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Abstract: Waste-derived materials obtained from the recovery and recycling of electronic waste
(e-waste) such as batteries and printed circuit boards have attracted enormous attention from
academia and industry in recent years, especially due to their eco-friendly nature and the mas-
sive increment in e-waste due to technological development. Several investigations in the literature
have covered the advances achieved so far. Meanwhile, photocatalytic applications are especially
of interest since they maintain mutual benefits and can be used for H2 production from solar water
splitting based on semiconductor processing as a proper environmentally friendly technique for solar
energy conversion. In addition, they can be utilized to degrade a variety of organic and non-organic
contaminations. Nonetheless, to the best of the authors’ knowledge, there has not been any compre-
hensive review that has specifically been focused on e-waste-derived photocatalytic materials. In this
regard, the present work is dedicated to thoroughly discussing the related mechanisms, strategies,
and methods, as well as the various possible photocatalysts synthesized from e-wastes with some
critiques in this field. This brief overview can introduce modern technologies and promising possibil-
ities for e-waste valorization, photocatalytic processes, and new photocatalytic degradation methods
of eco-friendly nature. This paper discusses various e-waste-obtained photocatalytic materials, syn-
thesis procedures, and applications, as well as several types of e-waste, derived materials such as
TiO2, ZnO, indium tin oxide, and a variety of sulfide- and ferrite-based photocatalytic materials.

Keywords: e-waste recycling; photocatalysts; electrocatalysts; nanomaterials; battery recycling

1. Introduction

Electronic waste (e-waste) refers to all components of any electrical and electronic
equipment (EEE) that have been discarded without the intent of re-use. E-waste covers
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a wide range of products—almost any household or industrial item with circuitry or
electrical parts having a power source or battery supply. During the 20th century, EEE
started to be widely commercialized, and many household appliances were introduced,
including refrigerators, televisions, and washing machines. Ever since, the technological
advancements combined with ease of accessibility resulted in the significant expansion
of the electronics industry, making it as a crucial part of modern daily life. This became
even more important with the introduction of information and communication technology
(ICT) and the increasing use of mobile phones, personal computers, laptops and all kinds
of gadgets [1]. This rapidly expanding and increasing use has led to a new environmental
problem called e-waste, which contains large amounts of harmful and toxic substances
along with precious metals. This serious threat can be turned into an opportunity with the
proper management and implementation of new methods and reap significant financial
and environmental benefits. Unfortunately, the world suffers from a substantial lack
of industrial effort dedicated to recycling e-waste, especially in developing countries,
and as such, only a very small fraction of discarded e-waste is recycled. In this regard,
most techniques of e-waste valorization are focused on recovering precious metals, while
various metals can be recovered from e-waste and some of them can be transformed into
photocatalysts which can be used in numerous environmentally friendly applications, such
as water remediation, the degradation of dyes, and solar cells. Numerous metal oxides
can be extracted from e-waste and transformed into photocatalytic materials; however,
the required recycling procedures are rather complex [2,3]. This review study focused on
the high throughput production of various photocatalytic materials from e-wastes with a
concentration on methods especially environmentally friendly strategies.

1.1. Global Status of E-Waste

Technological advances and the increased utilization of electronic tools due to growing
levels of electronic waste and its inappropriate and insecure treatment and disposal through
open burning or in dumpsites represent considerable hazards to the environment and
threaten human health [4]. This is a huge and serious risk and should not be considered
as an insignificant issue as it has been reported that global e-waste generation has grown
to 44.7 million metric tons annually [5]. Unfortunately, only 20% of generated e-waste is
collected and recycled, and the rest are incinerated or land-filled, which increases the risk of
environmental pollution by toxic elements and other chemicals [5]. Despite the small share
of recovered e-waste in the total waste (2%), it contains the highest amount of hazardous
constituents, reaching ~70% [6].

In addition to the serious environmental hazards of e-wastes and the environmental
benefits of recycling e-waste, e-waste has huge economic potential. The value of total raw
materials present in e-waste (such as Fe, Cu, Al, Ag, Au, Pd, and plastics) was estimated to
be approximately EUR 55 billion in 2016, which is a greater value than the gross domestic
product (GDP) of most countries in the world in 2016 [5]. Actually, up to 60 elements from
the periodic table exist among the various e-waste types and many of them are technically
recoverable. In addition to the existence of precious metals such as gold, silver, platinum,
and palladium in e-waste, these possess hazardous, rare earth, and scarce metals. The
most popular hazardous species found in e-waste include various toxic chemicals (such as
CFCs/chlorofluorocarbon or various flame retardants) and heavy metals (such as Hg, Pb,
and Cd); hence, it is of upmost importance that e-wastes are systematically collected, treated,
and recycled into valuable products. It should be noted that the environmental aspect of
e-waste pollution as the fastest growing waste stream in the world is of great significance
since, according to the Global Recycling Foundation, it has gradually become one of the
biggest threats to the Earth because of its toxicity and hazardous components [5,7].

1.2. Importance of the Study and Aims

By considering the global status of e-waste, its adverse impact on environment, and
the significant benefits of its proper management and recovery, it is of great importance
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to gather all the key influential factors to study the subject of e-waste-derived materials.
In this regard, the present study gives a comprehensive overview of the specific types of
e-waste-derived materials in the category of photocatalysts as a solution to ever-increasing
e-waste-induced environmental issues. This study is dedicated to identifying the possi-
ble photocatalytic materials that can be recycled from e-waste, their production scheme,
involved factors, etc. with a special focus on techniques, critique, and their update. Ad-
ditionally, the type of utilized e-waste was considered, since it plays a significant role in
the recycling stage as each type of e-waste can be a source of specific materials, as was
mainly observed in lithium-ion and other battery types, whilst printed circuit boards and
the metallic scraps of e-wastes were investigated and may eventually be used for the
production of photocatalytic materials. Unfortunately, information about the global state
of e-waste recycling and the scale of recovery projects is limited and only a few countries
have reported detailed information, mostly the U.S and China. Therefore, another goal
is to highlight the advantageous and beneficiary aspects of e-waste recovery from both
environmental and economical perspectives. This paper is also dedicated to presenting the
challenges and techniques, their outcomes, shortcomings, and relevant parameters. The
main gaps in this issue are related to finding more efficient and inexpensive ways to recycle
e-waste and transform them into high-throughput photocatalytic materials. Overall, this
study was designed to fully cover the advantages, the current state, technologies, influential
parameters, and the main photocatalytic materials produced from e-waste recovery; it is
hoped that this will pave the way for the development of more efficient methods for the
improved production of photocatalytic materials from e-waste.

1.3. Photocatalytic Materials from E-Waste

There are numerous sources of e-waste, such as TVs, monitors, laptops, lamps, toasters,
refrigerators, mobiles, and electronic gadgets; the usual e-waste sources and their approx-
imate percentages are illustrated in Figure 1 [8]. Recently, e-waste became a sustainable
source for a variety of nanomaterials as well as electrocatalytic and photocatalytic materials.
In this regard, Figure 2 schematically presents the e-waste classification, the recycling
management and its proximate amounts, and the major materials and elements that can be
derived from a variety of e-wastes [6]. As can be seen, the recovered elements are mainly
dependent on the type and composition of e-waste equipment, and it is usually precious
metals, rare earth elements, metallic oxides, and photocatalysts that can be found in IT and
telecommunication equipment [9]. The most preferred equipment for the production of
photocatalytic materials through recycling are a variety of batteries, printed circuit boards,
and integrated circuits (ICs) and mostly the photocatalytic metallic materials are recycled
by pyrometallurgical and hydrometallurgical methods or a combination thereof after the
suitable preparation steps (mechanochemical processes). Despite the suitability of these
traditional pyrometallurgy and hydrometallurgy methods from different aspects, these
could not maintain all the requirements for high throughput and the environmentally
friendly recycling of e-wastes and they suffer from numerous limitations and drawbacks
which will be discussed in the following sections.

Considering the environmental and economic impacts of e-waste recycling, the neces-
sity to develop new methods and procedures for high-throughput recycling techniques is
clear, especially for modern green industries and photocatalytic applications. Some of the
e-waste recycling methods for the production of photocatalytic materials are considered
green industries since these techniques prevent the inappropriate disposal of e-waste,
leading to the release of noxious materials with devastating environmental consequences
in addition to the loss of countless high-value materials [10]. The appropriate management
of e-wastes through recovery methods extremely limits the exposure of toxicants, which
can considerably affect the surrounding environment and living creatures; hence, these
techniques are categorized under green and eco-friendly industry or technologies [6,11].
Additionally, most photocatalysis-related reactions and procedures are considered green
technologies since they can potentially oxidize many toxic inorganic ions into their harm-
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less upper oxidized state, so they can generally be used in the decontamination and
degradation of organic pollutants, including dyes, pesticides, insecticides, herbicides, and
fungicides, etc. [12,13]. It should be noted that green (technologies or industries) is an
umbrella term that refers to the utilization of technology and science to decrease the adverse
impacts of human development on the natural environment.
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In addition to the existence of hazardous materials such as Pb, Hg, and Cd, there
are a considerable amount of precious and rare earth elements, such as Pt, Au, Y, and Co
in e-waste residues which can be used in photocatalytic applications. Additionally, due
to the significance of metal-catalyzed procedures in the chemical industry, these e-waste-
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extracted catalytic materials that are green in nature manifest immense potential economic
and environmental benefits [14]; these materials are known as green catalytic materials
since they have a nontoxic essence and utilize solar energy with the desired bandgap to
absorb a wide range of the solar spectrum in order to degrade various contaminations,
dyes, etc., into harmless outputs; for instance, they can be used in water remediation
applications under sunlight [15]. However, the recycling and recovery procedures of e-
waste-extracted catalytic materials are sometimes challengingly complex and unfortunately
lead to the production of toxic by-products, high amounts of solvent, and excessive water
consumption [16–18]. The environmentally friendly recycling of e-wastes for photocatalytic
applications has general benefits and kills two birds with one stone, since the produced
photocatalytic materials from e-waste recycling are used for H2 fabrication via solar water
splitting. In the photocatalytic procedure, the light energy is utilized to drive pairs of
chemical reactions; when photocatalytic materials are exposed to light, a pair of excited
electron/holes are produced because they are in an activated state. Finally, the electron and
hole engage in a chemical reduction and oxidation reaction [19]; Figure 3 shows a simple
photocatalytic procedure. Photocatalysis reactions include light and a semiconductor and
the light-absorbing substrate (photocatalyst) that acts as a catalyst for a chemical reaction.
These semiconductor-based photocatalysts can be successfully recycled from e-waste. Some
factors should be considered in the fabrication of photocatalytic materials, such as having
acceptable charge separation property, rapid charge transferring, a high absorption of light
covering a large spectrum of waves, high chemical stability, low cost, and nontoxicity.
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Numerous types of components can be recycled from e-waste, including circuit boards,
hard disks, toner and ink cartridges, and batteries. The most important and initial steps
during the recycling process can be, respectively, listed as (1) e-waste collection and trans-
portation; (2) shredding and sorting; (3) dust extraction; (4) magnetic separation; (5) water
separation; and (6) waste stream purification. A simple flowchart of the motherboard, CPU,
and ceramic CPU recycling plant is illustrated in Figure 4, leading to the recovery of metals
such as Au, Ag, Pd, Pt, Al, Fe, Cu, Ni, and plastic using several methods, including physical
separation, hammer milling, leaching, electrowinning, and wastewater neutralization [20].
It should be noted that these methods are not completely environmentally friendly and
they are not capable of simultaneously recovering multiple materials with a high recovery
rate and satisfying selectivity.



