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Abstract: Flange wrinkling is often seen in deep-drawing process when the applied blankholding
force is too small. This paper investigates the plastic wrinkling of flange under a constant blankhold-
ing force. A series of deep-drawing experiments of AA1100-O blanks are conducted with different
blankholding forces. The critical cup height and wrinkling wave numbers for each case is established.
A reduced-order model of flange wrinkling is developed using the energy method, which is imple-
mented to predict the flange wrinkling of AA1100-O sheet by incrementally updating the flange
geometry and material hardening parameters during the drawing process. A deep-drawing finite
element model is developed in ABAQUS/standard to simulate the flange wrinkling of AA1100-O
blanks under constant blankholding force. The predicted cup height and wave numbers from the
finite element model and reduced-order model are compared with the experimental results, which
demonstrates the accuracy of the reduced-order model, and its potential application in fast prediction
of wrinkling in deep-drawing process.

Keywords: deep-drawing; plastic instability; wrinkling; anisotropy; stamping; reduced-order model

1. Introduction

Reliable prediction of failure such as wrinkling, earing and tearing is necessary for
the virtual design of sheet metal forming processes such as deep-drawing and stamping.
To handle the complex material and geometric features of a real component, analytical
methods have given rise to numerical methodologies, such as finite element (FE) analysis,
which can provide helpful information in a less expensive way than trial-and-error with
physical prototypes. However, simulations of the manufacturing processes can be quite
time-consuming, particularly when a quick evaluation is needed. Even worse, such a
modeling approach is oftentimes incompatible with the needs of real-time process control,
including the recent efforts on smart and autonomous manufacturing, e.g., Industry 4.0 [1].
Feedback process control requires sensing, a fast and efficient evaluation, decision-making
and actuation, oftentimes while the part is being processed. In the case of drawing and
stamping, this processing cycle is typically a fraction of a minute. This in turn leads to
the development and implementation of reduced-order models with high efficiency and
reasonable accuracy. On the other hand, higher fidelity numerical models can be used for
process controller design and selection [2].

Wrinkling and tearing are two of the main failure modes commonly encountered in
deep-drawing. As the material of the flange is drawn towards the die cavity, compressive
hoop stresses develop. These will lead to wrinkling of the thin annular sheet (the flange
of the blank). To prevent this, the flange is “held-down” by the blankholder. When the
applied blankholding force (BHF) is insufficiently small, the flange may still wrinkle at
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some point during the process. On the other hand, while increasing the BHF eliminates the
danger of wrinkling, it also increases the frictional resistance to the drawing of the flange
and prevents the material from flowing towards the die cavity. Hence, when the BHF is
exceedingly large, tearing may occur near the bottom of the cup. Figure 1 shows examples
of wrinkled and torn cups for different BHFs, including a sound cup obtained by a BHF
in-between. Thus, to prevent both wrinkling and tearing, the BHF must be chosen within
an appropriate range.
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in the flange, estimated from perfectly plastic Tresca model. It is important to note that 
the flange ratio changes along the drawing process, and accordingly so does the stress 
state. Therefore, estimation of the stress state based on a more realistic hardening model 
and updating the stress state along the drawing process can be crucial to the wrinkling 
prediction. Furthermore, most of the analytical models were developed based on spring-
loaded blankholders. For typical pneumatic or hydraulic-type blankholders and cushions, 
a constant BHF is often exerted to the flange, which must be appropriately taken into ac-
count in the modeling. The fact that the restraint remains constant mathematically com-
plicates the stability problem to be solved; recently, an analytical treatment of the elastic 
wrinkling problem has been proposed by the authors, considering the post-wrinkling 
equilibrium of the sheet [14,15]. 

This paper investigates the plastic wrinkling of the flange under a constant BHF dur-
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Figure 1. Aluminum AA1100-O cups drawn under different BHFs (from left to right: wrinkled (low
BHF), fully drawn (medium BHF) and torn (high BHF)). The numbers listed are the BHFs.

Plastic wrinkling of the flange in relation to cup drawing process has been extensively
studied analytically and numerically. Geckeler [3] developed a simple 1-D wrinkling model
regarding the critical wrinkling stress and wave number for no blankholder case, which
was extended by Senior [4] to a more general case accounting for the effect of a blankholder,
using the energy method. Yu and Johnson [5] extended the 1-D model to 2-D case for both
elastic and plastic wrinkling of the flange based again on an energy criterion. Cao and
Boyce [6] proposed an energy method to determine both elastic and plastic wrinkling of the
flange by incorporating numerical and analytical work. An alternative method for plastic
wrinkling analysis is using the bifurcation functional [7,8]. This method has been widely
adopted in the analysis of structural instabilities [9–11]. Based on this idea, Triantafyllidis
and Needleman [12] studied the plastic wrinkling of a thin sheet with normal anisotropy.
Following the same idea, Chu and Xu [13] investigated the flange wrinkling of a thin sheet
with more complicated anisotropy.

