool wear, improper chip shape, and poor tool life [12–14]. Thus, controlling
the integrity of the surface caused by machining is still difficult today. Even though it
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still takes time and money, choosing the right cutting conditions and tools can be done
through an experimental campaign [15,16]. Due to these various difficulties of conventional
techniques for Ti6Al4V alloy, different non-traditional procedures were employed [17,18].
One such non-traditional process widely preferred for machining difficult-to-cut materials
such as Ti6Al4V is the wire electrical discharge machining (WEDM) process. In the WEDM
process, the workpiece and wire electrode produce a sequence of discrete sparks that erode
the material from the workpiece [19,20]. A thin layer of dielectric fluid is continuously
delivered to the machining zone to flush away the eroded particles. Wire movement is
numerically controlled to give the workpiece the appropriate three-dimensional shape and
precision [21]. WEDM can be used to efficiently and inexpensively manufacture difficult-
to-machine alloys, such as Ti6Al4V [22,23]. One can machine an element and get a desired
output by changing various input process parameters. For a superior surface, WEDM
requires managing several process factors [24–26]. Higher productivity is essential, along
with better surface integrity. This can be attained by raising the material removal rate
(MRR) while concurrently lowering the surface roughness (SR) value [27]. The selection of
the ideal process parameters is crucial for sustainable production. The researchers primarily
preferred Taguchi’s experimental design due to the multiple advantages such as reduction
in experimental trials and the relationship between input and output factors [28].

Devarasiddappa et al. [29] investigated the four process variables of the WEDM
process by varying them at four distinct levels in an experimental analysis for SR of Ti6Al4V
alloy. The primary aspect of their work was minimizing the SR of Ti6Al4V alloy. The results
revealed that SR decreased by 2.65% at the optimal process parameters. Muhammad Umar
Farooq et al. [30] machined convex and concave profiles in Ti6Al4V for this study using the
WEDM process. Comprehensive research was done on the effects of four factors, which
include servo voltage (Vs), wire feed, pulse-on-duration (Ton), and pulse-off-duration
(Toff), on the geometrical accuracy of profiles, as well as the diameter of corners. The
most essential parameters for influencing overcut in convex profile were discovered to
be Vs and Toff. Vs, Ton, and Toff strongly influence corner radius control and undercut
in the machining of concave profiles. Chaudhari et al. [31] used the WEDM process for
the machining of Ti6Al4V alloy using Taguchi’s L9 array. Their findings revealed that Ton
had major control factors to affect MRR values while the current was a major significant
factor for SR response. Lin et al. [32] highlighted the value of applying the grey-Taguchi
approach to optimize several quality factors, including electrode depletion, MRR, and
overcut, to enhance the Ti6Al4V alloy’s micro-EDM finish quality. The experimental
results show that the peak current and Ton are crucial factors in the micro-EDM of Ti6Al4V
alloy. The utilization of Ti6Al4V alloy using EDM for different pulse parameters was
investigated by Priyadarshini et al. [33]. MRR, SR, and TWR (tool wear rate) were selected
as output factors. Using the Taguchi approach, an orthogonal array was found for the
experiment. The best parametric settings were discovered using the hybrid grey relational-
PCA-based Taguchi approach, which was compared with GRA-based Taguchi. The GRA-
based PCA optimization process was found to produce more workable parametric settings.
A large number of defects such as higher SR, debris deposition, significant dimensional
deviations, the formation of micro-cracks and micro-pores, and lower productivity were
found after machining [34,35].

It is crucial to find a way out which will improve MRR while reducing SR and other
surface flaws. One efficient way to enhance machining is to add the right amount of
nano-powder to the dielectric fluid [36,37]. The particle’s presence in the dielectric fluid
improves spark discharge, which lowers breakdown strength and improves the igniting
process [38,39]. This enhances the process’s ability to cut as a result. Researchers have
employed a range of nano-powder, including Si, Cu, Al, CNT, Al2O3, Gr, Mo, and others,
to enhance the machining operations [40]. Their effectiveness is influenced by variables
like size, conductivity, and density characteristics [41]. The EDM’s performance was
significantly improved by the dispersion of nanoparticles in dielectric fluid [42,43]. Cutting
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efficiency, SR, micro-cracks, and micro-pores were all enhanced when nanoparticles and
dielectric fluid were used [44,45].

