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Abstract: Copper is a key material for cooling of thermally stressed components in modern aerospace
propulsion systems, due to its high thermal conductivity. The use of copper materials for such
applications requires both high material strength and high stability at high temperatures, which can
be achieved by the concept of oxide dispersion strengthening. In the present work, we demonstrate the
oxide reinforcement of two highly conductive precipitation-strengthened Cu-Cr-Nb alloys using laser
additive manufacturing. Gas-atomized Cu-3.3Cr-0.5Nb and Cu-3.3Cr-1.5Nb (wt.%) powder materials
are decorated with Y2O3 nanoparticles by mechanical alloying in a planetary mill and followed
by consolidation by the laser additive manufacturing process of laser powder bed fusion (L-PBF).
While dense specimens (>99.5%) of reinforced and nonreinforced alloys can be manufactured, oxide
dispersion-strengthened alloys additionally exhibit homogeneously distributed oxide nanoparticles
enriched in yttrium and chromium next to Cr2Nb precipitates present in all alloys examined. Higher
niobium contents result in moderate increase of the Vickers hardness of approx. 10 HV0.3, while the
homogeneously dispersed nanometer-sized oxide particles lead to a pronounced increase of approx.
30 HV0.3 in material strength compared to their nonreinforced counterparts.

Keywords: oxide dispersion strengthening; ODS; copper–chromium–niobium; laser additive
manufacturing; laser powder bed fusion

1. Introduction

Copper is an indispensable material with a wide field of applications in various
engineering sectors, such as automotive, aerospace, electronics, and power generation.
The versatility of copper and its alloys is commonly attributed to the unique physical
properties of high thermal and electrical conductivity. The utilization of copper alloys
as heat-transfer media in high-performance components in aerospace [1–4] and power-
generation applications [4–7] requires the development of copper alloys with both high
strength and high thermal conductivity. Increasing strength by solid solution strengthening
requires significant amounts of additional alloying elements, which drastically decreases
the thermal conductivity of copper alloys. Among others systems, e.g., Cu-Ni-Mn [8],
Cu-Ag [9], Cu-Co [10], Cu-Mg [11,12] and Cu-Fe-P [13], alloy concepts based on the
binary Cu-Cr and Cu-Zr systems have been considered for the development of highly
conductive high-strength copper alloys [14], which are interesting because they do not
contain highly toxic beryllium. [15]. This is due to the extremely low room temperature
solubility of chromium [16] and zirconium in copper at room temperature, resulting in
the precipitation of Cr-rich particles [14] and Cu5Zr precipitates [14,17–19]. Among others,
the commercial copper alloys AMZIRC [14,20], CuCr1Zr, and NARloy-Z [20] are based on
these developments. The alloys GRCop-84 and GRCop-42, both developed by NASA [20],
are based on the ternary Cu-Cr-Nb system, offering higher strength and improved creep
properties than the alloys NARloy-Z and AMZIRC by the formation of C15 structured
Cr2Nb laves phases [14,20–25]. The high affinity of Cr and Nb in combination with low
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solubility in the copper matrix at room temperature allow the creation of a pure Cu
matrix with dispersed Cr2Nb phases [26,27] after heat treatment [28]. The remarkable
creep properties [29] are attributed to the lack of coarsening of the Cr2Nb phase in the
copper matrix [30]. Creep properties are believed to be further improved by the concept
of oxide-dispersion strengthening (ODS), where nanoscale oxide particles are dispersed
in the metallic matrix. The alloy family of GlidCop [31,32], based on the dispersion of
temperature-resistant nanoscale oxides, such as aluminum oxide (Al2O3) [14,33–35] and
yttrium oxide (Y2O3) [36–39], offers increased strength, particularly in high-temperature
atmospheres, and inhibits recrystallization mechanisms [40] without significantly reducing
electrical conductivity [41]. GRCop (Cu-Cr-Nb), novel Cu-Cr-Nb-Zr [42,43], and GlidCop
(ODS copper alloys) [44] are conventionally manufactured via powder metallurgical or
rapid solidification manufacturing processes [45–48], such as additive manufacturing
processes [34,49] due to aggregation during the molten stage of Cr and Nb in GRCop alloys
or oxide nanoparticles in GlidCop alloys, respectively.

