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Abstract: Vibrations are limiting the productivity and the process quality of cutting machine tools.
For the monitoring of these vibrations, often external sensors, such as acceleration sensors, are used.
These external systems require additional cost and maintenance effort. This paper presents a virtual
sensor, which is capable of detecting vibrations at the tool center point, based on internal machine
data. External sensors are only necessary once for model identification. This reduces the overall cost
of the system significantly. The virtual sensor uses the high-quality data of the linear position encoder
near the ball screw nut and calculates the vibrations at the tool tip by using transmissibility functions.
This paper explains the theory behind the used transmissibility functions and describes how they
are measured, by comparing different experimental approaches to identify the modal parameters of
cutting machine tools. After the identification of the sensor, a dynamical test cycle is used to prove
the physical correctness.

Keywords: machine tool; vibrations; monitoring; virtual sensor; transmissibility function

1. Introduction

Vibrations during metal cutting lead to noise, bad surface finish and increase the wear
of machine components and tools. On the other hand, the accuracy of the machine is
very important for high performance machining and high quality of the produced part.
Therefore, it is important to monitor or predict dynamic deviations at the tool center point
(TCP) of a CNC machine. For process planning, there are already scientific approaches that
predict TCP vibrations via mechanical models of the machine and the cutting process [1–3].
The focus of these simulations is often the prediction of the stability behavior related
to chatter vibrations [4–7]. These approaches are used to predict the vibrations before
the process is started. There can be large deviations between predictions and the real
behavior because of the unmodeled effects and uncertainties in the identification of the
underlying models.

For this purpose, the monitoring of real vibration behavior during the cutting process
are another alternative. A review on process monitoring and condition monitoring of CNC
machine tools are given in [8,9]. In this case, spindle current or the contour error of the NC
axes are monitored. For getting machine data as close to the process as possible, typically
additional external sensors are necessary. Examples for that are acoustic methods and
the vibration detection with external acceleration sensors near the main spindle [10,11].
Acoustic methods detect acoustical anomalies, but they need a huge amount of external
sensors [12]. In general, separate sensors increase the overall costs, the complexity of the
system and the maintenance effort.

Virtual sensors (VS) can be used for process monitoring close to the TCP of a CNC
machine without the requirement of additional sensors. VS, also known as soft sensors or
in control theory state observers, are a combination of real sensor data and mathematical
models. Virtual sensors are used to access data at points that cannot be monitored with
regular measurement technology. VS are often used in chemical industry [13] but also in
mechanical engineering [14]. Other approaches combine the virtual sensor approach with
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AI algorithms [15,16]. However, in this case a large number of high-quality data sets for
the training of the AI models (e.g., neuronal networks) is necessary.

Here, a VS for monitoring the dynamic contour error at the TCP of CNC machine
tools is presented. It is based on a physical approach and uses high-quality live data from
machine internal sensors. In particular, the encoder data from the direct position sensors
(DPS) near the ball screws of the NC drives are used. They are of high quality because
they contain the dynamics of the entire upstream drive train (control and mechanics up
to the ball screw nut), are stable over the frequency range under consideration and are
as close as possible to the process. In order to be able to calculate a transfer behavior
between the sensor location and the TCP, the so-called transmissibility functions (TMFs)
are used. The sensor is cost effective, precise and fast to establish because it is based on
experimental machine data. The paper focuses especially on the experimental identification
of the modeling part of the virtual sensor.

The next section describes the methodology of the VS. In Section 3, experimental results
and verification are presented, followed by a discussion in Section 4. Finally, conclusions
are given in Section 5.

2. Methodology
2.1. Concept of Virtual Sensor in Machine Tools

Figure 1b shows the principal functionality of a virtual sensor (VS), sometimes called a
soft sensor. The idea of a virtual sensor is that some quantity at a point of interest is derived
from other sensor data, which measure different quantities or the same quantity at different
locations. In particular, input data for the VS is the real measured sensor data from the
machine, e.g., high frequency position data from the linear encoder. The VS contains a
physical model for describing the relationship between the measured data at the encoder
and the position at the point of interest, e.g., the actual position at the TCP. Virtual sensors
are especially useful for data fusion of various sensor data and in situations, where no real
sensor can be applied at the point of interest.

(a)

virtual sensor (VS)
(mathematical machine model)

input data
(real measured machine sensor data,

e.g., high frequency position data
at the linear position encoder)

output data
(virtual sensor data, e.g., high fre-
quency position data at the TCP)

(b)

Figure 1. (a) Overview about the relevant dynamical parts of a milling machine axis. (b) Principal
functionality of a virtual sensor.