Many of the analytical plastic wrinkling models were developed based on a fixed
flange ratio (i.e., the ratio of inner to outer diameter of the flange) and a simple stress state
in the flange, estimated from perfectly plastic Tresca model. It is important to note that
the flange ratio changes along the drawing process, and accordingly so does the stress
state. Therefore, estimation of the stress state based on a more realistic hardening model
and updating the stress state along the drawing process can be crucial to the wrinkling
prediction. Furthermore, most of the analytical models were developed based on spring-
loaded blankholders. For typical pneumatic or hydraulic-type blankholders and cushions, a
constant BHF is often exerted to the flange, which must be appropriately taken into account
in the modeling. The fact that the restraint remains constant mathematically complicates
the stability problem to be solved; recently, an analytical treatment of the elastic wrinkling
problem has been proposed by the authors, considering the post-wrinkling equilibrium of
the sheet [14,15].

This paper investigates the plastic wrinkling of the flange under a constant BHF during
the drawing process. Section 2 presents results of the deep-drawing experiments conducted
under a range of BHFs. Section 3 develops a 2-D analytical, or reduced-order wrinkling
model based on energy method. The model is then used to predict the wrinkling of AA1100-
O sheet in our deep-drawing tooling. To verify the reduced-order model, Section 4 presents
the FE simulations of the flange wrinkling under different BHFs. Predictions from the
reduced-order model and the simulation results are compared with the experiments.
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This article is a revised and expanded version of a paper entitled: “Industry 4.0 in
stamping: A wrinkling indicator for reduced-order modeling of deep-drawing processes”,
which was presented at the 30th International Conference on Flexible Automation and
Intelligent Manufacturing (FAIM 2020–2021), Athens, Greece [16]. In comparison to our
previous work that focused on wrinkling theory and simulations, this paper includes a
series of wrinkling experiments of AA1100-O blanks, which serves to validate the proposed
theory. The modelling work is also revisited and updated to reproduce the measured punch
force-displacement responses and the wrinkling and ironing phenomena.

2. Experiments
2.1. Material and Tooling

The material of this study is commercially-pure aluminum, AA1100-O, of 0.51 mm
thickness. The sheets are received in the –H24 temper, cold-rolled. They are then heat-
treated at 343 ◦C for 5400 s (1.5 h), followed by air-cooling. The mechanical and forming
properties of this material have been extensively characterized in earlier works [17,18]. Here,
circular AA1100-O blanks of 35 diameter and 0.51 mm thick are produced via waterjetting.

To probe the behavior of this sheet against wrinkling in forming, a set of deep-drawing
experiments are conducted with AA1100-O blanks under a wide range of blank holding
forces (BHF). The circular cup drawing tooling used in this work is modular. The inter-
changeable parts consist of a die insert, a flat-ended punch and a blankholder inset, all
made of A2 tool steel, heat-treated to 44 (punch) and 58 HRC (die), and with a surface
finish Ra better than 0.8 µm. The tooling is integrated with an Instron 8872 servohydraulic
testing machine of 25 kN capacity, as shown in Figure 2.
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used for applying the constant BHF; however, in this study, due to the very low forces 
involved and to eliminate any influence of friction inside the actuators, the latter were 

Figure 2. Experimental setup used for the deep-drawing of AA1100-O blanks.

A solid model of the tooling is shown in Figure 3a, and the dimensions of the tooling
are shown in Figure 3b. Visible in Figure 3a are the three pneumatic actuators that are used
for applying the constant BHF; however, in this study, due to the very low forces involved
and to eliminate any influence of friction inside the actuators, the latter were replaced by
a series of steel weights, added evenly on top of the BH (self-weight of the BH is 42 N).
In this way, precise and unambiguous small forces could be applied to the blank during
drawing. The punch-die clearance is about 1.27 times the sheet thickness [19].
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Figure 3. (a) Solid model of the tooling. (b) Geometry of the tooling and blank (using symmetry).

For each experiment, the tooling and the blank are lubricated with Multidraw PL 61 SE
by Zeller+Gmelin. The blanks are centered in the tooling with a centering ring. Proper
alignment is ensured before each experiment. The drawing experiments are conducted
under displacement control, with the punch velocity set to 0.1 mm/s. The punch force and
displacement are automatically recorded during the experiments.

2.2. Experimental Results
2.2.1. Wrinkled Cups

Figure 4 shows the drawn cups, which correspond to a series of BHF ranging from
zero to 176 N. Note that since the self-weight of the BH is 42 N, the only one smaller
BHF that can be achieved with our tooling is zero. The flange of that cup wrinkles almost
immediately after forming commences, as will be detailed later. As the BHF increases,
the flange wrinkling is delayed, with more wrinkling waves appearing, and of smaller
wrinkling amplitudes. When the BHF exceeds a certain value, the wrinkling can be fully
suppressed (e.g., the last 2 cups in Figure 4). The average cup heights at the onset of
wrinkling and the observed wrinkling waves corresponding to each BHF case are presented
in Table 1.
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Table 1. Critical cup heights and wave numbers for cups drawn under different blankholding forces.