Additive manufacturing processes offer near-net-shape fabrication of complex struc-
tures in addition to extremely high solidification conditions. While additive manufacturing
of ODS steels using laser-based [50] or electron beam-based [51] additive manufacturing
processes have already been demonstrated, additive manufacturing of oxide dispersion-
strengthened copper alloys only in singular studies [52–54] typically results in highly
porous structures [52]. This may be attributed to difficult processing of copper and its
alloys, due to its low absorption for near-infrared wavelengths [55] and high specific
thermal conductivity leading to unstable melt pool behavior [56], frequently resulting
in high porosities [57–61] lack of fusion [57,59,62,63] and oxide formation [64] in printed
copper components.

Different strategies for processing copper materials, such as reducing the particle
sizes used [65–67], coating of copper powder particles with native oxide layers [68,69],
nickel [70] and carbon [71], the utilization of alternative laser wavelengths in the visi-
ble spectrum of green [72–74] and blue light [75] and pulsed laser systems [76], have
been examined to improve the processability of copper alloys in laser additive manu-
facturing processes. Cu-Cr-based alloys have established themselves as high-strength
and highly conductive with low alloy content and hardenable by the formation of Cr
precipitation [77–79]. The additional introduction of Zr allows the formation of nanoscale
Zr-rich precipitates during aging heat treatments [80–84]. Moreover, the formation of Zr-O
structures is observed [85,86], leading to the hypothesis that Zr may be used to capture
residual oxygen introduced by the powder material or the process atmosphere. Cu-Cr-Nb
alloys are also increasingly being manufactured with the laser additive manufacturing
technologies of L-DED [87–89] and L-PBF [90–95], allowing the manufacturing of dense
and defect-free parts with outstanding mechanical properties [4,91,96].

However, significant coarsening of Cr2Nb precipitations is observed in high-temperature
environments [30,92], resulting in rapid degradation of the mechanical properties. In this
work, we introduce nanoscale yttrium oxide nanoparticles, which are known to stabilize the
microstructure and thus material strength up to high temperatures [97]. It is hypothesized
that the introduction of nanoscale oxide particles may allow the increase of the service
temperatures from approx. 700 ◦C for GRCop alloys [32] up to 800 ◦C for dispersion-
strengthened copper alloys [98] without reducing conductive properties [99]. We chose
Y2O3 as reinforcement phase due to its higher thermodynamic stability than commonly
used Al2O3 in GlidCop alloys [100] and select two Cu-Cr-Nb alloys with different niobium
contents to study the influence of increased niobium contents on the formation of Cr2Nb
precipitates and the chemistry of the introduced yttrium oxide nanoparticles, potentially
forming cubic-structured Y3NbO7, as observed in stainless steels [101]. With this approach,
we combine the concepts of precipitation-strengthened GRCop and oxide dispersion-
strengthened GlidCop families to develop a high-strength, high-temperature-resistant, and
highly conductive copper alloy using the AM process of L-PBF.
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2. Materials and Methods
2.1. Powder Preparation

Two Cu-Cr-Nb powder materials with the chemical compositions shown in Table 1
are manufactured via vacuum inert gas atomization (VIGA) using argon gas. Both powder
materials are sieved to a particle size fraction of 15–45 µm prior to L-PBF processing.
Manufacturing of ODS variants from both alloys with additions of 0.5 wt.% nanoscale
Y2O3 (abcr GmbH, Karlsruhe, Germany) requires the fabrication of composite powder
materials with oxide nanoparticles attached to micrometer-sized copper particles. Thus,
mechanical alloying (MA) is used to manufacture composite powders and performed in a
Pulverisette 4 classic line planetary mill (Fritsch GmbH, Idar-Oberstein, Germany) using
milling containers and grinding balls (BPR: 5) with a diameter of 5 mm, both made from
yttrium-stabilized zirconia (YSZ). The milling procedure is conducted under full argon
atmosphere to avoid extensive oxidation of the copper powder particles in three alternating
milling (20 min) and pause intervals (10 min) to allow cooling of the powder material.

Table 1. Nominal chemical composition of the Cu-Cr-Nb powder materials in wt.%.