Figure 1a shows a vertical turn-milling center to illustrate the VS for CNC machines.
The servomotor generates the feed motion of a slide typically via a ball screw drive.
An internal encoder of the servomotor for the position of the motor shaft can be used to
determine the position of the slide. Near the ball screw nut, a second linear encoder directly
measures the position of the slide. This sensor is the next position sensor to the tool center
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point (TCP). The slide position as well as the speed of the servomotor are fed back to the
cascaded drive control system for controlling the TCP position.

The elastic behaviour of the mechanical structure between the linear encoder and the
TCP position leads to deviations between the measured and the actual TCP position, which
results in deviations between the desired and the actual geometry of the produced parts.
At the TCP, no position sensor can be applied because of the rough conditions in cutting or
laser processes. However, a VS can be used to determine the TCP position based on the
sensor signals of the linear encoders and a model describing the mechanical behavior of
the structure between the encoder positions and the TCP.

2.2. Modeling

The modeling part can be described via transfer functions Hab(s), where a, b ∈
{D, E, T} referring to drive (D), encoder (E) and TCP (T) position. A cutting or process
force FT acts on the structure at the TCP, and drive forces FD resulting from the motor
torques are acting on the structure from the other side. Then, the system can be given as(

xE(s)
xT(s)

)
=

(
HED(s) HET(s)
HTD(s) HTT(s)

)(
FD(s)
FT(s)

)
. (1)

For example, HTD(s) describes the behavior of TCP displacements in reaction to the
drive forces. The vectors xE and xT describe the encoder positions for each drive of the
CNC machine and the TCP position, respectively. The vectors FD and xE for the drive
forces and encoder positions, respectively, contain entries for each feed drive of the CNC
machine that determines the TCP position. The vectors FT and xT for the cutting force and
TCP position, respectively, contain entries in the x-, y-, and z-coordinates of the machine
tool coordinate system. The matrices H have appropriate dimensions. For the example in
Figure 1, there are two linear feed drives for the horizontal (X) and vertical (Z) motion of
the TCP. In this case, Equation (1) reads

a1
a2
x
y
z

 =


Ha1a1 Ha1a2 Ha1x Ha1y Ha1z
Ha2a1 Ha2a2 Ha2x Ha2y Ha2z
Hxa1 Hxa2 Hxx Hxy Hxz
Hya1 Hya2 Hyx Hyy Hyz
Hza1 Hza2 Hzx Hzy Hzz




Fa1
Fa2
Fx
Fy
Fz

, (2)

where a1, a2 and Fa1, Fa2 are the encoder positions and forces at the two feed drives (X
and Z), respectively. The displacements and forces at the TCP are given by (x, y, z) and
(Fx, Fy, Fz), respectively. Thus, HTD(s) is a 3 × 2 matrix and the second row for the y-
coordinate of the TCP contains the cross transfer functions for y-displacements at the TCP
in response to forces at the X- and Z-drive.

For brevity, in the following only one coordinate of the CNC machine is considered.
Then, Equation (1) reads

xE(s) = HED(s)FD(s) + HET(s)FT(s) (3)

xT(s) = HTD(s)FD(s) + HTT(s)FT(s). (4)

It is possible to capture the drive force FD from the machine internal sensor data
and use Equation (4) for the VS. However, the encoder position xE is closer to the TCP
position and a much more reliable and accurate signal. Moreover, the structural behavior
between drive and encoder is nonlinear [17,18]. Therefore, Equations (3) and (4) were rear-
ranged to describe the TCP position xT in terms of the encoder position xE.The following
Equation results

xT(s) = TD
TE(s)[xE(s)− HET(s)FT(s)] + HTT(s)FT(s), (5)
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where transmissibility functions (TMFs) Tc
ab were used for describing the relationship

between two position signals,

Tc
ab(s) =

xc
a(s)

xc
b(s)

=
Hac(s)Fc(s)
Hbc(s)Fc(s)

=
Hac(s)
Hbc(s)

=
ac

a(s)s2

ac
b(s)s

2 =
ac

a(s)
ac

b(s)
. (6)

The superscript c of the TMF refers to the point of the affecting force, and the indices
a and b characterize the points of the displacements with a, b, c ∈ {D, E, T}. As can be
observed from the definition in Equation (6), TMFs Tc

ab depend not only on the input and
output location a and b, but also on the location c of the affecting force [19]. Moreover,
acceleration signals can be also used to identify the function. In this case, the acceleration
data can be integrated in the frequency domain, as can be observed in Equation (6).