BHF (N) 0 42 65 91 111 121 128 156 176

Cup Height (mm) 1.8 3.4 4.2 5.3 6.0 6.5 7.3 11.2 11.2

Wave Number 5 13 17 20 23 25 29 N/A N/A

2.2.2. Punch Force-Displacement

The punch force-displacement curves of all the experiments are shown in Figure 5.
They all show a consistent ascending slope at the beginning of the process. Depending on
the BHF, the responses show some difference. For the fully drawn cups, e.g., the 176 N case,
the punch force develops a maximum and then drops to nearly zero, due to the competition
between the diminishing flange (geometric softening) and the material work-hardening [20].
For the wrinkling cases, e.g., the 91 N case, the punch force develops a lower maximum
force (compared to the fully drawn ones). As the punch force drops to some level, it starts to
increase drastically again, due to ironing between the punch and the die of the wrinkles that
have already formed in the flange. For the zero N case, the wrinkling occurs as the punch
force is increasing. To avoid damage to the tooling (e.g., galling), the wrinkling experiments
were terminated before the wrinkles were fully drawn through the die, see Figure 4.
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Figure 5. Recorded punch force-displacement responses for cups drawn under different BHFs. Some
of the responses show a characteristic low valley and 2nd rise of the punch force, indicating ironing
of the wrinkles that have previously formed in the flange.

2.2.3. Identifying the Onset of Wrinkling from Force-Displacement Curves

Establishing the onset of wrinkling from experiments is quite challenging, because
it is difficult to capture the deformation of the flange, which is covered by the BH during
the drawing process. Even if the motion of the BH was available, identifying the onset
of wrinkling would be difficult, because the motion of the BH does not show a sudden
increase but a gradual change. Therefore, it is necessary to establish an alternative way
of identifying the onset of flange wrinkling. We chose to do this from the punch force-
displacement curve, Figure 5. For the low BHF cases, such as the zero N or 42 N, there
is an obvious deviation of the responses between the wrinkled and the fully drawn case,
which is due to the onset of flange wrinkling. The instant that deviation occurs can be
approximately considered as the onset of flange wrinkling. For the medium or relatively
high BHF cases that still show wrinkling, e.g., 91 N or 111 N, the onset of wrinkling may
occur even after the force maximum. Therefore, the deviation of the F-d response from
the fully drawn case, and consequently the different force maximum, may be due to the
difference between BHF’s; the onset of wrinkling is thus more difficult to identify.
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However, the sudden increase of the punch force is an indication of the onset of
wrinkle ironing, which corresponds to the moment when the radial wave front reaches the
inner die radius. If the wrinkling is assumed to occur only when the blank is in contact with
the BH and the radial wave front is at the outer radius of the die (see Figure 2, otherwise a
fully drawn cup without wrinkling may be impossible for this tooling), the draw depths
required to move the radial wave front from the outer die radius to inner die radius over
the die fillet can be estimated as h = 3.57 mm (this value depends on the dimensions of the
tooling, see Appendix A for detailed derivation). The draw depth of the onset of flange
wrinkling can be estimated by subtracting 3.57 mm from that at the onset of ironing of the
wrinkles. This estimation method allows the instantaneous identification of the onset of
wrinkling during the experiments, see Appendix A for more discussion.

3. Reduced-Order Modeling of Flange Wrinkling

In this section, an analytical model of the occurrence of wrinkles in the flange of a
drawn cup is proposed. In comparison to a full-scale numerical simulation, the order of this
model is much lower, and hence it can be profitably used for process design and control.

Consider an annular flange with an inner radius of ao and an initial outer radius of
Rb, as shown in the schematic of the circular cup drawing tooling used in this analysis
in Figure 6. A constant BHF is applied to the flange during the drawing. Estimation of
the pre-wrinkling stress and strain states in the flange is crucial for the wrinkling analysis.
This section presents the approximation of the stress and strain states in the flange. As
the flange is drawn-in, the inner radius remains the same while the outer radius decreases
monotonically and eventually equals the inner radius ao. It is convenient to define the
following geometric parameters (see Figures 3b and 6):

• The initial inner-outer radius ratio of the flange ρo = ao/Rb.
• The current inner-outer radius ratio of the flange ρ = ao/b. Note that ρ increases from

ρo to 1 for the whole flange drawing process.
• The radial coordinate r normalized by the current outer radius s = r/b (note that

ρ ≤ s ≤ 1).
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3.1. Strain State

For circular cup drawing, if the thickness strain is assumed to be much smaller than
the in-plane strains, the only nonzero displacement component in the flange is the radial
displacement ur, which furthermore depends on the radial position only. The radial and
hoop strains can thus be expressed as:

εr =
dur

dr
and εθ =

ur

r
. (1)
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Neglecting the elastic deformation and thinning, and considering plastic incompress-
ibility, we can obtain:

dur

dr
+

ur

r
= 0. (2)

The radial displacement can be then found as:

ur =
C
r

, (3)

where C is a constant to be determined. Substituting (3) into (1), the strain components can
be obtained as:

εr =
−C
r2 and εθ =

C
r2 . (4)

Using the boundary condition at the outer periphery of the flange, we have:

εθ =
C
b2 = ln

(
b

Rb

)
, (5)

where b and Rb are the current and initial (i.e., blank) outer radius, respectively. Then C
can be determined and Equation (4) can be rewritten as:

εr = ln
(

Rb
b

)
b2

r2 and εθ = − ln
(

Rb
b

)
b2

r2 . (6)

The normalized strain distribution are plotted in Figure 7a,b. Both curves show a
1
r2 dependence.

J. Manuf. Mater. Process. 2022, 6, 76 8 of 20 
 

 

 
(a) 

 
(b) 

Figure 7. Normalized strain distribution in the flange when the hoop strain at the outer periphery 
is 0.04. (a) Radial strain; (b) hoop strain. 

3.2. Stress State 
The stress state in the flange is obtained from the radial equilibrium condition. Again, 

assuming the thickness change in the flange can be neglected during the drawing process, 
we have: 

 +  = 0. (8) 

For Tresca yielding, Equation (8) becomes: ( )  + ( ) = 0, (9) 

or using the normalized radial coordinate, s,   +  ( , / ) = 0. (10) 

where σ  is the equivalent stress. Neglecting the frictional forces from the die and blank-
holder and using the boundary condition at the outer periphery: σ = 0    at    s = 1. (11) 

The radial stress can be integrated as: σ = ( , / ) ds. (12) 

The hoop stress can then be obtained as: 

Figure 7. Normalized strain distribution in the flange when the hoop strain at the outer periphery is
0.04. (a) Radial strain; (b) hoop strain.



J. Manuf. Mater. Process. 2022, 6, 76 8 of 19

For Tresca yielding, from plastic work compatibility, the equivalent plastic strain can
be found as:

εe = εr = ln
(

Rb
b

)
b2

r2 = εe,b
b2

r2 =
εe,b

s2 , (7)

where εe,b is the equivalent plastic strain at the outer periphery of the flange, which
undergoes uniaxial compression in the hoop direction.

3.2. Stress State

The stress state in the flange is obtained from the radial equilibrium condition. Again,
assuming the thickness change in the flange can be neglected during the drawing process,
we have:

∂σr

∂r
+
σr − σθ

r
= 0. (8)

For Tresca yielding, Equation (8) becomes:

∂σr(r)
∂r

+
σe(r)

r
= 0, (9)

or using the normalized radial coordinate, s,

∂σr

∂s
+
σe
(
εe,b/s2)

s
= 0. (10)

where σe is the equivalent stress. Neglecting the frictional forces from the die and blankholder
and using the boundary condition at the outer periphery:

σr = 0 at s = 1. (11)

The radial stress can be integrated as:

σr =
∫ 1

s

σe
(
εe,b/s2)

s
ds. (12)

The hoop stress can then be obtained as:

σθ = σr(s)− σe

(
εe,b/s2

)
. (13)

It can be seen that the stresses depend on the equivalent stress-strain relationship of
the material. For example, for the perfectly plastic model, the equivalent stress is a constant
σo, and the stress components can then be explicitly expressed as:

σr = σo ln
(

1
s

)
, (14a)

σθ = σo ln
(

1
s

)
− σo. (14b)

For the power-law hardening model, i.e., σe = K(εe)
N, the stress state can be obtained as:

σr =
Yb
2N

(
1

s2N − 1
)

, (15a)

σθ =
Yb
2N

(
1− 2N

s2N − 1
)

, (15b)

where Yb is the uniaxial stress at the outer periphery, which is the same as the equivalent
stress at that location.
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It can be seen from Equations (14) and (15) that the stresses (normalized by the
equivalent stress at the outer periphery) don’t depend on the deformation of the flange for
Tresca yielding and perfectly plastic or power-law hardening materials. For the equivalent
stress-strain relationships that have more complicated expressions, numerical integration
method can be used for Equation (12). The stress distributions in general depend on the
deformation of the flange.

For our AA1100-O sheet, the equivalent stress-strain relationship can be fitted with a
Voce hardening model:

σe = C1 −C2 exp(−C3εe), (16)

where the fitting parameters are shown in Table 2 [17].

Table 2. Fitting parameters of the Voce hardening model.