Alloy 1 Cu Cr Nb
Balance 3.3 0.5

Alloy 2 Cu Cr Nb
Balance 3.3 1.5

2.2. Laser Powder Bed Fusion (L-PBF)

Laser powder bed fusion is conducted using a custom laboratory-scaled L-PBF ma-
chine equipped with a YLR1000WC single-mode fiber laser system (IPG Laser GmbH,
Burbach, Germany) emitting laser radiation with a wavelength of 1070 nm. A Gaussian
beam profile with a beam diameter of approx. 80 µm in the focal plane is created by a
galvanometer scanner hurrySCAN20 (SCANLAB GmbH, Puchheim, Germany) coupled
with an f-theta lens with a focal length of 255 mm. A schematic of the setup of the machine
is depicted in Figure 1a.
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Figure 1. (a) Schematic depiction of the L-PBF machine setup. (b) Photograph of five printed
specimen of Cu-3.3Cr-0.5Nb-0.5Y2O3 material on a copper substrate.

L-PBF processing is conducted in a full argon atmosphere (residual oxygen < 10 ppm)
with a slight overpressure of approx. 60 mbar compared to ambient atmosphere. Cubic
samples (5 mm3) are manufactured on a CuCr1Zr (CW106C) substrate material with a
layer-wise rotating stripe scan strategy (34◦ per layer) using a hatch distance (hs) of 120 µm
and a layer thickness (tL) of 30 µm. The used laser power (PL) of 400 W and scan speed (vs)
of 800 mm/s allow the calculation of the volume energy density (VED) to 138.89 J/mm3.
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The process parameters are selected based on the process parameter study by Ren et al. [96]
The volume energy density is calculated using (1) [102]. Five specimens of each material
are printed (cf. Figure 1b).

VED =
PL

vshstL
(1)

Identical process parameter sets are applied to all powder materials processed and are
summarized in Table 2.

Table 2. Process parameters for L-PBF processing of Cu-Cr-Nb samples and their reinforced counterparts.

Process Parameter Unit Value Process Parameter Unit Value

Laser power W 400 Hatch rotation ◦ 34
Scan speed mm/s 800 Scan strategy - Stripes

Hatch distance µm 120 Residual oxygen ppm <10
Layer thickness µm 30 VED J/mm3 138.89

2.3. Characterization Methods

Printed samples are examined by standard metallographic procedure including water-
cooled cutting parallel to the build direction, grinding with silicon carbide (SiC) paper and
subsequent polishing procedure using a 1 µm diamond polishing suspension. The visual
identification of different phases and nanoparticles in the printed specimens is aided by an
etching procedure prior to scanning electron microscopy (SEM) examination utilizing an
aqueous etchant containing 10 g iron(III) chloride (Fe3Cl) and 20 mL hydrogen chloride
(HCl) in 100 mL deionized water at room temperature for approx. 15 s. The relative density
of printed specimens is determined on five polished cross sections prior to etching using
the image analysis software ImageJ.

SEM for imagery of powder particles is conducted on a Leo 1455VP (Carl Zeiss
Microscopy Deutschland GmbH, Oberkochen, Germany) in secondary electron (SE) mode
using an acceleration voltage of 20 kV. SEM images of printed specimens are performed on
an Apreo 2C (Thermo Fisher Scientific, Hillsboro, OR, USA) in SE mode and backscattered
electron (BSE) mode with 10 kV acceleration voltage. The determination of chemical
compositions is performed by energy-dispersive spectroscopy (EDS) measurements with a
Bruker XFlash 6L100 detector integrated in the Apreo 2C SEM system.

Hardness measurements are conducted on an automated hardness tester Carat 930
(ATM Qness GmbH, Mammelzen, Germany) in Vickers mode (HV0.3). A regular grid of
6 × 6 indents per sample with a constant distance of 500 µm is performed.

3. Results and Discussion
3.1. Powder Characterization

Both gas-atomized Cu-Cr-0.5Nb (Figure 2a) and Cu-Cr-1.5Nb (Figure 2b) powder
materials are characterized by a predominantly spherical morphology with only few
particles showing aspheric morphology. The powder particles show a smooth surface with
sporadically present satellite particles attached to the powder particles.

The Cu-3.3Cr-1.5Nb powder material (Figure 2b) shows a comparably high fraction
of satellites, which are regularly encountered in gas-atomized powder materials [103],
showing that an increased niobium content influences the gas atomization process. The
pronounced formation of satellites might stem from the higher superheat of the copper melt
necessary for gas atomization [104], due to higher liquidus temperature with increasing
niobium content [105].

