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Abstract: The shot peening process is a common procedure to enhance fatigue strength on load-
bearing components in the metal processing environment. The determination of optimal process
parameters is often carried out by costly practical experiments. An efficient method to predict the
resulting residual stress profile using different parameters is finite element analysis. However, it is
not possible to include all influencing factors of the materials’ physical behavior and the process con-
ditions in a reasonable simulation. Therefore, data-driven models in combination with experimental
data tend to generate a significant advantage for the accuracy of the resulting process model. For this
reason, this paper describes the development of a grey-box model, using a two-dimensional geometry
finite element modeling approach. Based on this model, a Python framework was developed, which
is capable of predicting residual stresses for common shot peening scenarios. This white-box-based
model serves as an initial state for the machine learning technique introduced in this work. The
resulting algorithm is able to add input data from practical residual stress experiments by adapting
the initial model, resulting in a steady increase of accuracy. To demonstrate the practical usage, a
corresponding Graphical User Interface capable of recommending shot peening parameters based on
user-required residual stresses was developed.

Keywords: python scripting; residual stresses; shot peening; finite element analysis; digitalization;
machine learning; smart factory

1. Introduction

For the design of dynamically load-bearing components, a certain safety risk is min-
imized by increasing the service life and improving its estimation. A key aspect in this
context is the selected material and its long-term stability under dynamically oscillating
loads [1–3]. Numerous machining end contour processes included in the manufacturing of
critical components such as milling, turning, or drilling lead to residual tensile residual
stresses on the surface. These stresses are counterproductive for the fatigue resistance;
therefore, further surface treatment is essential for these components.

There are several mechanical surface treatment technologies available today, pursuing
the objectives of implementing residual compressive stresses close to the surface, as well
as introducing a work hardened layer. A well-known example is deep rolling, a low-
cost method that achieves a comparatively smooth surface, but is limited to elementary,
usually rotation-symmetrical geometries [4]. This technique is mainly used for components
that require frictionless sliding, where good surface quality is critical for wear. Another
alternative is laser shock peening, an efficient method to introduce compressive residual
stresses at four times the depth of shot peening [5]. This is achieved by high-energy laser
pulses that introduce a shock wave into the material that exceeds the material’s yield
strength and causes localized deformation. Although this method is gaining popularity, the
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investment in such a system is a high-cost proposition. Moreover, the long process times
are currently not suitable for an efficient application in production [6]. Additionally, the
ball burnishing or roller burnishing method produces a particularly smooth surface [5,7–9].
A related method developed by Lambda Technologies Group is low plasticity burnishing,
which is capable to introduce significant residual compressive stresses while initiating
comparatively low work hardening. This assists in ensuring permanent compressive
stresses when components are used in higher temperature applications. This method has
the further advantage that it can be integrated into a variety of machining systems, e.g.,
CNC lathes [10–14].

Even though there is a strong effort in establishing new and optimizing well-known
surface treatment methods, shot peening still is the standard procedure in the manufac-
turing environment. Irrespective of the mechanical surface treatment chosen, specific
knowledge and therefore respective data about suitable process parameters is mandatory
to obtain the required results.

To receive a comprehensive data set for the shot peening process, it is mandatory
to obtain a significant amount of valid data. This approach requires the execution of
an unreasonable amount of practical experiments per workpiece material/sphere mate-
rial combination. Furthermore, the same amount of upfollowing experiments to receive
valid residual stress profiles would have to be carried out. By substituting practical tests
with Finite Element Analysis (FEA)-based simulations, this disproportionate effort can
be avoided.