C1 C2 C3

133 MPa 81 MPa 6.1

Since it is difficult to obtain an explicit expression from Equation (12) with the Voce
model, numerical integration method is adopted to obtain the stress distributions in the
flange. Figure 8a, b compare the radial and hoop stresses (normalized by the uniax-
ial/equivalent stress at the outer periphery) vs. the normalized radial position for the
perfectly plastic, power-law hardening and Voce hardening cases. Since the stress distribu-
tion from the Voce hardening model depends on the deformation of the flange, here the
stress distribution when the equivalent strain at the outer periphery reaches 0.04 is shown
as an example, which corresponds to a draw-in of 0.7 mm for the 35 mm blank used here.
The radial stresses do not show significant difference for the three models. The hoop stress
from the Voce model is the largest in amplitude.
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3.3. Plastic Instability Using the Energy Method

The well-established energy method [21] is used here to analyze the wrinkling of the
flange in the deep-drawing of AA1100-O sheet under a constant BHF. Assume a wrinkling
mode in the following form:

w = A(r− ao)[1 + cos(nθ)], (17)

where A represents the normalized wrinkling amplitude and n the wrinkling wave number.
For a given angle, the wrinkling amplitude is assumed to increase linearly from zero at the
die entrance radius, ao (see Figure 3b), to maximum at the outer periphery, Rb. Note the
maximum amplitude of the wrinkling mode is γmax = 2A(b− ao), where b is the current
outer radius of the flange (see Figure 6). In this way, the wrinkling criterion is constantly
being updated during drawing.

The bending strain energy due to this wrinkling mode can be expressed as [22]:

UB =
1
2

∫ 2π

0

∫ b

ao
D

[(
∂2w
∂r2 +

1
r

∂w
∂r

+
1
r2

∂2w
∂θ2

)2

− ∂2w
∂r2

(
1
r

∂w
∂r

+
1
r2

∂2w
r2∂θ2

)
+

(
1
r

∂2w
∂r∂θ

− 1
r2

∂2w
∂θ2

)2]
rdrdθ (18)

where D = Ert3

9 and Er =
4EEt

(
√

E+
√

Et)
2 is the Reduced Modulus [23], which is a function of

the Young’s Modulus and Tangent Modulus. Note that the Tangent Modulus varies radially
through the flange because of the equivalent strain variation as shown in Equation (7), so
that D also varies radially.

Substituting (17) into (18), the bending energy can be expressed as:

UB =
A2πt3

18
F, (19)

where F =
∫ 1
ρ

Er(s)(M1(s, n, ρ) + M2(s, n, ρ))ds and:

M1 =

((
n2 − 1

)2
+ 2
)

s
−

2n2(n2 − 1
)
ρ

s2 +
n4ρ2

s3 , (20a)

M2 =
n2ρ2

s3 . (20b)

If the drawing is performed under constant BHF Q (i.e., a constant force is applied
to the flange during the process), the potential energy increase of the blankholder due to
wrinkling is:

UQ = Qγmax = 2QA(b− ao). (21)

The work carried out by the pre-wrinkling membrane stresses is:

US = −
∫ 2π

0

∫ b

ao
σrt
(

∂w
∂r

)2
+ σθt

(
∂w
r∂θ

)2
rdrdθ, (22)

where σr and σθ are evaluated from Equations (12) and (13) based on the Voce model as
shown in Equation (16). Numerical integration method is adopted to obtain the expressions
for the stresses in the flange. The work carried out by the membrane stresses can be
rewritten as:

US =
−A2ao

2πt
8ρ2 H, (23)

where H = −4
∫ 1
ρ
σr(s)3s + σθ(s)n2s

(
1− ρ

s
)2ds.

Flange wrinkling is assumed to occur when the following condition is satisfied:

UB + UQ = US. (24)
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Substituting Equations (19), (21) and (23) into (24), the wrinkling criterion can be
expressed as: √

Er,b

Yb

t
b
=

√√√√ H(n, ρ)/Yb
4F(n,ρ)

9Erb
+ 32ϕao(1−ρ)2

πγmaxρ2

, (25)

where Er,b and Yb are the Reduced Modulus and equivalent stress at the outer periphery,
respectively, and ϕ = Qao

Er,bt3 is the normalized BHF.

3.4. Model Implementation

Note that in Equation (25) the flange ratio ρ = ao/b monotonically increases during
the drawing process. As a result, parameters such as the Reduced Modulus Er,b and
equivalent stress Yb at the outer periphery also change accordingly. However, the maximum
wrinkling amplitude γmax is unknown a priori, which may depend on the post-wrinkling
analysis [14,15]. Here for simplicity γmax is assigned to be t (i.e., the sheet thickness), which
is supposed to be a reasonable approximation.