J. Manuf. Mater. Process. 2022, 6, 69 6 of 35

J. Manuf. Mater. Process. 2022, 6, x FOR PEER REVIEW 6 of 36 
 

 

motherboard, CPU, and ceramic CPU recycling plant is illustrated in Figure 4, leading to 
the recovery of metals such as Au, Ag, Pd, Pt, Al, Fe, Cu, Ni, and plastic using several 
methods, including physical separation, hammer milling, leaching, electrowinning, and 
wastewater neutralization [20]. It should be noted that these methods are not completely 
environmentally friendly and they are not capable of simultaneously recovering multiple 
materials with a high recovery rate and satisfying selectivity. 

 
Figure 4. A simple flowchart of the motherboard, CPU, and ceramic CPU recycling plant [20]. 

Recycling techniques are generally categorized into two major groups, namely phys-
ical/mechanical recycling techniques and chemical recycling techniques. Additionally, 
other techniques such as vacuum metallurgy separation [21], bioleaching [22], and super-
critical fluids oxidation–extraction [23] processes can also be used. Recently, Chen et al. 
[24] introduced a novel photocatalytic technique that can selectively recycle seven pre-
cious metals, including Ag, Au, Pd, Pt, Rh, Ru, and Ir, from various e-wastes. One of the 
advantages of this method is that it does not need the utilization of any strong acids or 
bases or toxic cyanide: it only requires light and photocatalysts such as TiO2. In addition, 
it can recycle more than 99% of the targeted elements of the e-waste after a simple reduc-
tion reaction, resulting in high purity (≥98%) [24]. Niu et al. [25] successfully converted 
multilayer ceramic capacitors (MLCCs) (mainly composed of BaTiO3, Ag, Pd, Ni, and Sn) 
into a highly efficient photocatalyst through a one-step ball milling procedure, producing 
an Nb-Pb-co-doped and a Ag-Pd-Sn-Ni-loaded BaTiO3 nano-photocatalyst with superior 
photocatalytic efficiency. Considering the major recovery methods, in physical/mechani-
cal processes, the various metals and nonmetals that existed in e-wastes are released and 

Figure 4. A simple flowchart of the motherboard, CPU, and ceramic CPU recycling plant [20].

Recycling techniques are generally categorized into two major groups, namely physi-
cal/mechanical recycling techniques and chemical recycling techniques. Additionally, other
techniques such as vacuum metallurgy separation [21], bioleaching [22], and supercritical
fluids oxidation–extraction [23] processes can also be used. Recently, Chen et al. [24] intro-
duced a novel photocatalytic technique that can selectively recycle seven precious metals,
including Ag, Au, Pd, Pt, Rh, Ru, and Ir, from various e-wastes. One of the advantages
of this method is that it does not need the utilization of any strong acids or bases or toxic
cyanide: it only requires light and photocatalysts such as TiO2. In addition, it can recycle
more than 99% of the targeted elements of the e-waste after a simple reduction reaction,
resulting in high purity (≥98%) [24]. Niu et al. [25] successfully converted multilayer
ceramic capacitors (MLCCs) (mainly composed of BaTiO3, Ag, Pd, Ni, and Sn) into a highly
efficient photocatalyst through a one-step ball milling procedure, producing an Nb-Pb-co-
doped and a Ag-Pd-Sn-Ni-loaded BaTiO3 nano-photocatalyst with superior photocatalytic
efficiency. Considering the major recovery methods, in physical/mechanical processes,
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the various metals and nonmetals that existed in e-wastes are released and separated
through shredding, and crushing processes by crusher, pulverizer, classifier, and separator
techniques. Subsequently, the high-voltage electrostatic separation is used to separate the
mixture of metal powders. In the chemical recycling methods, the e-waste decomposes
into beneficial chemicals and metals through chemical reactions [20]. The major chemical
methods include gasification, pyrolysis, depolymerization, and hydrogenolytic degrada-
tion, leading to the separation of organic and metallic materials [26]. It is very common to
use chemical methods in recycling printed circuit boards (PCBs), which are one of the most
abundant types of e-waste. PCBs contain numerous electronic components (ECs), including
capacitors, resistors, relays, and integrated circuits (ICs), so they have a heterogeneous
mixture of metals, nonmetals, and other toxic substances. The metal content of PCBs is
high, including ~30% Cu, 0.05% Ag, 0.01% Pd, 0.03% Au, 10–20% solder Pb, 1–5% Fe,
and 1–3% Ni. Fortunately, the purity of these metals in PCB is considerably higher than
that of rich minerals, making it very attractive and economic for recycling [27]. However,
PCB recycling usually leads to the production of a lot of dust (toxic gases, such as dioxin,
lead fume, etc.) and some materials cannot fully be recovered, so the procedure needs to
be sealed off and the resulting industrial dust should be actively avoided. During PCB
recovery, usually the nonmetallic materials cannot be recycled and an enormous amount of
capital investment is generally needed. It was known that chemical recycling methods are
favorable candidates for PCBs; for instance, Veit et al. [28] utilized magnetic and electro-
static separation followed by the electrowinning process for recycling the metals from PCB
scarp and they successfully recycled Pb, Sn, and Cu. Additionally, ionic liquids, such as
1-ethyl-3-methylimizadolium tetrafluoroborate [EMIM+][BF4−], can be used to extract the
valuable materials from PCB e-waste [29]. One of the preferred chemical methods is pyrol-
ysis which can be used to recycling PCBs, as Quan et al. [30] performed a pyrolysis process
on a fixed-bed reactor and could recycle metals, glass fibers, and pyrolysis oil from PCBs.
Despite the advantageous nature of these methods, they are not completely categorized
in the group of environmentally friendly techniques, so much attention should be paid
to avoid environmental issues such as by the utilization of furnace cupola, gas-washing
towers, suitable post-processing, proper waste and by-product managements, etc.

The other important e-waste that can be recycled are batteries, which consist of an
anode and a cathode within an electrolyte along with the separators and external case.
There are different types of batteries, each of which has its own recovery processes, but
they are mostly recycled through mineral processing, hydrometallurgical processes, and
pyrometallurgical processes [31–33]. The recovery products mainly include metallic alloys
and compounds, or solutions containing metallic ions. Mineral processing separates the
materials according to their conductivity, density, magnetic behavior, etc., and is usually
applied as a pre-treatment to concentrate the metallic constituents following hydrometallur-
gical or pyrometallurgical processes [34,35]. Recently, lithium-ion batteries (LIBs), because
of their vast application in electrical vehicles (EVs) and laptops, have received significant
attention, and are mainly composed of a high percentage of hazardous heavy metals, alu-
minum, copper, transition metal oxides and phosphates, graphite, organic electrolytes with
toxic lithium salts, polymers, plastics, and metallic cases [36–38]; Figure 5 shows the typical
flowchart of LIB recycling. In LIB recycling, both physical and chemical processes should be
used due to the complicated nature of LIBs, and before any recovery processes, the batteries
should be discharged to prevent any fire and explosion occurrence. Unfortunately, the
recycling of lithium-ion batteries is risky due to several reasons, including the fact that they
are volatile and could be a source of fire hazards, in addition to the challenging recovery
of Li and other rare metals such as Co in LIBs, which requires considerable, tedious, and
expensive mechanical pre-treatment and separation steps, and sometimes, the recovered
material not perform as well as the virgin material.
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Figure 5. The typical flowchart of the recycling process of lithium-ion batteries (LIBs) [36].

2. Methodology

The purpose of the present work was to conduct a comprehensive review of the pub-
lished peer-reviewed journal articles and book chapters according to the guidelines of
the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, providing a
source of information on electronic waste recycling for the production of photocatalytic
materials. Additionally, some reports and monitoring results from the U.S., China, Brazil,
and worldwide data about e-waste conditions were included. In the literature search,
Springer, Scopus, ScienceDirect, and other databases were used, and two authors indepen-
dently performed the online search, study selection, and data extraction. The reference
lists of other journal papers and previous reviews were also considered to identify eligible
investigations not located using the database searches. We conducted a database search
for relevant papers from between 2000 and 2022 which were identified based on titles
and abstracts. The following search terms were used: electronic waste recycling, recovery,
waste-derived materials, photocatalyst, metal scrap, e-waste separation, battery recycling,
printed circuit boards recycling, photocatalytic materials, metallic oxide photocatalysts,
metallic sulfides, biohydrometallurgy, etc. The goal of this comprehensive review was
to highlight the importance and advantages of e-waste recycling in the production of
photocatalytic materials as well as to give a brief overview of the traditional and modern
techniques to produce various types of photocatalysts whilst focusing on the challenges,
potential gaps, and future perspectives in this research field.