Viet De Bui et al. [46] conducted a study to provide additional evidence of powder-
mixed EDM’s capability in simultaneously cutting component shapes and coating a layer
of antibacterial material on medical devices. In order to do this, varying silver nanoparticle
concentrations were included in the dielectric, which was then utilized to machine Ti6Al4V.
The surfaces machined and coated by the powder mixed EDM (PMEDM) approach showed
a considerable reduction in the volume of the Staphylococcus bacteria and the number
of bacterial groupings on the surface of the coating layer, according to qualitative as well
as statistical measurements. The PMEDM method significantly reduces machining time
compared to EDM without powder in terms of machining performance. Ishfaq et al. [47]
examined the potential of nano-graphene from the standpoint of roughness in Ti-alloy
EDM. The Taguchi L18 orthogonal framework, which incorporates six EDM parameters,
was the foundation of the experimental design. With statistical analysis and tangible proof,
the experimental results were thoroughly discussed. Compared to its rivals, an aluminum
electrode produced the best surface quality; however, a brass electrode coupled with a
graphene-mixed dielectric resulted in the worst surface asperities. Additionally, it is be-
lieved that for all types of electrodes, decreased roughness is provided by positive tool
polarity. Chandra et al. [48] assessed the addition of YAG nanoparticle hybridized expand-
able graphite powder as a partial replacement of graphite in the refractory composition, the
structural characteristics of Al2O3-MgO-C refractories. The experimental results demon-
strated that, compared to refractories made with normal graphite compositions, those made
with hybridized EG exhibited a significant improvement in structural characteristics.

Expanded graphite (EG), or exfoliated graphite, is a type of graphite material produced
by subjecting natural or synthetic graphite to high temperatures and rapid heating in the
presence of an intercalation agent such as sulfuric acid or a mixture of nitric and sulfuric
acids [49]. This process causes the graphite to expand and separate into thin, flat flakes.
The expanded graphite material has unique properties such as high thermal conductivity,
good electrical conductivity, low density, and high chemical stability, making it useful
in various applications such as thermal insulation, electrical conductors, fire retardants,
and lubricants [50,51]. Additionally, expanded graphite can be further processed into
various forms, such as sheets, foams, and powders, to suit specific applications. Thus, EG
nano-powder can significantly enhance the WEDM operations owing to its potential for
reinforcing and toughening structural ceramic composites.

In the present study, Ton, Toff, and current were identified as vital input factors for
the WEDM process of Ti6Al4V, while MRR and SR were selected as output measures.
Moreover, the effect of EG nano-powder has been studied on the machined surface’s MRR,
SR, and surface morphology. The experiments were carried out by employing Taguchi’s L9
design. Empirical models were generated, which gave the relationship between the input
and output factors of the process. To assess the acceptability of the model terms, ANOVA
was used. Further, multi-objective optimization by using the heat transfer search (HTS)
technique was performed. Lastly, the surface morphology of the machined surface was
investigated by employing SEM to understand the effect of EG nano-powder.

2. Materials and Methods
2.1. Expanded Graphite Nano-Powder

Expanded graphite is a type of graphite material created by exposing natural or
synthetic graphite to high temperatures and rapid heating in the presence of an intercalation
agent, such as sulfuric acid or a mixture of nitric and sulfuric acid. The synthesis process of
expanded graphite begins with the intercalation of graphite material with an intercalation
agent. The intercalation process involved the insertion of molecules or ions into the spaces
between the graphene layers of the graphite, causing the layers to separate slightly. The
expanded graphite was synthesized using a chemical method, where natural graphite was
treated with an oxidizing agent such as potassium permanganate, nitric acid, or hydrogen
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peroxide. The oxidizing agent broke down the intercalated layers of graphite, causing
the graphite to expand. The expanded graphite was then washed and dried to remove
any residual chemicals. The obtained material is a highly porous, sponge-like material
consisting of thin, flat flakes of loosely stacked graphite.