To determine the onset of flange wrinkling from Equation (25), ρ is increased incremen-
tally. For a specific ρ, the equivalent strain at the outer periphery is updated as ln (ρ/ρo);
Erb and Yb are then updated using the material hardening model as shown in (16). Once ρ is
known, the right-hand side (RHS) of Equation (25) is a function of the wave number n only.
Maximizing the RHS with respect to an integer n gives the most possible wave number for
a given ρ. With the RHS being a maximum for the wave number n, Equation (25) is checked
again. If the left-hand side (LHS) of Equation (25) is smaller than or equal to the right-hand
side, i.e., LHS ≤ RHS, wrinkling is assumed to occur, otherwise, ρ is increased and the
updating process is repeated until the flange drawing process is finished, i.e., the flange is
completely consumed. A flow chart showing this process is presented below in Figure 9.

J. Manuf. Mater. Process. 2022, 6, 76 12 of 20 
 

 

ln (ρ/ρ ); E  and Y  are then updated using the material hardening model as shown in 
(16). Once ρ is known, the right-hand side (RHS) of Equation (25) is a function of the 
wave number n only. Maximizing the RHS with respect to an integer n gives the most 
possible wave number for a given ρ. With the RHS being a maximum for the wave num-
ber n, Equation (25) is checked again. If the left-hand side (LHS) of Equation (25) is smaller 
than or equal to the right-hand side, i.e., LHS ≤ RHS, wrinkling is assumed to occur, oth-
erwise, ρ is increased and the updating process is repeated until the flange drawing pro-
cess is finished, i.e., the flange is completely consumed. A flow chart showing this process 
is presented below in Figure 9. 

 
Figure 9. A flow chart showing the implementation procedure of the wrinkling model proposed in 
this work. 

The step-by-step updated results are shown in Figure 10. The LHS (dash line) and 
RHS (solid lines) are plotted against the draw-in (normalized by initial flange width, 4.85 
mm). Results for three different BHFs of 40, 80, and 125 N are presented. The points where 
the solid and dashed line intersect indicate the onset of wrinkling. It can be seen that as 
the BHF is increased, the onset of wrinkling is delayed. When the BHF is greater than 125 
N, intersection between the solid and dash line becomes impossible and thus no flange 
wrinkling is predicted. 

Figure 9. A flow chart showing the implementation procedure of the wrinkling model proposed in
this work.

The step-by-step updated results are shown in Figure 10. The LHS (dash line) and RHS
(solid lines) are plotted against the draw-in (normalized by initial flange width, 4.85 mm).
Results for three different BHFs of 40, 80, and 125 N are presented. The points where
the solid and dashed line intersect indicate the onset of wrinkling. It can be seen that as
the BHF is increased, the onset of wrinkling is delayed. When the BHF is greater than
125 N, intersection between the solid and dash line becomes impossible and thus no flange
wrinkling is predicted.
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Figure 10. Evolution of the LHS and RHS of Equation (25) with the normalized draw-in during the
drawing process, for different BHFs.

4. Finite Element Model

A FE model is developed in ABAQUS/Standard (i.e., implicit) to simulate the flange
wrinkling in deep-drawing. A schematic of the model is shown in Figure 11a, where the
punch, die and BH are modelled as rigid bodies. The blank is modelled with shell elements
(S4R) and one quarter of the mesh is shown in Figure 11b. A coarse mesh (680 elements)
is adopted in the central part of the blank since the deformation is small and relatively
uniform. A refined mesh of 19 (radial) × 216 (circumferential) elements is used in the
annular region, which includes the wall and flange of the drawn cup (the projected initial
positions of the punch and die are identified by the red and blue lines). Note that in
the simulation a full blank is used because the wrinkles may not have quarter-symmetry.
Contact between the blank, die and blankholder is modelled as exponentially soft contact.
The soft contact is ensured to be sufficiently “hard” so that a further increase of the contact
stiffness does not influence the simulation results significantly (zero pressure at clearance
of 0.02 mm and 30 MPa at clearance of 0 mm). The BHF is kept constant during the
drawing simulations. The material behaviour is modelled with von Mises yield function
and isotropic hardening (Voce hardening model in Table 2).
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Friction plays a crucial role in the simulation of deep-drawing process, as it influences
the global response and local thickness significantly [24]. Without a direct measurement
of the friction coefficient in our deep-drawing process, we chose to identify the friction
coefficient with an inverse method, i.e., by matching the measured and simulated punch
force-displacement for the fully drawn cup. The friction coefficient that produced the best
match is µ = 0.17. This friction coefficient is then used for simulations of all BHF cases.

A geometric imperfection is introduced to the blank, to trigger wrinkling of the
flange. Specifically, an out-of-plane coordinate offset of the nodes in the undeformed flange
region is introduced. The offset value is assumed to increase linearly, from zero at the die
opening radius to maximum at the periphery of the blank along radial direction. Since
the wrinkling wave number is not known a priori, the offset amplitude at the periphery
of the blank is assigned a random value within ±1.5% of the initial thickness of the blank.
The random distribution of the imperfection amplitude is similar to the one used in [18],
see Figure 20 there, where the out-of-plane amplitude was amplified 30 times to better
visualize the imperfection.