3. Results and Discussion
3.1. Strategies of Metal Oxide Recovery

Generally, e-waste recovery and recycling procedures mainly involve metal oxide-
based materials; hence, it could be very useful to thoroughly analyze the conditions,
procedures, and types of used waste. The waste materials can be categorized into three
main groups, namely batteries, used instruments, and wastes and sludges. Through the
utilization of several methods, a variety of metallic nanoparticles (NPs) such as ferrites
and metal oxides could be recovered by recycling these three categories of waste materials.
Meanwhile, the most well-known methods are hydrometallurgical and pyrometallurgical
approaches. Figure 6 shows the processing steps of these two methods to obtain metallic
species from several wastes. It should be noted that, despite their vast utilizations, hy-
drometallurgical and pyrometallurgical approaches are regarded as traditional methods
and still suffer from numerous inherent weaknesses, including minor single-step separation
factor, discontinuity of techniques, high chemical consumption, toxic by-products, high
costs, complicated procedures, and a poor working environment.
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In addition to the techniques utilized in the recycling of various materials from e-waste,
the recovery rate and the efficiency of the methods are of the upmost importance and most
investigations and industrial projects are trying to increase the recovery rate as much as
possible in addition to ensuring their economic productivity; Table 1 seeks to provide a
viewpoint about some techniques and their efficiency in the recycling of various types of
e-waste. As can be inferred from Table 1, just a few procedures can attain 100% recovery
rates and most of them are incapable of simultaneously recovering multiple materials with
high selectivity from the e-wastes, whilst the type of e-waste is also another limiting factor
that should be considered.

Table 1. Different recovered materials from e-wastes by the utilization of various methods and
their efficiency.

E-Waste Recovered Material Method Recovery Rate (%) Ref.

spent Zn-MnO2 alkaline batteries ZnO liquid–liquid extraction 98 [39]

spent alkaline batteries ZnO one-pot chemistry Up to 98 [40]

lithium-ion batteries lithium acid leaching 99.4 [41]

spent rechargeable batteries Co, Mn, Cd hydrometallurgical, liquid–liquid extraction 100 [42]

spent rechargeable batteries Al hydrometallurgical, liquid–liquid extraction 67 [42]

spent rechargeable batteries Cu, Ni hydrometallurgical, liquid–liquid extraction 95 [42]

PCBs Al, Zn, Cu biohydrometallurgy 77, 86, 97 [43]

PCBs Cu, Al, Ni, Zn biohydrometallurgy 86.2, 100, 100, 100 [44]

PCBs Cu, Ni pyrometallurgy coupling bioleaching 49, 100 [45]

PCBs Cu high temperature pyrolysis 91.7 [46]

spent Li-ion battery cobalt ferrite sol−gel−hydrothermal - [47]

PCBs Cu vacuum pyrolysis 53–100 [48]

PCBs Cu, Pb, Sn crushing and electrostatic separation - [49]

3.1.1. Hydrometallurgical Approaches

Commonly, metallurgical e-waste processing is performed through the smelting of
waste parts using heat, entitled pyrometallurgical processing, while dissolving them in
the relevant solvent or liquid solution called hydrometallurgical processing. After these
methods, the resulting compound was refined according to its chemical properties either
by currents and voltage, i.e., electrolytic techniques or through precipitation [20]. The
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hydrometallurgical approach includes several steps, the dismantlement and collection
of life end products, washing and cleaning with water to remove all undesirable ma-
terials, alkali/alkaline salts, extraction, thermal treatment, and filtration [50]; Figure 7
illustrates a detailed flowchart for hydrometallurgical processes utilized for the recovery
of E-wastes. Conventionally, the hydrometallurgical approaches were applied for recover-
ing the precious metals from mineral ores, but they can also be used for recycling waste
electric/electronic equipment (WEE) through acid or the caustic leaching of selective disso-
lutions of the targeted metals [51]. Subsequently, the solution with the targeted metallic
species and possible impurities is further refined, concentrating the metallic compounds
by solvent extraction, adsorption, or ion exchange processes [2,52,53]. Eventually, by the
utilization of electrorefining or electrochemical reduction reactions, the metallic target
material is recycled from the E-waste. The hydrometallurgical approach is the most adept
and efficient method to recover metallic species since it can control the impurities, and
additionally, it is among the most eco-friendly (any processes that are not harmful to the en-
vironment or even trying to help the environment and the Earth’s ecosystem) and economic
recovery processes [54]. The efficiency of hydrometallurgical e-waste recovery is reported
to be very high, ranging between 82% and 100% [51]; for instance, leaching through thermal
transformation to recover metallic materials from PCBs can lead to recovery efficiencies
of up to 93.56%, 65.07%, 92%, and 95.52%, respectively, for Cu, Zn, Pb, and Sn [55]. The
other reported example is the room temperature recovery of Sn from PCBs through the
hydrometallurgical route followed by electrodeposition which leads to a 100% recovery
rate after just two hours of treatment [56]. In hydrometallurgical processes, the targeted
metal should be properly leached into solutions of desired concentration involving mostly
acids, such as hydrochloric acid, nitric acids, strong sulfuric acids, aqua regia, and a few
alkalis. There are different types of leaching processes, such as cyanide leaching, acid
and alkaline, thiosulphate, thiourea, and halide leaching. Then, the metallic compound
is further processed, respectively, by electrorefining, precipitation, cementation, adsorp-
tion, solvent extraction, and/or ion exchange [57]. Along with many beneficial aspects of
hydrometallurgical methods, they still have many issues that should be considered and
solved, such as high electricity consumption, the utilization of toxic chemicals, high water
and solvent consumption, the occurrence of severe corrosion in components, the disconti-
nuity of procedures, limitations on the simultaneous recycling of several elements, large
volumes of secondary waste by-products which necessitates additional processing, etc.
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3.1.2. Pyrometallurgical Approaches

As a traditional process, the pyrometallurgical approach is the most popular and
extensively used method for e-waste recovery. Pyrometallurgical processes offer advantages
such as the enhancement of purity of the final metal products, high production rates, and
the possibility to control and increase the temperature to activate reactions that are not
thermodynamically possible at low temperatures [58,59]. It was shown that the utilization
of pyrometallurgical processes for recycling precious metals from mobile phone-printed
circuit boards can lead to high recovery rates greater than 99% which can also be increased
by a combination of traditional incineration processes and wet processes [60–62]. Although
the pyrometallurgical approach has many advantages, it is not an economic method and
consumes high levels of energy and materials, forms toxic or harmful fumes and gases,
and unfortunately, the metal recovery of individual species through the pyrometallurgical
method is challenging. Another limitation of pyrometallurgical methods is that they cannot
be developed for small-scale commercial operation. Additionally, these methods sometimes
lead to the loss of precious recovered materials in high-temperature smelting furnaces and
they have some limitations in terms of the full recovery of materials with a high affinity
towards oxygen since they are usually bound as an oxide in the slag [63]; for instance,
the slagging of lithium requires a substantial effort to be solved [36,64]. In some cases,
reactor turbulence issues can also be found in pyrometallurgical techniques which is due
to the presence of various gases and leads to material accumulation at the bottom of the
reactor [65]. Furthermore, as traditional methods, pyrometallurgical techniques are unable
to simultaneously recover multiple materials with acceptable selectivity and purity.

Pyrometallurgical processes involve incineration, utilization of arc furnaces, and
high-temperature roasting with selective gases, and are applicable for both metallic and
nonmetallic wastes [20]. The main steps of pyrometallurgical treatments, respectively, are
pyrolysis, reduction, distillation, and incineration [66]. The pyrometallurgy procedures can
be performed under vacuum (vacuum metallurgy) or with the presence of a variety of gases
under atmospheric pressure (pressurized metallurgy). It should be noted that vacuum
metallurgy is preferred due to its eco-friendly nature, and there is no need to use tail gas
treatment equipment [67]. Furthermore, since the metals manifest lower boiling points
under vacuum, their recycling by vacuum mining leads to a significant energy reduction
compared to traditional thermal mining operations since the electric energy consumption
of vacuum metallurgy separation (both heating and vacuum process) for the recycling of
1 t waste Ni-Cd batteries at an industrial scale is at maximum USD 229 while its revenues
reach to at least USD 1308 [68].

3.1.3. Biotechnological Approaches

Biotechnological techniques for recycling e-waste may offer more auspicious alterna-
tives than the traditional pyrometallurgical and hydrometallurgical technologies in metal
recovery and urban mining. The most appealing aspect of these methods is their selectivity
toward critical and valuable metals, so they can be employed in the bioremediation of heavy
metals owing to their high biosorption abilities [69]. Additionally, these biotechnological
methods are cost-effective and are source of lower environmental concern [70]. During
biohydrometallurgical and bioleaching methods, living organisms such as fungi or bacteria
are utilized to leach or dissolve metals from a complex matrix, and hence, microorganisms
play a key role in the oxidation and leaching processes of metals. The biohydrometallurgy
processes can be performed both directly and indirectly. In direct biohydrometallurgy,
microorganisms engage in the recovery process through enzymatic reactions, while during
indirect biohydrometallurgy, microorganisms participate only in the metal leaching process
once they have been separated from their matrix. Biohydrometallurgical and bioleaching
methods attract much attention due to their numerous advantages, including a reduction in
energy cost (no need for high temperatures), nontoxicity, environmentally friendly nature,
and the possibility of the selective extraction of metals [70]. It was reported that bioleaching
is successfully used on a commercial scale to recover metals from sulfidic ores while it is not
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fully matured for the case of e-waste recycling and remains in the stage of infancy [71]. The
bioleaching or biomining process employs a direct metabolism or by-products of microor-
ganism reactions to solubilize a metal sulfidic ore or e-waste into an aqueous solution, and
is usually commercially adopted for the extraction of base metals, such as copper, tin, or
zinc [72,73]; Table 2 lists some of the studies about the bioleaching of metals from electronic
wastes along with the utilized methods, microorganisms, leaching efficiencies, and the type
of e-waste reproduced from [70]. However, whilst the beneficiary aspects of biotechnological
techniques are high, they have some limitations which prevent their widespread utilization,
such as cyanide generation, reduction in recovery rate due to diffusion issues and secondary
mineral precipitation, lower recovery rate, low industrialization, downcycling due to loss of
various metals, limited lifespans of microorganisms, high operational costs, need for organic
solvents, longer operation period, dependency on atmospheric conditions, etc. [74,75].