The effectiveness of FEA for production processes can be further increased by using
state of the art digitalization technologies, taking into account user, processes, and ma-
terials [15–17]. One possibility to achieve this objective is the implementation of robust
machine learning algorithms. In order to do so, a first decision has to be made regarding
the nature of the respective algorithm. In general, three methods are defined: reinforcement
learning (RL), unsupervised learning (UL), and supervised learning (SL) [18]. According to
more recent work, there are different subordinate algorithms available, which can be used
within one or more of these three main techniques [19,20]:

RL: Genetic Algorithms, Simulated Annealing, and Estimated Value Functions;
UL: Decision Tree Analysis (DTA), Rule-Based Learners, Instance-Based Learners,

Artificial and Bayesian Neural Networks (NN), as well as Naïve Bayesian Approaches;
SL: Support Vector Machines, DTA, Rule-Based Learners, Instance-Based Learners,

Genetic Algorithms, Artificial and Bayesian NN, and Naïve Bayesian Approaches.
For the prediction of residual stresses after the shot peening process, the authors

decided to use a SL algorithm, as the nature of this technique is a continuous learning
from data provided by an external knowledgeable source. The accuracy of this algo-
rithm depends on internal knowledge about the expected results and, most important,
comprehensible input data [19,21,22].

To achieve accurate data sets serving as an input for this kind of simulation, a suitable
material model based on reliable material data from practical experiments must be chosen.
Therefore, it is essential to implement real-physics-based input variables, which must be
obtained under similar conditions as the process to be modeled.

2. Fundamentals of the Shot Peening Process and Corresponding FEA

In order to increase the fatigue strength, shot peening is applied as a standard pro-
cedure in the production process for structural materials. This method contributes to the
service life enhancement of cyclic loaded components [23]. The most notable advantages
of shot peening compared to other surface hardening treatments are the good process
quality, reproducibility, and applicability to a wide range of materials and component
geometries [3]. During the process, the surface of the component is impacted by spheres at
high velocities. As a result of the momentum transfer, work hardening is increased directly
on the surface which reduces the probability of crack initiation. The plastic deformations in-
duced by the spheres also generate residual compressive stresses in the material to a certain
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depth. These stresses are the main inhibitors of crack propagation due to the prevention of
crack tip opening and thus increase the fatigue strength. However, this surface treatment
does not always contribute to a work piece’s service life extension rather than a reduction,
as König investigated for Waspalloy in [24]. Although increasing the degree of coverage
from the impacting spheres can increase the magnitude of resulting residual stresses, this
additional loading for higher strength materials at the surface may contribute to a higher
probability of initiating cracks. Therefore, it is crucial to be aware of the influential variables
of the process before it is applied in practice. The process itself is variable in numerous
aspects, such as the sphere’s material and geometry, as well as the impact velocity and
the coverage [25,26]. The average sphere radius is about 0.4 mm and they are commonly
made of glass, ceramic, cast iron, or steel. A prerequisite for the sphere’s material is the
higher hardness compared to the shot-peened material. A higher difference between the
sphere’s and the target’s hardness yield higher resulting residual compressive stresses [27].
Additionally, larger sphere radii result in the maximum compressive stresses occurring
deeper in the material [28].