After mechanical alloying, the circularity of the gas-atomized powder particles de-
creases and flake-like powder particles (indicated by the yellow arrow in Figure 3a) are
observed occasionally, which are frequently found in mechanically alloyed powder materi-
als [106,107]. Additionally, the surface of the powder particles appears to be rougher, which
presumably stems from the fracturing and cold-welding events during mechanical alloying
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processes [108]. Mechanically alloyed powder particles are covered with white-appearing
particles (Figure 3a,b). Using EDS measurements, enrichments of yttrium and oxygen can
be detected, proving the successful deposition of Y2O3 or related compound nanoparticles
on the surface of the Cu-Cr-Nb powder particles (Table 3).
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Table 3. Chemical composition (in wt.%) of the surface of the mechanically alloyed powder depicted
in Figure 2a,b. Averaged values from single-point measurements on 15 randomly selected powder
particles. GA: gas-atomized, MA: mechanically alloyed.

Alloy Powder State Cu Cr Nb Y O

Cu-3.3Cr-0.5Nb GA Balance 2.82 0.77 - 1.77
Cu-3.3Cr-0.5Nb-0.5Y2O3 MA Balance 3.73 1.15 4.91 3.18

Cu-3.3Cr-1.5Nb GA Balance 3.55 1.86 - 2.58
Cu-3.3Cr-1.5Nb-0.5Y2O3 MA Balance 3.31 1.78 4.02 2.47

Overall, a predominantly spherical particle morphology of both gas atomized powder
materials was retained after mechanical alloying (Figure 3a,b) and thus the mechanically
alloyed powder materials exhibit satisfactory flowability for L-PBF processing.

The presence of yttrium-rich oxide nanoparticles is believed to allow the utilization of
substantially lower VED compared to other studies, with 277.78 J/mm3 [60] to produce
dense specimens in this study (Table 2) by increasing the absorptivity for the used laser
radiation [109] by multiple reflections [110]. EDS measurements on the powder particles
surface additionally indicate an inhomogeneous distribution of chromium and niobium
in the copper matrix of the gas-atomized and mechanically alloyed powder particles,
which is confirmed by EDS maps of the powder particles’ cross sections (Figure 4a–d).
Comparable inhomogeneities were also observed by Seltzman et al. [4,91], but do not result
in detrimental effects on the L-PBF printing process or homogeneous distribution of Cr2Nb
laves phase in the printed copper matrix [91].
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3.2. Microstructure
3.2.1. Unreinforced Cu-Cr-Nb Alloys

Figure 5 provides SEM images of cross sections of the unreinforced Cu-3.3Cr-0.5Nb
(Figure 5a,b) and Cu-3.3Cr-1.5Nb (Figure 5c,d) in the as-printed state. The microstruc-
ture is characterized by a layered structure, showing the melt pool boundaries of the
printed layers, characteristic of AM printed parts [111]. The printed cubic structures are
found to be almost defect-free, exhibiting no cracks and low porosities, resulting in a
relative density of 99.7% ± 0.2% and 99.4% ± 0.3% respectively. These results are in accor-
dance with findings of Seltzman et al. [4,91] and Ren et al. [96], both demonstrating the
defect-free manufacturing of GRCop-84 and Cu-1.93Cr-0.74Nb alloy. Two homogeneously
distributed populations of nanosized particles, indicated by yellow and red arrows in
Figure 5b,d, are observed in both unreinforced specimens, which can be distinguished by
their respective size.

The larger particles, which are marked by yellow arrows (Figure 5b,d) have an ap-
proximate size of 100–300 nm and are found to be enriched in chromium. In contrast,
the smaller nanoparticle population (red arrows) with sizes below 100 nm shows high
amounts of chromium and niobium. This correlates with particle size found in L-PBF
processed GRCop-84 alloy of 85–200 nm [4,91]. However, due to the small size of both
nanoparticle species, EDS measurements were performed on sporadically found clusters
of the respective nanoparticle species and therefore large amounts of copper are detected.
(Table 4).