Table 2. The bioleaching recovery of metals from e-wastes along with utilized microorganisms,
leaching efficiency, the type of e-waste, and the used techniques, reproduced from [70].

E-Waste Microorganisms Leaching Efficiency
(Metal) (%) Technique Ref.

Mesophilic bacteria
Autotrophs

PCBs, scraps, e-wastes

A. ferrooxidans
+ A. thiooxidans 90 (Al, Cu, Ni, Zn) Rotary shaker, flasks [76]

A. ferrooxidans 37 (Cu) Shake flasks [77]

Acidithiobacillus sp.
+ Leptospirillum sp. 100 (Cu, Ni) Erlenmeyer shake flasks [78]

Acidithiobacillus sp.
Gallionella sp.

+ Leptospirillum sp.
95 (Cu) Shake flasks [79]

A. ferrooxidans 98 (Cu) Erlenmeyer shake flasks [80]

TV circuit boards
A. ferrooxidans

+ L. ferrooxidans
+ A. thiooxidans

89 (Cu) Erlenmeyer shake flasks [81]

Heterotrophs

PCBs, scraps, e-wastes C. violaceum, P. fluorescens,
P. plecoglossicida 68.5 (Au) Shake flasks [82]

Waste mobile phone PCBs

C. violaceum 13 (Au); 37 (Cu) Shake flasks [83]

C. violaceum 11.31 (Au) Shake flasks [83]

C. violaceum insignificant (Au) Conical shake flask [84]

C. violaceum 20–30 (Au) Shake flasks [85]

Moderately thermophilic bacteria

Electronic scrap

S. thermosulfidooxidans
+ Thermoplasma acidophilum

86 (Cu); 74 (Ni); 80 (Zn);
64 (Al) Column bioleaching [86]

S. thermosulfidooxidans
+ Sulfobacillus acidiphilus

78 (Cu); 78 (Ni); 74 (Zn);
85 (Al)

Shake flasks and
lab-scale column reactor [87]

S. thermosulfidooxidans
+ acidophilic heterotrophic bacteria

89 (Cu); 81 (Ni); 83 (Zn);
79 (Al) Shake flasks [88]

Fungi

PCBs, scraps, e-wastes A. niger + P. simplicissimum 100 (Al, Cu, Zn, Ni) Rotary shaker, flasks [76]

Electronic scrap P. chrysogenum 97–98 (Cu)
One-step leaching with
combined growth and

leaching phases
[89]
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3.2. Photocatalytic Materials from E-Waste

A lot of photocatalytic materials can be extracted from e-wastes, especially after doping
with transition metals and photocatalysts. A normal photocatalysis process includes these
basic steps: (i) generation of photoexcited electron–hole pairs by solar illumination of
photocatalyst; (ii) separation of charge carriers; and (iii) after charge carrier separation,
charge transferring done on respective catalytic sites/surface in order to induce redox
reactions [90]. It should be noted that the reduction and oxidation potential of photoexcited
electron–hole pairs relies upon the positions of conduction band minimum and valence
band maximum [90]. The photocatalytic materials produced from e-waste can have some
limitations such as low solar energy utilization and a high rate of charge recombination
that should be highly considered.

The e-waste-derived materials include various metallic oxides and sulfides, carbon-
based materials, biomass-templated materials, carbon quantum dots (CQDs), and most
importantly, TiO2 and ZnO [91]. In addition, noble metals (such as Pt, Au, Ag, etc.) can
be derived from e-waste and subsequently utilized as co-catalysts in photocatalytic water
splitting, CO2 reduction, and other photocatalytic applications due to the high mobility of
their charge carriers, transparency towards the light, and high density of active sites [90].
Photocatalytic materials have numerous applications such as water splitting, CO2 con-
version, pollutant degradation, and even bacterial inactivation. In semiconductor-based
photocatalysis processes, heterojunctions are regarded as an effective architecture approach
to mitigate the limitations of bare semiconductors [90]. Meanwhile, S-scheme and Z-scheme
heterojunctions usually offer a higher redox ability and broaden solar energy utilization
compared to traditional photocatalytic systems. During step-scheme (S-scheme), a reduc-
tion and oxidation photocatalyst happens in staggered band arrangement with Fermi level
differences [90], while Z-scheme heterojunctions have two connected semiconductor pho-
tocatalysts that are able to keep the electron–hole pairs with proper reduction/oxidation
abilities on active regions [90,92–94].

According to the literature, TiO2-based materials are considered the most widely
used photocatalysts with many green applications (waste water remediation [95,96], dye
degradation [97], solar cells [98], etc.) and have many advantages, such as the ability
to absorb visible and UV light, biological and chemical inertness, low cost, etc. [99,100].
Additionally, ZnO- and graphitic carbon nitride (g-C3N4)-based materials are among the
most popular photocatalysts, ZnO-based nanostructures are low-cost, nontoxic, and more
adept in the absorption of the solar spectrum compared to TiO2 [101]. The g-C3N4-based
materials having a visible-light activity, with a straightforward synthesis process from
low-cost materials, chemical stability, and a unique layered structure which are also among
the attractive photocatalysts [102]; in the following, photocatalytic materials from e-wastes
are discussed in detail.

3.2.1. TiO2-Based Materials

As the most commonly used photocatalyst material, TiO2 has many applications,
such as water splitting, hydrogen evolution, and photodegradation. Despite the vast
utilization of TiO2 as a successful photocatalytic material, it still has some drawbacks,
for instance, unfortunately, its handling is difficult, its photocatalytic reaction is slow, its
application in some cases is limited due to photocatalyst decomposing issues, TiO2 has
high charge recombination, it needs to be doped with other materials and the very low
photo-inefficiency of the TiO2 catalyst only covers 5% of the solar spectrum [103,104].

The recycling of Ti and Ti-based materials from e-waste can be performed through
numerous techniques, such as Ti smelting and Kroll methods [105]. Unfortunately, despite
the high efficiency (even up to 100%) of the strong acids in the leaching process [106],
their extensive use is a critical issue in TiO2 recycling. Other challenges in recycling the
waste-derived photocatalytic materials are the dissatisfactory control over the resulting
structure and poor reproducibility that is a significant problem since a few variations lead
to significant changes in photocatalytic performance [107,108]. The multilayer ceramic
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capacitors (MLCCs) (Figure 8) having BaTiO3, Pd, Ag, Ni, and Sn (Figure 8) are potential
e-waste for recycling TiO2, but the recycling process through an environmentally friendly
and efficient separation process is challenging. In this regard, Niu et al. [25] utilized a
one-step ball milling process to attain an Nb-Pb-co-doped and Ag-Pd-Sn-Ni-loaded BaTiO3
nano-photocatalyst, manifesting efficient H2 generation, RhB degradation, and superior
photocatalytic activity with approximately four times the commercial BaTiO3. Note that
BaTiO3 is generally used to degrade organic pollutants and split the water [109,110]. Niu
and Xu [111] successfully produced a Nb-Pb-co-doped and Pd-loaded TiO2/BaTiO3 het-
erostructure by the in situ synthesis of MLCCs through the facile chlorination-leaching
process, showing great photostability and reusability due to Nb-Pb co-doping, heterostruc-
ture formation, and the Pd loading. Figure 8 shows the MLCC structure having many
BaTiO3 dielectric layers and stacked internal electrodes. In Figure 8, the simple chlorination-
leaching process which resulted in the high throughput formation of Nb-Pb-co-doped and
Pd-loaded TiO2/BaTiO3 heterostructure is shown [111]. The chlorination step was per-
formed in a quartz tube furnace in which NH4Cl and scrap powder with determined mass
ratios of (0.5–4):1 was mixed and then heated at 500 ◦C for 30 min under air. In the course
of the chlorination process, Ag, Sn, and a part of BaTiO3 (doped with Nb and Pb) were
involved in a reaction with the presence of HCl to generate SnCl4, AgCl, BaCl2, and TiO2
(doped with Nb and Pb). The resulting SnCl4 vaporized into the gas phase and was then
collected in the condensing zone. The residual products and unreacted Pd remained in the
residues. Subsequently, the residues were sequentially leached in the solution of distilled
water and Na2S2O3 in order to separate BaCl2 and AgCl. Eventually, the Nb-Pb-co-doped
and Pd-loaded TiO2/BaTiO3 heterostructure was manufactured. During the photocatalytic
H2 evolution of the samples, the simulated sunlight photocatalytic H2 generation in the
commercial TiO2 and bare TiO2/BaTiO3, respectively, were ~42 and ~96 µmolg−1h−1. The
TiO2 sample (NH4Cl/scrap:4) has the greatest H2 evolution rate, an enhanced activity
which can be related to co-doping with Nb-Pb, enhanced the visible light absorption, and
has effective charge separation [112,113]. Niu and Xu [111] proposed a novel method for
the in situ fabrication of Nb-Pb-co-doped and Pd-loaded TiO2/BaTiO3 nanostructured
heterostructures from e-waste (multilayer ceramic capacitors) by a chlorination-leaching
route. TiO2-based photocatalysts from e-waste can be a great option to solve environ-
mental pollution [114]. The fabrication of the TiO2/BaTiO3 heterostructure led to the
improvement of photocatalytic H2 activity due to its more potent charge separation. It
was reported that TiO2/BaTiO3 heterostructure has superior photocatalytic activity toward
H2 evolution and organic degradation [115,116]. TiO2/BaTiO3 (NH4Cl/scrap: 0.5) shows
the most photodegradation efficiency with approximately 19.13 and 8.91 times greater
than commercial TiO2 and TiO2/BaTiO3 specimens. The photocatalytic degradation of
RhB was also analyzed under simulated sunlight. Even though all the samples exhibited
favorable photocatalytic activity toward RhB degradation, it was seen that the catalyst had
a negligible impact on the degradation of RhB [111].
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Niu et al. [117] proposed a new approach to magnetically generate core–shell Z-scheme
Nb-Pb-co-doped BaTiO3/Ni-Pd@g-C3N4 photocatalysts using the ceramic capacitor e-waste
for H2 production. Firstly, by a simple ball-milling procedure, the waste ceramic capacitors
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were converted to Nb-Pb-co-doped BaTiO3/Ni-Pd-Ag-Sn nanoparticles, then g-C3N4 was
coated on these nanoparticles leading to the production of a core–shell structure. These
nanosized photocatalyst powders can make some problems during the liquid-phase reac-
tions of a photocatalysis process. It should be noted that the Ni-Pd operated as the electron
mediator, and the Ag-Sn could also facilitate the electron transfer in the Z-scheme structure.
In this regard, a series of Z-scheme heterojunction structures with various mass fractions of
g-C3N4 were constructed [117]. Eventually, the produced special Z-scheme photocatalyst
presented exceptional photocatalytic H2 evolution activity. In addition, the constituent Ni
caused an excellent magnetically separable property in the photocatalyst.