4.1. Simulation Results

Figure 12 compares the simulated and measured punch force-displacement responses
for two different BHF cases. These results are typical of the remainder of the cases studied.
The ascending part of the responses are all matched, which is mostly due to the appropriate
friction coefficient adopted [18,25–28]. The post-maximum force responses typically involve
the onset of wrinkling and post-wrinkling behaviour. As seen in the figures, the post-
maximum force responses and particularly the onset of ironing are well matched for these
two cases. Similar agreement is observed for the rest of the cases, with the exception of 0 N
and 42 N cases, for which the simulations overpredict the maximum forces by about 13%,
and also overpredict the draw depth at the onset of wrinkle ironing by about 15%.
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Figure 12. Comparison of the predicted and measured punch-force displacement curves: (a) 91 N
BHF case; (b) 121 N BHF case.

Figure 13 compares the cups from simulations and experiments for the 65 N and 111 N
cases. They simulations reproduce the experimental observation that the number of waves
increases with the BHF, e.g., see Figure 4. This agreement is accomplished despite the
complication of the simulations of post-wrinkling, e.g., contact and shell element type
issues. The contours shown in Figure 13 indicate the sheet thickness. While the bottom of
the cup and the lower parts of the wall have thinned-down (initial thickness is 0.51 mm),
the upper part of the cup, including the wrinkles has become thicker, by over 30% in
some locations.
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Figure 13. Comparison of the wrinkled cups from simulations and experiments at certain draw
depth: (a,c) 65 N BHF case at draw depth of 8.5 mm; (b,d) 111 N BHF case at draw depth of 10.3 mm.
Superimposed contours represent the thickness.

4.2. Determination of the Onset of Wrinkling in FE Analysis

Determining the onset of wrinkling in the simulations can be ambiguous due to the
existence of imperfections. In other words, it is not easy to pinpoint the onset of wrinkling
by monitoring the out-of-plane displacement of selected nodes in the flange throughout
the simulation; such curves show a gradual increase. Alternatively, here for each BHF case,
the zero-imperfection case is also simulated, which does not show wrinkling, as expected.
The vertical displacements of the BH for the perfect and imperfect cases are extracted
and compared, as demonstrated in Figure 14 for the 91 N case. The onset of wrinkling is
identified as the “bifurcation” point for the two cases. This process is conducted for all
BHF cases.
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Flange wrinkling is observed in the simulations for BHF smaller than 190 N. Then,
the critical draw depth and corresponding wave numbers at the onset of wrinkling are
extracted from the simulations. Figure 15 compares the simulated critical cup heights
with the reduced-order predictions and experiments for different BHFs. The cup heights
are normalized by the one of the fully drawn cup, which in our case is 11.2 mm using
volume constancy and assuming no change in thickness during forming. They all show
that as the BHF increases, the critical cup height increases. When the BHF is greater than
156 N, no wrinkling is detected from the experiments. The reduced-order model provides a
critical BHF of about 125 N, beyond which no wrinkling is predicted. Below that force, both
experiments and the reduced-order model match very well. The FE results show mixed
agreement. While at low BHF the FE results match the experiments and the reduced-order
model very well, at larger BHFs it predicts a slower growth of the critical draw depth
with the BHF. The difference can be partially attributed to the different methods used to
identify the onset of wrinkling in FE analysis and experiments, including factors such as
the limitation of shell element FE model in capturing the onset of ironing. The FE model
predicts a critical BHF of about 190 N. Interestingly, the empirical recommendation for BHF
in our case (i.e., 1.5% the yield stress x the original flange area) is 207 N [20]. In that sense,
both modelling approaches provide limits that are consistent with the recommended one;
furthermore, the experiments do not refute that value, either. The FE results are sensitive to
the imperfection amplitude used. The one selected for this work (within±1.5% of the initial
thickness of the blank) provides the best match with both the punch force-displacement
and the wrinkling predictions.
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Figure 16 compares the simulated wave numbers with the reduced-order predictions
and experiments for different BHFs. They agree quite well when the BHF is below about
125 N, all showing increase of the wave number with the BHF. For BHF larger than 121 N,
wrinkling did not occur all around the periphery of the cups, i.e., local wrinkling occurred
on a certain portion of periphery, as can be seen in Figure 4. The total number of the
wrinkles is estimated for the whole periphery based on the local wave number density.
Therefore, there is some uncertainty of the estimated wave numbers for the relatively larger
BHFs. Furthermore, for the FE results, as the wave number increases, the prediction may
be limited by the discretization (i.e., the element size) adopted. A more refined mesh is
required to capture small wavelengths.
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5. Conclusions

Flange wrinkling is a commonly encountered failure mode in deep-drawing processes,
which can be prevented by applying a sufficiently large BHF. This paper investigates
the flange wrinkling through combined experimental, analytical, and numerical efforts.
Deep-drawing experiments of AA1100-O blanks are conducted under a range of BHFs. A
reduced-order model is established to predict the wrinkling of flange under a constant
BHF, based on the energy method. A FE model of the deep-drawing process is developed
in ABAQUS/Standard to simulate the wrinkling behaviour. The critical cup height at the
onset of wrinkling and the wave number from the experiments, reduced-order model and
FE model are identified and compared. Below are conclusions, observations, and comments
from this work:

• Both the critical cup height (i.e., when wrinkling commences) and wave number of
the wrinkled cups increase with the BHF.