The presence of Cr-rich- [14,26] and Cr-Nb-rich precipitates [22,24–28] are frequently
observed in Cu-Cr-Nb alloys. The latter particles may correspond to Cr2Nb laves phase,
which is also found together with Cr-rich precipitates in laser-directed energy deposition
(L-DED) processed Cu-3.4Cr-0.6Nb (at.%) alloy [88]. Interestingly, no Cr-rich precipitates
are observed in L-PBF processed GRCop-84 alloy [4,88], which contradicts the findings of
Yang et al. [112,113] showing faster precipitation of L12-structured Cu3Cr from pure Cr
precipitates compared to Cr2Nb laves phases. However, it is also shown that precipitation
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of Cr2Nb laves phases is enabled at temperatures exceeding 600 ◦C, consuming Cr-rich
precipitations upon formation of Cr2Nb [107]. We hypothesize that at a fixed Cr/Nb ratio of
2 in combination with high melt pool temperatures of melt pools formed in L-PBF processes
favor direct precipitation of Cr2Nb from the supersaturate copper matrix or lead to full
transformation of Cr-rich precipitates to Cr2Nb laves phases. Consequently, exceeding
the ratio of Cr/Nb of 2 will allow excess Cr to remain in the copper matrix as Cr or
Cu3Cr precipitates.
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Figure 5. SEM images (SE mode) of Cu-3.3Cr-0.5Nb alloy in low (a) and high magnification
(b) showing the presence of different precipitates (red and yellow arrows). SEM images (SE mode)
of Cu-3.3Cr-1.5Nb alloy in low (c) and high magnification (d) showing the presence of different
precipitates (red and yellow arrows).

Table 4. Chemical composition (in wt.%) of unreinforced specimens determined by EDS. Values are
averaged over 12 single-point measurements on occasionally found clusters or larger particles of the
respective nanoparticle species.

Alloy Particle Species Cu Cr Nb Y O

Cu-3.3Cr-0.5Nb
Red arrows Balance 16.86 9.12 - 3.01

Yellow arrows Balance 37.44 - - 1.24

Cu-3.3Cr-1.5Nb
Red arrows Balance 23.73 12.33 - 4.70

Yellow arrows Balance 48.44 - - 2.39

3.2.2. Y2O3-Reinforced Cu-Cr-Nb Alloys

In Figure 6 SEM images of the reinforced Cu-3.3Cr-0.5Nb-0.5Y2O3 (Figure 6a,b) and
Cu-3.3Cr-1.5Nb-0.5Y2O3 (Figure 6c,d) are shown. No apparent differences regarding grain
morphology or size are observable compared to the unreinforced specimen in Figure 4.
However, on a lower scale significant differences in the microstructure evolution become
apparent: a large number of sub-100 nm-sized nanoparticles are distributed within the
metallic matrix. However, EDS measurements of nanoparticle clusters (Table 5) reveal the
presence of two nanoparticle species, marked with yellow and red arrows, respectively
(Figure 6b,d). Smaller particles are marked with red arrows and correspond to Cr-Nb-rich
precipitates, which were observed in the unreinforced specimen.
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Figure 6. SEM images of oxide-reinforced Cu-3.3Cr-0.5Nb alloy in low (a) and high magnification
(b) showing the presence of precipitates (red arrows) and dispersoids (yellow arrows). SEM images
of oxide-reinforced Cu-3.3Cr-1.5Nb alloy in low (c) and high magnification (d) showing the presence
of precipitates (red arrows) and dispersoids (yellow arrows).

Table 5. Chemical composition (in wt.%) of reinforced specimens determined by EDS. Values are
averaged over 12 single-point measurements on occasionally found clusters or larger particles of the
respective nanoparticle species.

Alloy Particle Species Cu Cr Nb Y O

Cu-3.3Cr-0.5Nb-0.5Y2O3
Red arrows Balance 21.86 7.87 - 4.11

Yellow arrows Balance 27.24 - 14.04 7.24

Cu-3.3Cr-1.5Nb-0.5Y2O3
Red arrows Balance 24.93 9.85 - 2.68

Yellow arrows Balance 37.13 - 11.07 8.42

Interestingly, the larger nanoparticles, which are marked with yellow arrows, are
enriched in yttrium, chromium and oxygen. Thus, the addition of Y2O3 nanoparticles
seems to promote the formation of complex oxide compounds. The found chromium-rich
yttrium oxide nanoparticles may be attributed to the monoclinic-structured compound of
YCrO3, which is frequently observed in Cr-alloyed ODS steels [114–116] and nickel-based
ODS alloys [117]. The formation reaction can be described according to (2) [118].