3.2.2. ZnO-Based Materials

ZnO was considered the alternative photocatalyst material to TiO2 since it has similar
bandgap energy and even higher absorption proficiency toward sunlight irradiation [101].
It was reported that the waste-derived ZnO nanocomposites presented exceptional pho-
tocatalytic activity, especially towards a variety of organic dyes such as MB, RhB, and
malachite green under UV illumination [118–120]. Hence, ZnO is a great and promising
candidate for treating environmental contamination, specifically in organic wastewater
remediation [121]. Unfortunately, ZnO photocatalysts have also some limitations which re-
duce its applications, including a high recombination rate of photo-induced charge carriers,
insufficient stability, a low rate of sunlight utilization, limited photon absorption (just UV
region), and photocorrosion due to light-unsteadiness, etc. [122].

Generally, ZnO-based materials are recovered through pyrometallurgy and hydromet-
allurgy procedures [123]. Due to the rapid technological development across the world, the
utilization of batteries has increased, and Zn-C and Zn-Mn batteries, as the commonly used
types of batteries, are mostly used in small devices which can be regarded as secondary
resources for some valuable elements such as Zn. ZnO nanoparticles (NPs) could be recycled
from the spent Zn-Mn dry batteries via high-temperature evaporation–separation and oxygen
control oxidation in which air acted as the carrier gas and oxidizer [124]. In addition, ZnO
NPs with a variety of morphologies can be generated from the spent Zn-Mn batteries through
vacuum evaporation and oxygen control methods [125]. The morphology of ZnO NPs in this
method can be controlled and adjusted by the O2 oxidizer concentration, N2 conveyor, type
of substrate, calcination temperature, and the distance of condensing. It was demonstrated
that increasing the aperture-size barbed wires from 200(75) up to 500(25) can promote the
extraction efficiency from ~75% to ~92%. The pressure has no direct influence since 1, 3, and
10 KPa pressure, respectively, led to ~83, 91.5, and 87% extraction efficiencies. As an example,
the nanotetrapod ZnO morphology with photocatalytic properties can be fabricated on a glass
plate under the conditions of 1123 K temperature, 12.5% oxygen content, and with a nitrogen
flow rate of 21 L min−1 [125]. Figure 9 schematically illustrates the ZnO recycling process from
Zn-Mn batteries by high-temperature evaporation–separation and oxygen control oxidation
method [124]. There are some problems during the process, for instance the low evaporation
and rapid oxidation rate of Zn may mix the ZnO with other impurities in the crucible. The
combination of physical and chemical methods can considerably slow down the Zn oxidation
rate and lead to suitable Zn dispersion during the evaporation process [124].

In another study, Maroufi et al. [126] recycled waste Zn-C batteries via a facile homo-
geneous precipitation–calcination method and successfully synthesized two-dimensional
(2D) ZnO porous nano-sheet photocatalysts for the photodegradation application of methy-
lene blue/MB aqueous solution under UV–Vis exposure. The produced ZnO nano-sheets
had a thickness of up to 100 nm. Firstly, the Zn foil pieces from Zn-C batteries were
placed in an HNO3 solution and stirred at room temperature. Subsequently, the mixture
was diluted by adding potassium hydroxide solution in order to attain a crystalline pre-
cipitant in gray color. The resulting crystalline phase had a hydroxide nitrate hydrate
(Zn5(OH)8(NO3)2(H2O)2) composition, and this phase transformed into ZnO nano-sheets
after calcination at 700 ◦C; Figure 10 shows the microstructure of the resulting porous
ZnO nano-sheet [126]. Figure 10a,b clearly exhibit the production of ZnO porous nano-
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sheets morphology for which TEM and HRTEM (Figure 10c,d) manifested the high level of
porosity in these ZnO photocatalysts produced from the attachment of nanoparticles. The
presence of rings in the SAED pattern in Figure 10e demonstrates the formation of crystal-
lized nano-sheets. It was demonstrated that a prolix calcination procedure can support the
growth of crystals, but on the other hand, it makes the agglomeration step longer.
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Finally, the photocatalytic performance of these Zn-C batteries-derived porous ZnO
nano-sheets confirmed that they are a promising candidate in the photodegradation appli-
cation, especially towards organic pollutants such as MB in industrial wastewater.

Obviously, the recycling of spent domestic batteries is of substantial environmental
significance. In this regard, Deep et al. [40] proposed a facile chemical procedure to recycle
the electrode waste of spent alkaline Zn-MnO2 batteries to produce high-purity ZnO
NPs through a one-pot leaching–combustion process. The produced ZnO NPs, having
high commercial value and fluorescent nature, are highly qualified and interesting for
photocatalytic, sensors, biology, and solar cell applications. Additionally, the separated pure
MnO2 product can be re-utilized in various applications [56]. The used one-pot leaching–
combustion process is very advantageous due to its single-step process without any need
to perform a multiple-processing route (e.g., separate leaching, extraction, and combustion
steps). In addition, it has a simple route, i.e., processing in moderately concentrated
chemicals at moderate temperatures. The flowchart of the used process in the investigation
by Deep et al. [40] is shown in Figure 11. Firstly, the spent batteries were manually
dismantled to extract their electrode material, and following the acid digestion process,
the mixture powder was attained, and was comprised of Zn, Mn, Fe, Ni, Cd, and Cu.
Subsequently, the leaching process was performed in HCl, Cyanex, and hexane solution
at 250 ◦C for 30 min. The maximum extraction values were reported for 1.2 mol/L HCl
in which Zn(II) had 98% extraction efficiency while Fe(III), Cd(II), Mn(II), and Ni(II),
respectively, had ~30, 47, 0.5% extraction efficiencies. Then, the organic phase was collected
by centrifugation, by the addition of 70% methanol, the dissolved ZnO-Cyanex 923 complex
with ZnO nanoparticles was precipitated. Finally, the resulting product was repeatedly
washed in methanol solution and then resuspended in dimethylformamide [40]. The
valuable recovered ZnO NPs which were approximately 5 nm in diameter, when irradiated
by UV radiation, showed fluorescent properties (emission peak at 400 nm) with applications
in photocatalytic reactions and solar cells. In this study and in order to fabricate pure metal
oxides, the ethanolic precipitation was used to prevent the high-temperature combustion
step since this leads to the production of sintered metal oxides with a blackened appearance.
The utilization of the ethanolic precipitation strategy leads to the high-quality recovery
and generation of nano-sized white colored products that have a high commercial value
and fluorescent nature with applications in bioengineering, sensors, and solar cells. These
nano-size MnO2 products are free of any impurities and are easy to re-utilize in various
fields [40].

ZnO/CuO nanocomposites can be attained from recycling PCBs; accordingly,
Nayak et al. [127] produced ZnO/CuO nanocomposites through acidic leaching. Then,
the resultant metal salts were further processed by alkaline hydrothermal treatment. The
main advantage of this hydrothermal treatment relates to supercritical water preventing
the utilization of toxic organic solvents [128], making it among the ideal methods for green
industry, which guarantees the preservation of environmental resources by the utilization
of nontoxic supercritical solvents. For instance, Li and Xu [129] reached a 99.80% metal
recovery rate by the utilization of supercritical water (as a green and environmentally
friendly technology) under external-catalyst-free conditions to recover metals from the
waste memory module. Despite the environmental benefits of this method, the supercritical
water oxidation technique has some limitations which prevent its vast utilization and
industrialization, including technical issues due to salt precipitation and reactor corrosion,
large water consumption, using organic acids and other toxic materials, etc. The PCB
e-wastes were successfully leached with HNO3 solution following the alkaline hydrother-
mal treatment of the leachate salt solution in two conditions with biodegradable polymer
stabilizer polyvinyl pyrrolidone (PVP) and without PVP [127]. This process led to the
formation of ZnO/CuO nanocomposites with partial core–shell and p-n junction in which
the fine ZnO nanostructures had precipitated on the CuO core nanoparticles. The resulting
photocatalyst exhibited efficient methyl orange (MO) degradation under the irradiation
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of visible light and the presence of H2O2. These ZnO/CuO nanocomposites are proper
photo-Fenton catalysts, especially for organic pollutant degradation [127].
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3.2.3. Sulfide-Based Materials

Sulfides are also regarded as suitable photocatalysts, as—in this regard metal—sulfide-
based photocatalysts manifested distinguished photocatalytic properties and recently have
become of great interest to the scientific community [130]. Among the beneficial aspects
of sulfides in the photocatalysis process, they also have some drawbacks since they are
easily photocorroded in oxidizing conditions, have a high inclination to photoelectron–hole
recombination and low photocatalytic efficiency and stability, demonstrate low quantum
efficiency with the unsaturated active sites, etc. [131].