In order to achieve the maximum effect on service life extension through this process,
these parameters must be optimally adjusted to the material. The maximum achievable
residual compressive stresses and the depth of penetration into the material are decisive,
since the residual compressive stresses inside the material are balanced by tensile residual
stresses in a certain depth. Additionally, the dislocation density introduced by this surface
treatment needs to be observed concerning the resulting material behavior. On the one
hand, this can prevent the crack initiation [29], on the other hand, it may contribute to the
brittleness of certain materials and thus drastically reduce their service life, especially in
corrosive environments [30]. To experimentally analyze the residual stresses inside the
material, destructive and therefore expensive examinations based on X-ray diffraction
(XRD) or using the hole drilling method have to be performed in practice. A time and
cost-saving alternative to physical experiments is the numerical simulation, which allows
the determination of favorable parameters for the optimal result in advance. In addition,
stresses on the surface and in depth of the material can be analyzed to provide a better
comprehension of the effectiveness of the process. Several studies have been carried out
using FEA to simulate the shot peening treatment. The approaches to simulate this process
vary widely in different publications. In [31], Edberg et al. designed a three-dimensional
FEA simulation, comparing a visco-plastic strain hardening formulation to a elasto-plastic
one analyzing a single shot. This study revealed that the visco-plastic model overestimated
the resulting residual stresses by a factor of 1.5. In [32], Majzoobi et al. used a three-
dimensional set up applying multiple shot impacts and investigated the shot velocity and
coverage effects on the resulting residual stresses. The investigations of Meguid et al.
in [33] included the separation distance of the spheres and its impact on the residual stress
profile as well as the frictional behavior of AISI 4340. A comparison between the resulting
values of an axisymmetric and a three-dimensional numeric model on an aluminum target
was conducted by Han et al. in [34] where high emphasis was attached to the interaction
of the sphere and the target as well as suitable boundary conditions for the FEA. In [35],
Schwarzer et al. investigated the influence of the sphere’s impact angle on the resulting
residual stresses while Hong et al. focused on the loss of kinetic energy of the spheres
as a result of alternating impact angles in [36]. In [37], Mylonas and Labeas addressed a
reasonable relation between the quantity of impacts needed in order to receive the results
of experimentally obtained residual stress profiles but still reduce computational time. The
approach of reducing computational time is also applied in this study by the usage of
a two-dimensional setup for the simulation, in order to provide a beneficial tool for the
industry, taking into account the results of previous works mentioned in this section.

3. Fundamentals and Behavior of EN-AW-6082 T6 under Dynamic Conditions

The material investigated in this study is the age-hardenable EN-AW-6082 aluminum
alloy, which is one of the most essential alloying systems for the usage in lightweight
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construction due to its balanced properties and good formability. The chemical composition
of the used alloy is shown in Table 1.

Table 1. Chemical composition of examined aluminum alloy EN-AW-6082.

Chemical Composition of EN-AW-6082 (wt. %)

Si Fe Cu Mn Mg Cr Zn Ti

0.87 0.42 0.08 0.57 0.66 0.02 0.2 0.02

The alloy achieves its strength values primarily through the precipitation of the so-
called β-Phase Mg2Si, and further phases such as AlSi6Mg3Fe and Al15(FeMn)3Si2 with
suitable ageing after solution heat treatment. Since particularly Mn particles increase the
strength of the alloy, while negatively influencing ductility, a homogenization annealing
is carried out before forming in practice [38]. The duration of homogenization annealing
increases the effect on the reshaping and distribution of particles and therefore reduces
the yield stress for extrusion [39]. The highest strength is achieved with the T6 treatment,
which consists of a solution heat treatment between 793 K and 813 K for 30 min to one hour
in order to dissolute the alloying elements in the matrix. Subsequent quenching creates a
supersaturated condition which is immediately followed by the artificial heating treatment,
ranging between 423 K and 443 K for 5–20 h, resulting in a peak of precipitation [40–45]. It is
common to consider strain-rate sensitivity for the determination of processing parameters
and processing maps, as it has a significant impact on fracture behavior [46]. However,
the existence of metastable precipitates causes a change in mechanical properties to higher
strength values with a reduction in ductility.

EN-AW-6082 also exhibits deficiencies, especially with regard to fatigue resistance
under cyclic loading. When used as a component in a chlorine-containing environment
such as near industrial production facilities, the corrosion-resistant passive coating cannot
withstand the incorporation of chlorine ions in the passive layer. This increases the proba-
bility of pitting corrosion. The crack initiation enhanced by this effect leads to a facilitated
crack growth under dynamic loading [2]. In order to increase the fatigue strength, shot
peening is applied as a standard procedure in the production process for this alloy.

The initial microstructure of the investigated material is shown in Figure 1. The
specimen was prepared by electrolytic polishing using the Barker etching method [47]. The
microstructure shows a non-textured grain structure with uniform grain size. The emphasis
on the age-hardened condition, which is investigated in the present case, is essential in
the case of shot peening, since this treatment is applied as a last processing step after heat
treatment.