Equation (5) can be understood as follows. The term in the square bracket is equiva-
lent to HEDFD (cf. with Equation (3)). It specifies the encoder displacement due to drive
forces, i.e., the measured value for xE minus the contribution HET(s)FT(s) that comes
from the cutting force. With the transmissibility function TD

TE(s), this displacement is
translated into displacements xT at the TCP. The second term HTT FT specifies TCP dis-
placements xT in response to a cutting force FT . In case of finishing operations, e.g., for
cost-intensive manufacturing of dies for car body shells, the material removal rates are very
low, but accelerations are high to be as productive as possible. In this case, the influence of
discplacements from the process force is low compared to the influence of contour errors
from high de- and acceleration of the drives. Therefore, the process force FT(s) = 0 in
Equation (5) is neglected and Equation (5) simplifies to

xT(s) = TD
TE(s)xE(s). (7)

Equation (7) is used as a model part for the virtual sensor in CNC machines. Using
the TMF TD

TE(s) has important advantages. Firstly, the linear encoder for measuring the
signal xE is closest to the TCP position (e.g., compared to the encoder at the motor shaft).
Secondly, the measured position xE(s) contains already nonlinear dynamic behavior due to
the position-dependent ball screw stiffness and friction. Thirdly, the quality of the encoder
data is very high, that is, the resolution is less than 1 µm and the sampling rates are in the
range of 1 ms. Moreover, the signal xE of the linear encoder gives also reliable signals for
very low frequencies, which does not hold for an accelerometer or drive forces, which are
obtained from current sensors in the servomotor.

2.3. Implementation

In general, the TMF in Equation (7) can be given as

TD
TE(s) =

ansn + . . . + a1s + a0

bnsn + . . . + b1s + b0
. (8)

Simulation software such as Matlab Simulink can be used to solve Equation (7) in
the time domain. However, for implementation in CNC machines, a numerically efficient
implementation is necessary. This can be conducted by converting the TMF in Equation (8)
to the time domain, for example, by fitting modal parameters to measured transfer functions
(see Section 3.3). Then, a simple Euler or Heun method can be used to numerically integrate
the equations of motion and calculate the TCP position xT based on actual values xE from
the encoder.

2.4. Strategies for Model Identification

The transfer functions and the TMF in Equation (5) can be identified via experiments.
This is very efficient and more accurate compared to the calculation of the transfer functions
and TMFs based on FE simulations or other models. In a first step, an appropriate excitation
strategy is necessary. A broadband excitation of the mechanical structure at the TCP and at
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the drives is needed. In principal, there are two options, which are shown in Figure 2. On the
one hand, an internal test signal, which is applied to the drive, could be used. Typically,
this is realized by a pseudo random binary sequence (PRBS) in the commanded position.
On the other hand, an external force to excite the machine could be used. Here, existing
approaches from experimental modal analysis, e.g., impact testing via an impact hammer,
can be used. A third alternative is the operational modal analysis [20–22]. The transfer
functions HTT and HET can be obtained by excitation at the TCP, e.g., via an impact hammer,
and measuring the response with an accelerometer at the TCP and at the linear encoder,
respectively. In general, at least one temporarily installed external sensor is necessary to
measure the response at the TCP. Since the signals of the machine’s internal and external
sensors are not easy to synchronize (sampling rate, start and end time may differ), the usage
of two similar sensors at the TCP and the encoder position is advantageous. By using data
from two synchronized signals, the quality of the TMF is less noisy and the phase of the
TMF is more accurate (no artificial time shift).

excitation methods

using external force (EMA) using internal test signals

impact hammer

near ball screw nut

main spindle

shaker

PRBS

reference value jump

reference value ramp

...

Figure 2. Overview about the excitation methods.

For the identification of the TMF TD
TE(s), it is important to keep in mind that the TMF

depends on the location of the excitation. To illustrate this, the TMFs for a oscillator chain
with three masses have been plotted in Figure 3. Three mass oscillators are a simplified
model for the dynamic behaviour of a machine tool drive [23]. From this example, one can
observe that the TMF T1

32(jω) is identical to T2
32(jω), whereas T3

32(jω) differ from the two
former ones. This is due to the fact that for the identification of a transmissibility function
between mass 2 and mass 3 it is not important if the excitation occurs directly at position
2 or at position 1, which is on the same side of the oscillator chain. For the machine tool
drive and the identification of TD

TE, this means that an excitation near the encoder position,
e.g., with an impact hammer, is comparable to the excitation at the drive for example with
an internal PRBS signal for the commanded position. In contrast, an excitation at the TCP
would lead to wrong results for TD

TE because the excitation must be on the side of the drive.
This theory is validated via measurements at the x-axis of a 5-axis milling machine.