The morphology and mechanism of one typical metal sulfide-based photocatalyst
for H2 production is illustrated in Figure 12 in which Ag2S-coupled ZnO@ZnS core–shell
nanorods act as an immobilized hierarchical photocatalyst [132]. In this photocatalyst,
the production of Ag2S on ZnO@ZnS nanorods facilitates the photoexcited electron/hole
transfer from ZnS to Ag2S or the migration to the conductive wire mesh substrate. Various
metal sulfide-based compositions can exhibit photocatalytic properties, especially the
transition-metal sulfides such as CdS or ZnS. In addition, WS2, Cu2S, In2S3, MoS2, and
CdS, and even some more complex structures and ternary systems, including CdIn2S4,
CdLa2S, and ZnIn2S4 have a favorable photocatalytic performance [133]. For recycling the
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sulfide-based materials, several processes can be done, such as flotation and a variety of
physical-mechanical separation, chemical modification methods, and extraction through
supercritical H2O or CO2 following further required purification steps [134].

It was reported that some microorganisms have the potential and tendency to ex-
tract metals from their sulfide and iron-containing ores and mineral concentrates [135].
In this regard, iron and sulfide are microbially oxidized to generate sulfuric and ferric
ions along with sulfuric acid, as these chemicals finally convert the insoluble sulfides of
metals such as Cu, Ni, and Zn into a soluble sort of metal sulfates that can subsequently
be simply recycled from the solution. For example, Au can be extracted from e-waste
by cynogenic-bacteria (Chromobacterium violaceum and Pseudomonas fluorescens) [136] in
which the pretreatment and bio-oxidation of e-wastes by A. ferrooxidans specifically leads to
separating and removing the Cu content whilst leaving Au residues behind [136]. The uti-
lization of various microorganisms is significantly imperative in metal recovery especially
in the case of metal sulfide-based materials. As Cu, Zn, Au, and Ag, etc., can be successfully
recovered from their sulfide ores through microbial leaching, Suzuki et al. [137] reported
that mineral solubilization can be attained both by ‘direct (contact) leaching’ using bacteria
and ‘indirect leaching’ by ferric ion (Fe3+) that is regenerated from ferrous ion (Fe2+) via
bacterial oxidation.
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Figure 12. (a) The morphology and a related mechanism of the metal sulfide-based photocatalysts
for H2 production with Ag2S-coupled ZnO@ZnS core–shell nanorods and FESEM images of (b) ZnO
nanorods decorated stainless steel wire mesh, and ZnO@ZnS core–shell nanorods decorated stainless
steel wire mesh with various sulfidation times (c) M60ZST2, (d) M60ZST4, and (e) M60ZST6 [132].
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3.2.4. Ferrite-Based Materials

Magnetic photocatalyst materials have attracted much attention since they can facili-
tate the separation of a photocatalyst from treated water using an external magnetic field.
Additionally, these magnetic NPs, including ferrite-based materials, can be easily coupled
with various photocatalysts to induce magnetic behavior [138,139]. In addition, magnetic
NPs can exhibit favorable visible light absorption and photocatalytic properties leading to
improved overall pollutant degradation performance [140–142]. Magnetic ferrite is widely
utilized in many fields due to its numerous advantages, including exceptional magnetic
properties, substantial electrical resistance, chemical stability, mechanical rigidity, and low
cost. Despite these advantages, ferrite-based photocatalysts have some drawbacks that
should be considered, such as agglomeration issues, being unfavorable for photocorrosion,
a high electron–hole recombination rate, and insufficient photocatalytic activity [143].

For the first time, Xi et al. [144] fabricated Zn–Mn magnetic ferrite NPs from dry
Zn-MnO2 waste batteries, a process which they concluded can be influenced by pH, tem-
perature, and calcination processes. Morais and his co-workers [145] recovered a magnetic
manganese ferrite (MnFe2O4) photocatalyst from spent Zn-MnO2 batteries for water reme-
diation. The MnFe2O4 catalyst was successfully synthesized and recycled from manganese
solution by leaching the cathode material of waste Zn-MnO2 batteries in 0.5 mol/L nitric
acid and 30% (v/v) H2O2 solution at 80 ◦C, which was then followed by reacting with
ferric chloride and calcination. The resultant magnetic MnFe2O4 photocatalyst exhibited
an excellent performance toward the heterogeneous photo-Fenton photodegradation of
methylene blue dye [145]. In another investigation, Mn-Zn soft magnetic ferrite powders
were successfully synthesized from waste Zn-Mn dry batteries by simultaneous leaching,
purification, and co-precipitation processing [146]. In addition, Mylarappa et al. [147]
recovered Mn-Zn ferrite NPs from waste alkaline Zn-C batteries, and they used the acid
dissolution and ferrite process and then decorated the resulting Mn-Zn ferrite NPs on rGO
through the solvothermal method. These Mn-Zn ferrite NPs decorated with rGO exhibited
an excellent photocatalytic activity under UV light compared to the bare Mn-Zn ferrite NPs.
The nano-crystalline Mn-Zn ferrites and rGO/Mn-Zn ferrite showed average crystalline
sizes between 27 and 19 nm. The superior photocatalytic activity of rGO/Mn-Zn ferrite
NPs was majorly related to its finer size, oxygen vacancies, and efficient charge separation
performance [147]. This rGO/Mn-Zn ferrite NPs can effectively photo-decompose an acid
orange 88 dye compound in water [147].

3.2.5. Indium Tin Oxide Materials

Indium tin oxide (ITO) thin-film electrodes are photocatalytically active and can be
used in the photocatalysis process to degrade different dyes and H2 production; for instance,
nanostructured ITO electrodes can successfully degrade an azo dye [148]. The ITO as a
degenerate n-type semiconductor has a wide bandgap and manifests excellent electrical
conductivity and can transmit visible light [149]. The ITO thin films have wide applications
in transistors, radio-electronic, spintronic, solar cell, displays, organic light-emitting diodes,
and other electro-optical devices [150,151], but unfortunately, their photoelectrochemical
and photocatalytic properties are not fully understood and investigated. ITO is extensively
used in the fabrication of touch displays of smartphones, tablets, and liquid-crystal display
panels (LCD) [152]. Due to the limited world reserves of indium and its scarcity on earth, it
only comprises approximately one-sixth of gold reserves; it is of vital importance to extract
and recycle very expensive indium (In) from the wastes of LCD devices [153].

The existence of a high content of indium in an ITO film of waste LCD makes it a
potential secondary source of indium [154]. During the recovery of In from LCD panels,
special consideration should be paid to the presence of harmful and toxic elements such
as liquid crystals and mercury. Generally, the recovery of In from waste LCD panels is
performed by an aqueous hydrometallurgical approach. Li et al. [155] used a combined
recycling technology by dismantling and chemical treatment to recover indium from waste
LCDs. Their proposed method includes three main steps: (i) thermal shock processing to
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separate an LCD polarizing film; (ii) ultrasonic cleaning to remove liquid crystals between
the glass substrate; and (iii) dissolution processing to recover indium metal from glass [155].
In another study, Inoue et al. [152] selectively recovered indium(III) from waste flat panel
displays (FPDs) through the hydrometallurgical recovery process by the utilization of
porous resins impregnated with Cyanex 923 and Aliquat 336. Additionally, Hsieh and his
co-worker [156] recycled indium through an economic method using hydrometallurgical
and hot immersion processes. They utilized a displacement method as one of the hydromet-
allurgical processes to recover indium metal from ITO waste liquid, and subsequently, a
slag-making process was performed during hot immersion to refine the sponge indium up
to 99% [156]. Indium can also be recovered by sub-critical water, chlorination, and vacuum
carbon reduction. Park et al. [157] used a chlorination method to recycle indium from
In2O3 and liquid crystal display powder by a chloride volatilization process. Additionally,
vacuum pyrolysis was used to produce indium chloride and recover indium. Furthermore,
Zhang et al. [158] used an environmentally friendly method to recover indium from the
waste liquid crystal display (LCDs) panels using an integrated and multi-step process.
Initially, a mechanical stripping separation method was applied to the waste material and
the enriched liquid crystals and indium compound was produced. Afterward, through
a series of pyrolysis separation, vacuum chlorinated, and substitution reaction methods,
the indium content was increased from 0.02 wt.% in waste LCDs to 36 wt.% in the final
product [158], Figure 13 shows the schematic of this process.
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3.2.6. Other Photocatalytic Materials from E-Waste

Along with many applications of carbon quantum dots (CQDs) due to their nontoxic
and biocompatible nature in the biomedical field (bio-imaging, drug delivery, bactericidal
activity, gene delivery, and cancer therapy) [159], they are also utilized in solar energy
conversion, photosensors, light-emitting diodes, chemical sensing, and photocatalysis.
The CQDs’ application in photocatalysis is highly interesting due to their excellent light-
harvesting capability and substantial photo-induced electron transferability [160]. CQDs
are an important class of carbon nanomaterial photocatalysts which have many applications
in pollutant degradation, solar devices, and photo/electrochemical water splitting due to
their attractive advantages including efficient light-harvesting capability, controllable pho-
toluminescence, exceptional up-converted photoluminescence, and excellent photoinduced
electron transfer which finds their way in photocatalysis systems [161]. Despite the high
separation rate of electron–hole pairs, favorable photodegradation efficiency, economic
nature, low toxicity, chemical inertness, superiority in water solubility, biocompatibility,
fluorescence emissions, high resistance to photobleaching, facile functionalization, and
synthesis, CQDs also have some limitations that should be considered and solved. For
instance, the charge separation efficiency should be enhanced along with the need to im-
prove the spectral responsive range. Additionally, CQDs have demonstrated some issues
regarding the flow direction of photogenerated charge carriers and limited functionalities
that should be improved [160].