Cr2O3 + Y2O3 → 2YCrO3 (2)

The proposed formation reaction of YCrO3 (1) implies the introduction of additional
oxygen to the process zone. While the gas atmosphere during L-PBF processing only
contains negligible amounts of oxygen (Table 2), oxygen might be introduced into the
printing process from the powder material. Copper powder handled in air is known
to form an oxide layer, consisting of CuO [52,53], and thus might carry oxygen into the
printing process to provide oxygen to form YCrO3. The EDS measurements performed on
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the powder particles’ surface confirms the presence of oxygen, presumably bound as a thin
oxide layer (Table 3).

3.3. Mechanical Properties

Mechanical properties of the printed oxide-reinforced materials and their unreinforced
counterparts are characterized by hardness measurements. In Figure 7, representative
hardness maps of printed specimens of Cu-3.3Cr-0.5Nb (Figure 7a) and Cu-3.3Cr-1.5Nb
(Figure 7b) are depicted. Both materials are characterized by a relatively moderate hardness
of 120–140 HV0.3. The hardness is distributed fairly homogeneous over the printed part
with hardness variations up to 15 HV0.3. Oxide dispersion-strengthened Cu-3.3Cr-0.5Nb
(Figure 7c) and Cu-3.3Cr-1.5Nb (Figure 7d) show considerably higher hardness compared
to their unreinforced counterparts, which is in accordance with other metallic systems with
dispersed oxide nanoparticles [50,119].
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Figure 7. Vickers hardness (HV0.3) maps of manufactured specimens in the as-printed state.
(a) Cu-3.3Cr-0.5Nb. (b) Cu-3.3Cr-1.5Nb. (c) Cu-3.3Cr-0.5Nb-0.5Y2O3. (d) Cu-3.3Cr-1.5Nb-0.5Y2O3.
The hardness between the individual hardness indents is linearly interpolated.

The rather homogeneous nature of the hardness distribution is also reflected by the
averaged hardness of the line profiles, shown in Figure 8. Here, the superior hardness
levels of oxide-dispersed material compared to the raw copper alloys becomes apparent.
Additionally, higher niobium contents are also favorable for higher strength, presumably
by higher fractions of nanoscale-precipitated Cr2Nb laves phases, which cannot be resolved
with the used SEM system.

Considering the hardness values of extruded [30,120] and L-DED [87] processed Cu-Cr-
Nb alloys, L-PBF-manufactured material shows superior hardness despite lower chromium
and niobium contents, which typically stems from smaller grains due to higher cooling rates
in L-PBF than L-DED or extrusion processes. [50] However, Kini et al. [88] presents notably
high hardness values (approx. 146 HV) for L-DED-manufactured Cu-3.4Cr-0.6Nb (at.%)
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material, due to in situ precipitation of Cr2Nb laves particles by intrinsic heat treatment
(IHT) mechanisms, frequently observed in L-DED processes [121–124]. The higher fraction
of precipitated Cr2Nb and Cr-rich phases directly leads to increased hardness. Thus, it
is hypothesized that a subsequent aging procedure of L-PBF manufactured material will
result in further increase in the hardness superior to L-DED-manufactured counterparts.
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4. Conclusions

In the present study, we demonstrated the feasibility of printing oxide dispersion-
strengthened Cu-Cr-Nb alloys by the additive manufacturing process of laser powder bed
fusion. The addition of nanoscale Y2O3 results in a complex microstructure with popula-
tions of Cr- and Nb-enriched nanoparticles next to Cr-rich yttrium oxide nanoparticles,
homogeneously dispersed in the metallic copper matrix. The evolution of both nanoparticle
species by addition of Y2O3 led to a remarkable increase of the hardness compared to their
unreinforced counterparts. Future studies will include in-depth microstructural characteri-
zation including TEM investigations to clarify the nanoparticle chemistry and extensive
mechanical characterizations using tensile test and creep tests. Additionally, modifications
of the alloy system towards refined oxide nanoparticles as well as the effect of higher oxide
particle contents are topics for future studies.
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