2.2. Experimental Set-Up and Conditions

The experiments were carried out by using Concord make DK7732 WEDM set-up. In
the present work, molybdenum wire was preferred as the tool material with a diameter
of 180 µm, and EDM oil was used as a dielectric fluid. Figure 1 displays an enlarged
view of the employed experimental set-up. To investigate the effect of expanded graphite
nano-powder, it was mixed with the dielectric fluid with a concentration of 1 g/L. The work
material of Ti6Al4V was selected, with major elements of 6% of Al, 4% of V, and Ti as balance.
A cylindrical rod of Ti6Al4V having 8 mm diameter was utilized for experimental trials.
Based on the recent literature and outcomes of preliminary trials, Ton, Toff, and current
were identified as vital input factors for the WEDM process, while MRR and SR were
selected as output measures. The experiments were carried out by employing Taguchi’s L9
design at three levels. Table 1 displays the conditions for input factors. Taguchi’s approach
has multiple advantages, reducing the experimental trial’s relationship between input and
output factors [52–54]. Thus, it has been adopted in the present work. Minitab software
was used to generate empirical models showing the relationship between the process’s
input and output factors. To check the acceptability of the model terms, ANOVA was used.
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Table 1. WEDM process factors.

Input Factors Levels/Values

Current (A) 1, 3, 5
Pulse-off-duration (µs) 6, 16, 26
Pulse-on-duration (µs) 20, 60, 100
Type of nano-powder Expanded Graphite

Graphene nano powder-size (nm) 200–400

For each experimental trial, a slice of 2 mm was cut by following the Taguchi’s matrix
and the time required for cut was recorded. The output measure of MRR was determined
by evaluating the change in weights of work components before and after the process
per second. The MRR response was recorded in gram/sec. The SR tester of Mitutoyo
SJ-410 was employed to measure the SR of the machined components. In the current study,
the arithmetic average-roughness (Ra) value (in µm) was considered for analysis. The
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machined surface morphology was investigated by employing SEM to understand the
effect of EG nano-powder.

2.3. Optimization

In the present study, the HTS algorithm proposed by Patel and Savsani [55], which
functions on a heat transfer mechanism owing to the interface among the elements of a de-
fined system and surrounding medium to attain equilibrium conditions, was implemented.
It utilizes the three heat transfer modes—conduction, convection, and radiation—to at-
tain an equilibrium condition. It creates an opportunity for all modes of heat transfer to
exchange heat, and each generation selects a random mode out of the three modes. As a
starting point, HTS operated with an arbitrarily produced population. The system defines
the temperature level (i.e., design parameters) and population size. The population was
then updated in subsequent generations by random selection of heat transfer mode. Finally,
the solution which provides better functional values was acknowledged. The procedure
for HTS is depicted in Figure 2.
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2.3.1. Conduction Mode

Equations (1) and (2) were utilized for improving the solutions from conduction mode.

X′j,i =
{

Xk,i +
(
−R2Xk,i

)
, i f f

(
Xj

)
> f (Xk)

Xj,i +
(
−R2Xj,i

)
, i f f

(
Xj

)
< f (Xk)

; i f g ≤ gmax /CDF (1)

X′j,i =
{

Xk,i + (−riXk,i), i f f
(
Xj

)
> f (Xk)

Xj,i +
(
−riXj,i

)
, i f f

(
Xj

)
< f (Xk)

; i f g > gmax /CDF (2)

2.3.2. Convection Mode

Equations (3) and (4) were utilized for improving the solutions from convection mode.

X′j,i = Xj,i + R× (Xs − Xms × TCF) (3)
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TCF =

{
abs(R− ri), i f g ≤ gmax /COF

round(1 + ri), i f g > gmax /COF
(4)

2.3.3. Radiation Mode

Equations (5) and (6) were utilized for improving the solutions from conduction mode.

X′j,i =
{

Xj,i + R×
(
Xk,i − Xj,i

)
, i f f

(
Xj

)
> f (Xk)

Xj,i + R×
(
Xj,i − Xk,i

)
, i f f

(
Xj

)
< f (Xk)

; i f g ≤ gmax /RDF (5)

X′j,i =
{

Xj,i + ri ×
(
Xk,i − Xj,i

)
, i f f

(
Xj

)
> f (Xk)

Xj,i + ri ×
(
Xj,i − Xk,i

)
, i f f

(
Xj

)
< f (Xk)

; i f g > gmax /RDF (6)

3. Results and Discussions

Table 2 depicts the derived values of MRR and SR output measures at the respective
levels of input conditions by following Taguchi’s L9 matrix. The value of MRR was obtained
in the range of 1.1561 g/s to 3.3017 g/s, while SR response values were obtained between
3.32 µm to 5.72 µm.

Table 2. Results of MRR and SR as per Taguchi’s L9 array.