CQDs can be processed and recycled from e-waste through acidic hydrolysis, hy-
drothermal and electrochemical oxidation, and microwave-assisted treatments [162].
Devi et al. [163] proposed an efficient method by the utilization of carbon black extraction
and pyrolysis methods to recycle carbon species, particularly carbon black from discharged
batteries and transformed them into zero-dimensional carbon nanomaterial CQDs with
photocatalytic applications.

The e-waste toner powders can be turned into magnetic g-C3N4-Fe2O3 photocatalyst
material through the calcination method. Barber et al. [164] reported the successful pro-
duction of the g-C3N4-Fe2O3 photocatalyst from e-waste toner powders; firstly, Fe3O4 was
transformed into useful magnetic Fe2O3 using direct calcination at 600 ◦C; then, e-waste-
derived Fe3O4 by a simple one-step calcination process turned into g-C3N4-Fe2O3. This
g-C3N4-Fe2O3 photocatalyst material manifested a proper photocatalytic behavior and a
promising degradation efficiency toward methyl orange (MO) and textile effluents (TE)
under sunlight irradiation [164]. This material has a far better photocatalytic performance
than the Fe2O3 and g-C3N4. Figure 14 shows the schematic of the process steps. At first,
residual toner powders were collected from the waste print cartridge which were then
calcined at 600 ◦C for 2 h in air to generate crystalline Fe2O3. Subsequently, the well-known
polycondensation method was used to synthesize g-C3N4 and g-C3N4-Fe2O3 [165,166]. In
this regard, thiourea was placed into an alumina crucible with a cover and heated at 450 ◦C
in a muffle furnace for 2 h. The produced yellow color material was ground into a fine
powder and designated as g-C3N4. Then, the prepared Fe2O3 and thiourea were ground
together and calcined at 450 ◦C in a muffle furnace for 2 h. Finally, the developed product
was washed with distilled water and dried in an oven at 80 ◦C, eventually, the resulting
product was designated as g-C3N4-Fe2O3 [164]. The produced g-C3N4-Fe2O3 photocatalyst
demonstrated 97% photocatalytic activity under sunlight and within 60 min degradation
time toward the textile effluents pollutant.

The V2O5/Zn-ferrite photocatalyst can be recycled from vanadium nitrate which
is produced from the metallurgical treatment of vanadium redox battery. As a semi-
conductor metal oxide, V2O5 has a low bandgap energy of 2.2 eV that facilitates the
electron–hole recombination under light irradiation [167]. Mohan et al. [168] generated
zinc-ferrite/V2O5 (ZFV) magnetic nanocomposite photocatalysts from e-waste (vanadium
batteries) for the photocatalytic degradation of BTEX isomers in an aqueous solution. ZFV
magnetic nanocomposite was fabricated by solvothermal procedure by the utilization of
V2O5 (recycled from the treated E-waste), and zinc ferrite (synthesized through chemical
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co-precipitation method) [168]. It was observed that the efficiency of the photocatalyst
is dependent on many variables (pH, additives, etc.) and the maximum efficiency was
attained under conditions of 50 mg/L initial concentration of BTEX, 0.50 g/L catalyst
loading, and a pH of 3. The degradation efficiency at the end of 90 min was improved up
to 98% with H2O2 addition, while the addition of NaCl, Na2CO3, NaNO3, and Na2SO4
considerably decreased the degradation values to 60%, 65%, 80%, and 75%, respectively—a
phenomenon related to the hydroxyl scavenging properties. Additionally, it was shown
that the degradation efficiency could be increased up to 98% by the addition of H2O2
while the addition of NaCl, Na2SO4, NaNO3, and Na2CO3 reduced the degradation rate.
Eventually, it was confirmed that zinc-ferrite/V2O5 (ZFV) magnetic nanocomposites could
be successfully utilized for the treatment of BTEX-bearing wastewaters [168].
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Waste printed circuit boards can be directly recovered and transformed to value-
added high surface area t-SnO2 nanoparticles (NPs) for photocatalytic MB dye degradation
under UV irradiation [169]. These high-surface-area t-SnO2 NPs which can be regarded
as quantum dots (QDs) were produced by a spontaneous precipitation method from a
pregnant e-waste leachate solution with a very slow kinetic rate without any need for
additives. The nucleation and growth processes were taking place under equilibrium
conditions and led to successful QD precipitation. In another study, Mohan et al. [170]
fabricated a graphene oxide/V2O5/Pt ternary composite from e-wastes to attain anti-
microbial and anti-cancer activity through visible-light-driven photocatalysis interaction.
They analyzed the photocatalytic disinfection and anti-cancer activity features of the
graphene oxide/V2O5/Pt (GOV-Pt(1%)) nanocomposite by Salmonella typhimurium as
a model system [170]. With the photocatalyst produced by the solvothermal process,
uniform dispersion was achieved by sonication in methanol for 30 min at room temperature.
Then, V2O5 was produced as in Harshavardhan et al. [171] and mixed in GO suspension,
autoclaved, and heated at 120 ◦C for 8 h, and finally washed, filtered, and vacuum dried
at 90 ◦C. The platinum doping of GOV was assessed by platinum(II) chloride (PtCl2) and
GOV addition into double distilled water and vigorous stirring until it became dry. Then,
the dried mixture was scraped, reduced to hydrogen gas atmosphere at 450 ◦C, and entitled
GOV-Pt(1%) and GOV-Pt(2%), as represented in Figure 15 [170]. GOV-Pt(1%) demonstrated
high antibacterial efficiencies of up to 100% at 30 min for most of the microbial pollutants
and 99% at 24 h for apoptosis in the B16F10 cells. The resulting graphene oxide/V2O5/Pt
ternary photocatalytic composite manifested an excellent disinfection rate in real effluents,
which also efficiently prevented the growth of B16F10 cancerogenic melanoma cells.
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synthesis [170].

E-waste is also an excellent source of silica and can be used to synthesize photocatalytic
material: Liou et al. [172] used a packaging resin ash (PRA) to produce the silica-supported
TiO2 photocatalyst. In this regard, they directly synthesized TiO2 NPs which were loaded
on MCM-48 e-waste-derived material from the alkali-extracted electronic packaging resin
ash as a source of sodium silicate precursor. TiO2 NPs were impregnated on PRA-MCM-48
supports using a sol–gel technique to produce TiO2-modified mesoporous silica. The
utilization of the MCM-48 support enhanced the TiO2 photo-efficiency of the catalyst by
inhibiting the aggregation of TiO2 particles. The optimum condition for higher photocat-
alytic activity was reported for the TiO2/PRA-MCM-48 molar ratio of 30% with 700 ◦C
heat-treatment temperature. This photocatalyst is effective to degrade methylene blue dye
and has an excellent photocatalytic activity [172].

Cao et al. [173] proposed a new method to recycle waste capacitors into an Nb-Pb-co-
doped and Ag-Pd-Sn-Ni-loaded BaTiO3 photocatalyst, for which they used a simple ball
milling method instead of traditional acid leaching methods. In addition, to further enhance
their photocatalytic performance, they added polyaniline (PANI) during the ball milling.
Eventually, the produced photocatalyst has a specific surface area of 21.11–40.27 m2/g
and a particle size of 100–500 nm. The photocatalytic hydrogen production rate of the
optimized Nb-Pb-co-doped and Ag-Pd-Sn-Ni loaded BaTiO3 photocatalyst with PANI
is considerably high, and it is 3.72 times superior (686.4 µmg−1h−1) to that of the Nb-
Pb-co-doped and Ag-Pd-Sn-Ni loaded BaTiO3 photocatalyst (210.5 µmg−1h−1) [173]. In
addition, this photocatalyst has excellent photocatalytic stability and can be recovered
through magnetic separation due to the Ni composition. These superior features were
attributed to the PANI addition that significantly enhanced the visible light absorption and
charge separation of the photocatalyst. Figure 16a shows the waste multilayer ceramic
capacitors (including dielectric material BaTiO3, internal electrode Ag-Pd/Ni, end electrode
Ag-Ni/Sn), disassembling from the circuit board and corresponding content elements.
Additionally, Figure 16b illustrates the processing diagram for the production of the Nb-Pb-
co-doped and Ag-Pd-Sn-Ni-loaded BaTiO3 photocatalyst with PANI [173].
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electrode Ag-Pd/Ni, and end electrode Ag-Ni/Sn), disassembling from the circuit board and corre-
sponding content elements and (b) the processing diagram for production of Nb-Pb-co-doped and
Ag-Pd-Sn-Ni loaded BaTiO3 photocatalyst with PANI [173].