Figure 4 shows the TMFs TD
TE, TE

TE, TT
TE between the encoder position and the TCP position

for three different locations of the excitation, i.e., excitation at the drive (D) via a PRBS
signal (black curves in Figure 4), excitation near the encoder (E) via an impact hammer
(green curves) and hammer excitation at the TCP (T, black curves).

The response was measured via piezo-electric accelerometers whose position was not
changed. In accordance with the theory and the results from the three mass oscillator in
Figure 3, the TMF TD

TE(jω) is similar to TE
TE(jω) because the excitation is on the drive side.

In contrast, the TMF TT
TE(jω) deviates significantly from the other two TMFs because in

this case the excitation occurs on the TCP side.
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Figure 4. TMF for different points of excitation (experimental results).

3. Results
3.1. Measured Transmissibility Functions

To identify the TMF TD
TE(jω), a external acceleration sensor at the TCP is placed.

The second relevant point is the linear position encoder. Here, an existing linear position
encoder could be used. With the accelerometer, the transfer behavior at very low frequencies
cannot be measured. However, the mechanical structure is similar to a low pass filter and
at very low frequencies the TCP position follows by one-to-one the encoder position. There
is also the possibility to place an external acceleration sensor near the encoder location.
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The second option has different advantages. Firstly, the analysis of the measured data is
easier, because both signals can be captured with the same data acquisition system. This
means that there is no time-shift, no difference between the sampling rates of the signals
and no integration differentiation of the signals is necessary. Secondly, the measurement
range is higher. There is no need to limit the range to the sampling rate of the machine
control (about 500 Hz). If the excitation force is wide banded enough, higher frequency
modal parameters of the machine can be respected.

Figure 5 shows measurement results for the two measurement options. An accelerom-
eter was placed close to the linear encoder of the drive (observe the left side in Figure 5).
The machine was excited with a hit of an impact hammer at the TCP. One can observe that
both signals are close to each other in the frequency range between 20 Hz and 160 Hz. In this
case, the sampling rate for the encoder signal was 3 ms, which sets the upper frequency
limit due to the Nyquist criterion. At very low frequencies, the signal of the accelerometer is
not reliable and diverges compared to the encoder signal. However, with the accelerometer,
signals at higher frequencies (compared to the 166 Hz limit of the encoder) can be also
obtained. The slight difference between the encoder signal and the accelerometer signal
at frequencies between 100 Hz and 120 Hz is probably due to the slight difference in the
location of the encoder and the accelerometer.

0 50 100 150 200
10−10

10−8

10−6

frequency [Hz]

|X
|[

m
]

Comparison of external and internal sensors

external acceleration sensor
linear position encoder

Figure 5. Comparison of double-integrated acceleration and internal position signal.

3.2. Position Depending Dynamic Behaviour of Machine Tools

Dependent on the machine tool concept the dynamic behavior at the TCP depends on
the position of the feed axes. Some examples for regular transfer function can be found
in [20,21,24,25]. For the feed drive closest to the TCP the approach in Equation (6) mainly
eliminates position-dependent behavior of the TMFs. However, this does not hold in
general. Figure 6 shows an example for position-dependent TMFs TD

TE for a 5-axis milling
machine. In this case, the y-axis is mounted on a column, whereas the x-axis moves the
column (see left side in Figure 6). Obviously, the behavior of the TMFs TD

TE in the x-direction
depends on the position of the y-axis. This can be observed in the TMFs at the right side
of Figure 6. In particular, the x-drive was excited via a PRBS signal and the TMFs was
determined from the acceleration data at the TCP and near the linear position encoder. It
can be observed that the TMFs vary depending on the position of the y-axis.

3.3. Modal Fitting

Figure 7 shows two approaches to transfer the experimental data into a model. The ex-
perimental modal analysis is a wide spread method to identify the modal parameters of
cutting machine tools [26]. Here, classical transfer functions were measured in the fre-
quency domain. Modal parameters (resonance frequency, modal damping and modal mass)
were identified for each classical transfer functions, and the TMF was created from these
modal parameters.
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Figure 7. Generation of transmissibility functions.