Run
Order

Current
(A)

Toff
(µs)

Ton
(µs)

MRR
(g/s)

SR
(µm)

1 1 6 20 1.3741 4.89
2 1 16 60 1.8744 3.97
3 1 26 100 2.2235 3.32
4 3 6 60 2.6372 4.87
5 3 16 100 2.8013 4.66
6 3 26 20 1.1561 4.18
7 5 6 100 3.3017 5.72
8 5 16 20 1.5102 5.24
9 5 26 60 1.9287 4.49

3.1. Empirical Model Terms for Response Measures

The empirical regression equations were derived by using Minitab v17 for output
factors. These equations are useful for measuring MRR and SR values outside the design
matrix. Equations (7) and (8) depict the model terms for MRR and SR, respectively.

MRR = 1.236 + 0.10571·Current + 0.01786·Ton − 0.03341·Toff (7)

SR = 4.857 + 0.2726·Current− 0.00250·Ton − 0.03341·Toff (8)

3.2. ANOVA Analysis for Response Measures

ANOVA methodology was implemented to evaluate the adequacy of the generated
equations. The 95% CI was used to ensure the effect of the model terms. During this, a
p-value lower than 0.05 implies that the corresponding term has some effect on the specified
output measure [56,57].

3.2.1. MRR

Table 3 shows the ANOVA results at a 95% CI for the regression equations generated
among the investigated factors and MRR. The regression model term considerably impacted
the created model terms for all of the examined metrics. The results revealed that the entire
regression terms, including all input parameters, significantly affect MRR response. As
per the obtained results, MRR was highly dependent on Toff. Toff contributes the most
(74.95%) to MRR, followed by Ton (16.39%) and current (6.56%). The R2 value of 97.92%
implies that the empirical model can explain 97.92% of the variation in MRR, whereas the
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created model cannot explain just 2.08% of the entire variation. When the expected and
adjusted R2 values concur, it confirms a significant connection between the observed and
anticipated values [58]. In this case, adjusted R2 was 96.67% and anticipated R2 was 93.18%.
The close proximity of the values indicates a strong relationship between them. This clearly
demonstrates the model’s acceptability and sufficiency.

Table 3. ANOVA for MRR.

Source Adj. SS F-Value p-Value % Contribution

Regression 3.9998 78.46 0.000
Current 0.2682 15.78 0.011 6.56

Toff 3.0618 180.18 0.000 74.95
Ton 0.6698 39.42 0.002 16.39

Error 0.0849 2.10
Total 4.0848 100

R2 = 97.92%, R2 adj. = 96.67%, R2 pred. = 93.18%

3.2.2. SR

Table 4 shows the ANOVA results for SR. The regression model term has considerably
impacted the created model terms for all of the examined metrics. The results revealed that
the entire regression terms, including input parameters of Ton and current, significantly
affect the SR response. Toff did not have a significant effect on SR response. As per the
obtained results, SR was highly dependent on Ton. Ton contributes the most (50.24%) to
SR, followed by current (43.99%) and Toff (1.47%). The R2 value of 95.72% implies that
the empirical model can explain 95.72% of the variation in SR whereas the created model
cannot explain just 4.28% of the entire variation. When the expected and adjusted R2

values concur, it confirms a significant connection between the observed and anticipated
values [59]. In this case, the adjusted R2 is 93.15% and the anticipated R2 is 87.2%. The
close proximity of the values indicates a strong relationship between them. This clearly
demonstrates the model’s acceptability and sufficiency.

Table 4. ANOVA for SR.

Source Adj. SS F-Value p-Value % Contribution

Regression 3.8792 37.28 0.001
Current 1.7831 51.41 0.001 43.99

Toff 0.0599 1.73 0.246 1.47
Ton 2.0363 58.71 0.001 50.24

Error 0.1734 4.30
Total 4.0526 100

R2 = 95.72%, R2 adj. = 93.15%, R2 pred. = 87.20%

3.3. Residual Plots for MRR and SR Measures

The positive findings of the ANOVA results are supported by residual plots. If certain
conditions are met, ANOVA analysis might be regarded as valid and acceptable for the
chosen model [60]. For this aim, residual plot validation is critical. Figure 3 shows the
residual plot for MRR. The normality plot depicts linear progression. It means that the
model is suitable. The second vs fit graph indicated that fits around the source was
absolutely random. A bell-shaped curve represents the data required for a powerful
ANOVA in the histogram display [61]. The Versus order plot confirms the ANOVA results,
which revealed no discernible trend. The four residual plots in the current investigation
verified the ANOVA statistics for a more accurate results forecast.
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Figure 3. Residual plots for MRR.