• For relatively low BHFs, wrinkling occurs before the punch force reaches a maximum.
The onset of wrinkling is considered as the bifurcation of the punch force-displacement
response from that of the fully drawn cups.

• For relatively high BHF, wrinkling occurs after the maximum of the punch force.
A method is proposed to identify the onset of wrinkling from the punch force-
displacement curve, which involves identifying the onset of ironing from the post-force
maximum regime first and then subtracting the draw depth due to the draw-in of
wrinkling wave front from the onset of wrinkling to ironing.

• The reduced-order model involves incrementally updating the geometry of the flange,
the stress/strain state in the flange and material hardening parameters during the
drawing process.

• The friction coefficient used in the FE model is identified from an inverse method
for the fully drawn cups. The FE model also successfully reproduces the measured
punch-force displacement response for the pre-wrinkling and post-wrinkling regimes,
and the post-wrinkling configurations of the wrinkled cups.

• The wave numbers from the experiments, reduced-order model and FE model are
overall in good agreement.

• For our AA1100-O blanks, the critical BHF that suppresses wrinkling is about 156 N.
The reduced-order model and FE model predict minimum BHF of 125 N and 190 N to
prevent flange wrinkling, respectively. The commonly adopted empirical equation
recommends a BHF of 207 N, which is found to be conservative.
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As a closing remark, we want to state that one of the major objectives of this work is
to establish an FEA framework that predicts the appearance of wrinkling; when exactly
wrinkling occurs (i.e., at what draw depth) is important, but secondary. As we show in
Figures 12 and 15, the imperfection used strikes a very good balance between reproducing
the experimental punch force-displacement curves, and the range of BHF for which wrin-
kles appear. Furthermore, as shown in Figure 13, the imperfection used also predicts the
wrinkled configuration very well.
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Appendix A. Determining Onset of Wrinkling from Force-Displacement Curve

To identify the onset of wrinkling for medium or high BHF case, the onset of ironing
of the wrinkles is first identified from the force-displacement curve, which corresponds to a
sudden change of the slope of the curve after the maximum force, as shown in Figure 5. A
snapshot of the FE model for this ironing configuration is also shown in Figure A1 (bottom),
where the wrinkling wave front is assumed to have just reached the inner radius of the die.

The onset of wrinkling is assumed to occur when the wrinkling wave front is at the
outer radius of that die entrance fillet, as shown in Figure A1 (top). The wrinkling wave
front travels over the die fillet as the toroidal surface is drawn-in to become a cylindrical
shell. Then, the draw depth from the onset of wrinkling to the onset of ironing is simply
taken as the height of the cylindrical shell, as shown in Figure A1. Assuming volume
constancy and that the thickness does not change significantly during this process, the area
of the toroidal surface can be calculated as (using polar coordinates):

At =
∫ π/2

0
2πRf(Rd + Rf − Rfcos θ)dθ (A1)

which can be expressed explicitly as:

At = π2Rf(Rd + Rf)− 2πR2
f (A2)

Assuming the cylindrical shell fully wraps the punch, then the critical draw depth can
then be found as:

∆hw = Rf

[
π

2
Rd
Rp

+
(π

2
− 1
) Rf

Rp

]
(A3)

Substituting our tooling geometry (Rf = 2 mm, Rd = 10.65 mm, Rp = 10 mm) leads
to ∆hw = 3.57 mm.
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Figure A1. Snapshots of the onset of wrinkling (top) and onset of ironing (bottom) for the sim-
ulated cup under 91 N. Highlighted region deforms from a quarter toroidal surface to a right
circular cylinder.

If the difference of the punch and die radii is negligible, Equation (A3) can be
simplified as:

∆hw = Rf

[
π

2
+
(π

2
− 1
) Rf

Rd

]
(A4)

which turns out to be ∆hw = 3.36 mm for our tooling. Note that Equation (A3) gives a
slightly larger number than Equation (A4) and thus an earlier occurrence of the wrinkling,
which serves as a more conservative estimate of the onset of wrinkling.

The key assumption of this approach lies in associating the appearance of the second
rise in the punch force after the force maximum, with the wrinkling wave front arriving
at the inner radius of the die, and thus the wrinkles beginning to be ironed. However,
FEA shows that as the wave front travels over the die entrance radius, the wrinkles tend
to be reduced or even disappear, due to bending. This somewhat limits the accuracy of
this approach.
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