Figure 8 shows that method. The two frequency response functions (FRFs) HTE(jω)
and HEE(jω) were obtained from impact hammer tests (black curves). The results from
the modal fitting (green curves) coincide well with the measured FRFs. On the right side
of Figure 8, the TMFs generated from the measurement data (black) and from modal
parameters (green) are shown. The TMF from the modal fit is relatively close to the
measured data. As an alternative way, the coefficients for a transfer function model
from the measured inputs and outputs of the TMFs can be identified directly. In this
case, a separate algorithm is necessary, since TMFs differ from regular transfer functions.
For example, the numerator and denominator of the transfer function can have the same
order, which does not hold for typical transfer functions for displacements in response
to force. As an advantage of the second approach, the resulting TMFs are typically more
precise because the measured input and output data of the TMFs are directly used for
the model identification and a general transfer function model allows more freedom in
the parametrization.

3.4. Verification of the Results

The performance of the VS is tested for a dynamic test cycle on a 5-axis milling machine.
Here, only results for the x-direction are demonstrated, but similar behavior is found for
the other directions. The measured and fitted TMF is shown in Figure 9a. An excitation at
the drive with a PRBS signal was used for the experimental identification. This means that
an excitation up to a frequency of up to 330 Hz occurs (servo cycle time 3 ms). The encoder
and TCP motion was measured with two accelerometers, with a bandwith up to 800 Hz.
This means that the TMFs can be reliably identified up to 333 Hz. In this frequency range
the fitted TMF coincide well with the measured data. An overview over the test cycle and
the corresponding accelerations at the x-axis are shown in Figure 9b.
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A detailed comparison between the measured signal (black) and the outcome of
the VS (green) is shown in Figure 9c,d. The virtual sensor performs very good for the
low frequency area, whereas some deviations occur for high frequency behavior. This is
because excitation at high frequencies was missing during the model identification of the
VS, and therefore, the bandwidth of the VS (333 Hz) is lower than the bandwidth of the
accelerometer (800 Hz).
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Figure 9. (a) measured and fitted TMF, (b) overview over the test cycle and the corresponding
accelerations, (c) detailed comparison between the measured signal (black) and the outcome of the
VS (green), (d) detail 2.
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4. Discussion

The test cycle has demonstrated that the VS works as expected in the considered
frequency range. Deviations at high frequencies occur, because the TMF was identified
by using an excitation via machine internal PRBS signals. The PRBS signal is limited to
the servo cycle time of the position control system of the machine, and therefore, does not
excite higher frequencies. The presented approach is a very general one, and can be applied
to different types of CNC machines. The measurement strategy has to be adjusted slightly
depending on the structure of the machine, the control system and the number of CNC
axes. An external impact or internal test signal could be used to excite the machine from the
drive side. For measuring the response at the TCP and encoder locations, only external or a
combination of external and internal sensors can be used. When using separate external
sensors near the encoder of the drives, the signals are slightly different compared to the
data of the internal machine sensors. However, these deviations are small and can be
neglected. The performed test cycle compares two accelerations and was only performed
for one axis.

In future work, other testing methods for measuring the position of the TCP are needed.
Moreover, the concept of the virtual sensor needs to be improved for also considering
the geometric behavior of the machine tool. Geometric failures can lead to dominant
contour errors at the work piece. In addition to the considered dynamic contour errors
and geometric errors, the effect of cutting forces can be taken into account, which is
already considered in the theoretical part, see, e.g., Equation (5). However, in practice,
the determination of the cutting force during the process without extensive measurement
effort is not possible. One approach could be to also identify the cutting force via a virtual
sensor or state observer based on the machine internal data [17,18].

5. Conclusions

This article demonstrates an approach for using virtual sensors for accuracy monitor-
ing in CNC machines. The virtual sensor can be used for process optimization, monitoring
of the accuracy of machine tools or anomaly detection. The identification of the modeling
part of the VS sensor can be conducted efficiently with standard experiments and only a
few additional external sensors. The model is based on transmissibility functions (TMFs).
This special transfer functions makes it possible to use the high quality data of the linear
position encoder of CNC machines as an input for the VS. Some important aspects, which
are relevant for the experimental identification and the model generation, were presented.
The results are verified for data from the X-axis of a milling machine based on a dynamic
test cycle. It was demonstrated that the virtual sensor works properly in the relevant
frequency range.

The novelty of the approach lays in the usage of TMFs to calculate dynamical deriva-
tions at the TCP from internal machine sensor data for a running machine. This is a key
difference to existing approaches for contour error prediction based on simulations before
the real process. Ideally, the signal from the virtual sensor of the presented approach is
equivalent to a position sensor at the tool center point with the advantage that no addi-
tional sensor is required. The usage of internal sensor signals reduces the overall cost and
complexity of the system. This approach provides a contribution to the real-time accuracy
monitoring of CNC machines. With this application, a system for optimal process planning
and monitoring, while ensuring minimal cost and effort, could be created.
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