The SR readings for all four residuals were similar to MRR, as shown in Figure 4.
Thus, the residual plot findings for all performance metrics imply good ANOVA results
and satisfy the ANOVA requirement.
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Figure 4. Residual plots for SR.

3.4. Main Effect Plots for Response Measures
3.4.1. Main Effect Plot for MRR

Figure 5 demonstrates the effect of WEDM factors on the MRR output measure. The
X-axis indicated WEDM variables, while the Y-axis depicted MRR means for the relevant
input. It was discovered that as the current increased, so did the MRR. This is due to a
spike in discharge energy caused by the current value. The subsequent rise in heat energy
melts and vaporizes the work material, resulting in a surge in thermal energy produced
by growth in discharge energy [34,62]. When additional melting and vaporization occurs,
more work material erodes at the machining zone, enhancing the MRR value. An increase
in Toff value led to a reduction in the value of MRR in the Toff vs. MRR plot. When the Toff
value is increased, the discharge energy decreases. As Toff increases, spark amplitude and
discharge energy decline, as does MRR, because MRR is directly correlated to discharge
energy [40]. In the case of Ton vs. MRR, it was discovered that as the value of Ton increased,
so did the value of MRR. The material erodes as a result of the machining process’s use
of a repeating spark. These discharges grow as the Ton increases. The workpiece melted
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and vaporized as the heat energy was raised. Higher melting and vaporization cause more
erosion of the work materials, resulting in an increase in MRR [63]. Setting current and Ton
at higher levels and Toff at a lower level is optimal for increasing MRR.
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3.4.2. Main Effect Plot for SR

The graph shown in Figure 6 depicts the effect of WEDM factors on SR output mea-
surements. The X-axis displays WEDM variables and the Y-axis displays the means of the
SR measure for each input. The major effect plot for current vs. SR revealed that as the
current increases, so does the SR. The higher value causes enlarged discharge energy, which
causes a rise in heat energy. Thus, the material gets melted and vaporized owing to this
heat energy. These increases in thermal energy and sparks result in higher temperatures,
which raises the SR [64]. When the rate of erosion increases due to an increase in current,
large and deep craters formed on the work material produce a more even surface. With
an increase in Toff value, SR value decreased. Toff was found to affect SR when it was
increased favorably. A decrease in spark intensity decreases the temperature further as Toff
rises. As Toff increases, reducing thermal and discharge energy. This formed a small crater
and improved the surface smoothness of the material being machined [65]. As a result,
as Toff rises, SR falls. With an increase Ton, SR was initially decreased and then slightly
increased. This was because, at the higher Ton, a large amount of metal was deposited on
machined parts as it does not have sufficient time to flush away due to a higher amount of
discharge energy [28].
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3.5. Optimization Results

The results of ANOVA and the main effect plots clearly depict the need to optimize
process parameters, as it has shown conflicting conditions of input factors for MRR and SR
responses. Thus, the current study has employed the HTS algorithm by considering the
upper and lower bounds of the input factors employed for Taguchi’s design.

Initially, a single-response optimization was carried out for MRR and SR. MRR was
referred to as the maximization criterion for higher productivity, while SR was consid-
ered a minimization function to acquire a better surface finish. The obtained results of
single-response optimization are depicted in Table 5. A conflicting situation can be clearly
observed in the results and input factor conditions. This can be efficiently handled by si-
multaneous optimization of multiple responses. Pursuant to this, non-dominated solutions
were obtained by generating the Pareto points through a multi-objective HTS algorithm.

Table 5. Results of single-response optimization.