In addition to many metals, Pb particles can also recover and recycle from waste
printed circuit boards (WPCBs), and Zhan and Xu [49] separate Pb from the solder mixed
and copper-rich compounds of crushed WPCBs through evaporation and condensation
methods. A flowchart of Pb recycling from WPCBs is shown in Figure 17, firstly after
dismantling and removing electronic elements from WPCB, and the pulverizing process
was performed in two steps, namely coarse crushing and fine-pulverizing. Subsequently,
through an electrostatic separator, the metals and nonmetals were separated. The copper-
rich compound was recovered via vacuum metallurgy separation (VMS) under 0.1–1 Pa
pressure at 1123 K heating for 90 min. Then, the separated Pb particles from the copper-rich
compound were condensed as Pb prills. The sieving procedure helps to categorize the
output materials into two groups of Cu particles and Cu-Sn alloys. Different processing
temperatures lead to various Pb extraction efficiencies from 3% (solder) at 600 ◦C up to
~98% at 850 ◦C (Cu + solder). This method can play a significant role in applications where
Pb contamination must be avoided and it can also be utilized to separate other toxic heavy
metals such as Cd and Hg [49]. Waste nickel–cadmium (Ni-Cd) batteries are also considered
as a source of metals, and in this regard, Huang et al. [68] utilized vacuum metallurgy
separation (VMS) and magnetic separation (MS) methods to recover Cd and some other
ferromagnetic metals through an efficient and eco-friendly method. The reported optimum
conditions were a temperature of 750 ◦C, the addition of 1 wt. %, carbon powder, and a
heating time of 1.5 h which led to 99.2 wt. % Cd extraction with 99.98% purity.
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3.3. Insights and Critiques

Despite growing concerns about the adverse environmental aspects of e-waste, consid-
erable research studies on safer and effective management strategies for e-waste have been
advancing at a rapid rate. These studies and reports have mainly focused on management
strategies, utilization prospects, e-waste transformation, etc., while limited studies have
focused on improving the techniques for utilizing e-waste as a source for photocatalytic
applications. The most crucial challenge in the field of photocatalytic materials produced
from e-waste is to improve the techniques to fully satisfy the requirements, such as a low
processing cost, high efficiency rates, simplicity, no need for high temperatures and time,
strong acids, less water and solutions consumption, nontoxicity, and being environmentally
friendly. In this regard, numerous procedures have been introduced and implemented by
academia and industry, each of which has its own advantages and limitations which deter-
mine the potential applications. Within pyrometallurgical methods, the most-used method
in e-waste recycling, high temperatures (approximately 1000 ◦C) are needed, leading to
very fast extraction processes. This can successfully be used for a large-scale application
with complex heterogeneous mixtures. Unfortunately, the efficiency is low, and it is not
capable of selective recovery. Improving efficiency by these methods requires the repetition
of the procedure in some subsequent steps leading to a very high energy consumption. An-
other significant weakness of pyrometallurgy methods is that they are not environmentally
friendly at all and usually lead to a high amount of pollutant emissions, mostly carbon
dioxide and sulfides [174,175].

In hydrometallurgical processes, redox chemical reactions are used in aqueous or
organic liquid solutions in which metals have previously undergone leaching processes
and have been oxidized from their matrices before being transformed into soluble salts.
Hydrometallurgical processes use low temperatures and high pressures (up to 5000 pascals)
and are very flexible due to the large number of reactions in the metal separation from
dissolved salts. In comparison to pyrometallurgical methods, hydrometallurgy techniques
have slow kinetics and limited yields, and they are highly sensitive to slight variation in
environmental conditions. These methods need high amounts of energy and unfortunately
produce a considerable amount of both solid waste and wastewater, but they usually have
higher recovery rates and lead to higher purities than pyrometallurgy methods. These
methods are not environmentally friendly and use strong acidic and alkali solutions [176].
Biohydrometallurgy methods are very similar to hydrometallurgical processes, and the
leached metals by the production of salts facilitate the recovery procedure. The main
difference is the utilization of various microorganisms to conduct metabolic reactions,
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increasing the sensitivity of extraction and reducing the energy costs, toxic gas emission,
and wastewater. Unfortunately, the reaction kinetics of biohydrometallurgical methods are
very slow while they are very environmentally friendly [177].

Considering these facts, the necessity to improve methods is obvious for achieving
high-throughput technologies in the future and still, there is a considerable number of
challenges. Li et al. [178] investigated the recovery of precious metals and rare earth
elements from e-waste through different methods and performed the pyrometallurgy
method in smelting furnaces to recycle precious metals and Cu with up to 95% efficiency
rates, but it could not recover other metals. The electrochemical recovery showed the lowest
environmental impacts compared to the hydrometallurgy and pyrometallurgy methods.
In another study, Ding et al. [179] studied the recovery of precious metals from e-waste
and spent catalysts using chlorination leaching (hydrometallurgy) and demonstrated that,
despite the economic nature of the process and its low toxicity, it unfortunately leads to the
emission of Cl2 as waste pollution. It was also reported that iodation leaching leads to low
toxicity and high recovery rates while it has a high cost and leads to water pollution [179].
Additionally, halide leaching methods are difficult to implement because of their severe
corrosive and oxidizing conditions. On the other hand, the extraction supercritical fluids
with high recovery rates toward Pt, Pd, and Rh led to considerable waste emissions,
including waste oil and waste gas pollution, and the size reduction by mechanical methods
resulted in a 20% loss of precious metals. Masilela and Ndlovu [180] tried to recycle Ag and
Au from the chloride aqua regia leach liquors of PCBs and demonstrated that the utilized
liquid–liquid and solid-phase reactions had high selectivity and superb extraction efficiency
(95% Ag, 97% Au, and 99% Cu); however, using these ionic liquids has disadvantages
due to their volatility, inflammability, toxicity, and non-non-recyclability. In another study,
despite its high leaching efficiency, HCl+ oxidant leaching led to the generation of chlorine
gas which was toxic and corrosive in nature [178]. In the case of electrochemical methods,
they present high energy efficiency, selectivity, low environmental impact, and minimal
chemical usage, but these need multiple processing steps which make it more difficult
and costly [181]. Finally, despite their various benefits, bioleaching and biotechnological
processes have numerous challenges, including low extraction efficiency, the needs for
multistep recycling strategies, and high time consumption [74,182]. For instance, the metal
bioleaching of e-waste by moderately thermophilic acidophilic bacteria leads to recovery
efficiencies of 89% Cu (76 mg/g), 81% Ni (16.2 mg/g), and 83% Zn (66.4 mg/g) with
remnants of Pb and Sn [88]. The presented information indicated that the methods must be
improved to solve the so-called limitations and novel techniques should be designed to
solve the issues and improve the characteristics of the process with a special focus on the
environmental impacts.

4. Conclusions, Recommendations, and Future Prospects

Considering the ever-increasing trend of e-wastes due to the technological develop-
ment of the world, the reuse of these types of wastes, such as printed circuit boards, and
batteries, is crucial, specifically as production and metal refining costs from natural ores are
generally high. In addition, due to global warming and environmental issues, the utilization
of green technologies that are eco-friendly in nature is of substantial importance. Because of
these reasons, e-waste recycling with photocatalytic applications will be a very imperative
field in the near future from scientific, economic, and environmental aspects. This review
discusses e-waste-derived photocatalytic materials as an attractive green technology. In
this regard, the authors sought to highlight all aspects of e-waste-derived photocatalytic
materials from synthesis, mechanism, and technologies to challenges, applications, and
performance. Hence, this paper described various e-waste-derived photocatalytic materials,
synthesis procedures, and applications, as well as some of the e-waste-derived materials
that were previously investigated such as TiO2, ZnO, and indium tin oxide, and a variety
of sulfide- and ferrite-based photocatalytic materials were also reviewed.
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In general, e-waste recovery aims to take today’s waste and economically transform it
into tomorrow’s eco-friendly, conflict-free, sustainable polymetallic secondary resources
(i.e., urban mining). Unfortunately, the large-scale fabrication of e-waste-based photo-
catalytic materials is not well established. It is also evident that traditional technologies
cannot cover all the requirements of future and modern technologies, particularly due
to environmental issues, high costs, and low efficiency. Accordingly, it is clear that new
schemes should be proposed and developed to meet the so-called criteria, leading to high-
throughput recycling and recovering technologies from e-wastes in order to reach proper
photocatalytic materials.

The presented overview on the e-waste recycling for photocatalytic applications
provides some evidences that numerous methods can be utilized for this aim, mainly
hydrometallurgical and pyrometallurgical ones. Despite the high effectiveness of these
methods with high recovery rates (ranging between 80 and 100), many challenges remain,
such as the need to use strong and toxic acids, high energy consumption issues, the
limitation of fully selective extraction, the simultaneous retrieval of several elements,
the existence of toxic and contaminating residue, and the need for disposing of a high
amount of aqueous waste. For instance, over 24 metallic elements can be found in a single
PCB [183], and up to 60 elements can be found in e-wastes [184]; hence, the selective
green recovery (by the utilization of nontoxic materials and environmentally friendly
techniques) of multiple elements with high efficiency will lead to considerable economic and
environmental revenue. Unfortunately, usual hydrometallurgical and pyrometallurgical
methods cannot be an appropriate answer to the problems and needs of the present and
future situations. In this regard, it is highly recommended that new schemes, methods, and
materials are designed with the utilization of high-tech equipment that will lead to high
returns. Additionally, environmental issues should be considered, for example, as recent
investigations have shown that the utilization of suitable microorganisms in a combination
of hydrometallurgical approaches (biohydrometallurgical methods) could be very helpful
in achieving this aim. Therefore, the development of biohydrometallurgical methods as a
high-throughput method for multiple selective extraction is a hot topic for researchers in
the field. Additionally, supercritical fluid technology, which is basically a pharmaceutical
technique, has recently been proposed for the extraction of metals from e-waste with
high efficiency and high selectivity [185]; this method is economic, available, has a rapid
reaction rate, and is environmentally friendly [186,187]. Hence, the development of the
new procedures based on supercritical fluid technology for e-waste-derived photocatalytic
materials is highly suggested for future studies.

Considering the current literature, the priority of the utilization of pyrometallurgical-
and hydrometallurgical-based procedures in the metal recovery and photocatalytic material
synthesis from e-wastes is obvious, implying that the newly introduced methods still have
not reached industrial levels. Therefore, other techniques should be considerably devel-
oped by considering the environmental issues and increasing efficiency, to simultaneously
recover multiple materials from various types of e-wastes. Although there is a long way to
go, this goal is still achievable in the future.
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