Function
Input Factors Output Measures

Current
(A)

Toff
(µs)

Ton
(µs)

MRR
(g/s)

SR
(µm)

Maximum MRR 5 6 100 3.3501 5.62

Minimum SR 1 26 100 2.2590 3.36

Figure 7 depicts a 2D Pareto graph of the obtained Pareto points by implementing
the MOHTS technique. These points are also represented in Table 6, along with their
input factors. Pareto points were achieved after using multiple evaluation functions. All
the obtained results of Pareto points depict a unique solution that provides a trade-off
among the conflicting responses. The MRR vs. SR plot, as shown in Figure 7, clearly
depicts a contradictory nature among the response variables. Thus, a user can select the
machining conditions as per their required levels of response values. Validation of the
obtained results from the HTS algorithm was carried out by performing actual experimental
trials. The predicted and actual results from the trial have shown an acceptable difference
between their values. Thus, the HTS algorithm clearly suggested a wide acceptability for
the developed models of the current work.
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Table 6. Predicted results of HTS algorithm.

Sr. No. Current
(A)

Toff
(µs)

Ton
(µs)

MRR
(g/s)

SR
(µm)

1 5 6 100 3.3501 5.62
2 1 26 100 2.2590 3.36
3 5 8 100 3.2832 5.50
4 1 13 100 2.6934 4.12
5 3 7 100 3.1052 5.02
6 1 12 100 2.7268 4.18
7 3 8 100 3.0718 4.96
8 2 7 100 2.9995 4.74
9 1 7 100 2.8938 4.47
10 5 9 100 3.2498 5.45
11 3 9 100 3.0384 4.90
12 1 6 100 2.9272 4.53
13 2 9 100 2.9327 4.63
14 4 6 100 3.2443 5.35
15 2 6 100 3.0329 4.80
16 4 9 100 3.1441 5.17
17 3 6 100 3.1386 5.08
18 1 19 100 2.4929 3.77
19 1 24 100 2.3259 3.48
20 1 18 100 2.5263 3.83
21 1 11 100 2.7602 4.24
22 1 23 100 2.3593 3.54
23 1 10 100 2.7936 4.30
24 2 8 100 2.9661 4.69
25 4 8 100 3.1775 5.23
26 1 8 100 2.8604 4.41
27 1 14 100 2.6600 4.06
28 1 9 100 2.8270 4.36
29 1 17 100 2.5597 3.89
30 1 23 100 2.3593 3.54
31 1 15 100 2.6266 4.01
32 1 20 100 2.4595 3.71
33 1 24 100 2.3259 3.48
34 1 25 100 2.2925 3.42
35 1 21 100 2.4261 3.66
36 1 20 100 2.4595 3.71
37 1 16 100 2.5931 3.95
38 1 22 100 2.3927 3.60
39 1 18 100 2.5263 3.83
40 1 10 100 2.7936 4.30
41 1 9 100 2.8270 4.36
42 1 14 100 2.6600 4.06
43 1 25 100 2.2925 3.42
44 1 16 100 2.5931 3.95
45 1 21 100 2.4261 3.66
46 5 7 100 3.3166 5.56
47 4 7 100 3.2109 5.29
48 5 7 100 3.3166 5.56

3.6. Effect of Expanded Graphite on Output Factors

The effect of expanded graphite (EG) nano-powder has been studied on the output
factors of MRR and SR. To understand the effect of EG, an objective function was used
(Equation (9)) by assigning equal weightage to both responses.

Obj. = w1·(MRR) + w2·(SR) (9)
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As per the above objective function, experiments were conducted with and without the
use of EG nano-powder, as shown in Table 7. An equal weightage of 0.5 was given to MRR
and SR. The objective function has input factor conditions of Ton at 100 µs, Toff at 13 µs,
and current at 1 A. Thus, the experiment was carried out with these input factors. As seen
from Table 7, the obtained values of MRR and SR at conventional WEDM conditions, i.e.,
without the use of EG, were 2.69 g/s and 4.12 µm, respectively. In contrast, the use of EG
nano-powder at 1 g/L has shown enhancement in response values with MRR of 3.91 g/s
and SR of 2.623 µm. This has shown an enhancement of 45.35% and 36.16% for MRR and
SR, respectively. This was due to the fact that the addition of EG in the dielectric fluid has
improved spark discharge, which lowers breakdown strength and improves the igniting
process [37,66]. In addition to this, the addition of EG helps in flushing the eroded particles.

Table 7. Impact of expanded graphite.

Experimental Condition WEDM Factors Response Measures

Use of Expanded
Graphite nano-powder

Current = 1 A
Ton = 100 µs
Toff = 13 µs

EG nano-powder = 1 g/L

MRR = 3.91 g/s
SR = 2.63 µm

Without EG nano-powder
(Conventional EDM)

Current = 1 A
Ton = 100 µs
Toff = 13 µs

EG nano-powder = 1 g/L

MRR = 2.69 g/s
SR = 4.12 µm

3.7. Effect of Expanded Graphite on Surface Morphology

The surface morphology of the machined surface was investigated by employing
SEM to understand the effect of EG nano-powder. The optimum corresponding process
parameters shown in Table 7 were used in this study to investigate the surface anatomy
of machined surfaces of conventional WEDM (Ton at 100 µs, Toff at 13 µs, and current
at 1 A, and without EG nano-powder) and PMWEDM (Ton at 100 µs, Toff at 13 µs, and
current at 1 A, and EG nano-powder conc. at 1 g/L) processes. Figures 8 and 9 show
micrographs obtained from SEM of the machined area during traditional WEDM and
PMWEDM processes. Analyzing the surface obtained in Figure 8 reveals an extensive
number of micro-pores, increased layer deposition, i.e., the development of globules and
the existence of micro-cracks. However, the machined surface of PMWEDM obtained using
the same machining parameters as the standard WEDM method exhibited a significant
improvement in surface defects, i.e., a significant reduction in micro-pores, globules, and
micro-cracks. The consistent sparking between the work material and the tool reduces
microcracks significantly in the PMWEDM process [67,68]. The significant gap between the
tool and the workpiece is the cause of the large reduction in deposition of debris (globules)
and micro-pores in the NPMWEDM process [69]. This results in suitable and simple debris
flushing. This simple removal of dirt creates little ridges, which improves surface quality.
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Figure 9. SEM image for EG nano-powder mixed with WEDM.

4. Conclusions

In the present work, the effect of EG nano-powder has been studied on MRR, SR, and
surface morphology of the machined surfaces. Current, Ton, and Toff were identified as
vital input factors for the WEDM process of Ti6Al4V. The experiments were carried out
by employing Taguchi’s L9 design. The empirical regression equations were derived by
using Minitab v17 for output factors. The regression mode was observed to be significant
for the output measures. ANOVA was used to assess the acceptability of the suggested
regression equations. For MRR, Toff was recorded to be the most important factor affecting
the response values with 74.95% impact, followed by Ton with 16.39% and current with
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6.56%. In the case of SR, Ton was found to be a highly significant factor with a 50.24%
impact, followed by current with 43.99%, and Toff with 1.47%. The regression values close
to 100 confirmed the results’ suitability. Additionally, residual plots for both responses also
verified the successful outcome. An HTS algorithm was implemented for single-response
and multi-response optimization. The results of single-response optimization have shown
a conflicting situation in response parameters. Pursuant to this, non-dominated solutions
were obtained by generating the Pareto points through a multi-objective HTS algorithm.
The effect of expanded graphite (EG) nano-powder has been studied on the output factors
of MRR and SR. The MRR and SR at conventional EDM conditions, i.e., without using
EG, were recorded as 2.69 g/s and 4.12 µm, respectively. In contrast, the use of EG nano-
powder at 1 g/L has shown enhancement in response values with MRR of 3.91 g/s and
SR of 2.623 µm. This has shown an enhancement of 45.35% and 36.16% for MRR and SR,
respectively. Lastly, the surface morphology of the machined surface was investigated
by employing SEM to understand the effect of EG nano-powder. The results showed a
reduction in surface defects when using EG nano-powder compared to the conventional
WEDM process.
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Nomenclature

ANOVA Analysis of variance
CI Confidence interval
DOE Design of experiments
EDM Electrical discharge machining
EG Expanded graphite
HTS Heat transfer search
MOHTS Multi-objective heat transfer search
MRR Material removal rate (g/s)
PMEDM Powder-mixed electrical discharge machining
PMWEDM Powder-mixed wire electrical discharge machining
SEM Scanning electron microscope
SR Surface roughness (µm)
Ton Pulse on time (µs)
Toff Pulse off time (µs)
t Time in seconds
RLT Recast layer thickness
WEDM Wire electric discharge machine
ρ Density in g/cm3

R Probability
n Randomy generated initial population
g Updated population in each generation
m Number of optimization parameters
i 1, 2, . . . , m
j 1, 2, . . . , n
k Randomy selection solution from population
Xj,i, Xk,i, . . . Temperature gradients
CDF Conduction factor
COF Convection factor
RDF Radiation factor
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