Figure 1. Initial microstructure of the EN-AW-6082 specimens investigated.
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4. The Johnson–Cook Material Model

In order to simulate impact problems such as shot peening, material models are
commonly used to represent the material’s behavior in the most accurate possible way.
Especially for high dynamic impacts, using FEA to model this process is an efficient and
effective solution. The most important aspect in this context is the strain rate dependency
of a material. Many constitutive models deal with material behavior by dislocation mo-
tions and their interactions with lattice defects. For many industrial processing related
applications, these models are exceedingly complex and require material data with limited
accessibility. Others, such as the Zerilli–Armstrong model, contain a simpler structure, but
still include factors that are elaborate to determine, such as initial grain size [48]. In order
to provide simplicity and convenience to the user, the Johnson–Cook (JC) material model
is establishing itself as the most commonly used material model for impact problems, since
it takes both strain rate and thermal softening behavior into account. Nevertheless, it is
kept simple, consisting of three terms and five material parameters which are arranged as
visualized in (1) [49].

σ =
(

A + Bεn
p

)[
1 + C ln

( .
εp
.
ε0

)][
1 −

(
T − Tt

Tm − Tt

)m]
(1)

The first term refers to strain hardening during plastic deformation including the
plastic strain εp, the yield strength of the quasi-static condition A, the strain hardening
constant B, as well as strain hardening exponent n. The second term relates to the material’s
behavior under different strain rates with the strain rate sensitivity coefficient C as a result
of different strain rates

.
εp normalized to a quasi-static strain rate

.
ε0. The third term describes

the material behavior under temperature influence including the reference temperature
Tt, the melting temperature Tm, and the thermal softening exponent m [49]. The localized
strain acquired through the shot peening process is limited, resulting in a small energy
input due to the deformation process, even at high strain rates. For this reason, the thermal
input due to the plastic deformation of the impinging spheres at the surface is neglected in
the JC material model for this framework. Therefore, (1) can be reduced by the third term,
resulting in (2).

σ =
(

A + Bεn
p

)[
1 + C ln

( .
εp
.
ε0

)]
(2)

The parameters of the first term can be determined by using (3).

ln(σ − A) = n· ln(Bε) (3)

A can be derived from the initial flow curve under quasi-static conditions. The slope n
can be determined graphically by plotting a trend line while B can be expressed by solving
the exponential function. The parameter C includes tests for higher strain rates. To receive
C, (2) has to be arranged as demonstrated in (4).

σ

(A + Bεn)
= 1 + C·ln

( .
ε
.
ε0

)
(4)

By plotting the left term of (4) against the logarithmic strain rate ratio, C can be
obtained directly from the resulting trend line.

Particular attention is required for the comparison of the determined material param-
eters with literature values, especially the quasi-static strain rate used (

.
ε0), as this value

often varies in a range between 10−4 and 1 s−1. Another disadvantage regarding literature-
based JC parameters is the test setup used to determine these values. For quasi-static
stresses, the tensile test is usually selected in literature for the simplicity of the method.
For particularly high strain rates, the strain rate sensitivity is frequently determined using
the Split-Hopkinson pressure or tensile bar [50]. It should be noted that the stress states
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differ in these test methods. The main disadvantage of tensile tests is the instability of
the deformation due to geometric deconsolidation processes after the ultimate tensile
strength is reached. In contrast, the upsetting test provides steady strain hardening. The
critical aspect here, in addition to the frictional conditions at the dies, is the barreling of the
specimen. As a result of this phenomenon, the uniaxial load state cannot be ensured [51].
The comparison of the determined material parameters with those from literature revealed
deviations in the values. One reason might be that some of the tests performed were
carried out under tensile stress conditions. Besides, there might be differences between the
chemical compositions of the materials studied. Slight differences in the heat treatment
route for the T6 condition could also be responsible for these divergences. For this reason,
separate tests should be carried out with the specific material used, in order to eliminate
these variations. The different parameters from the literature are listed in Table 2, whereas
temperature is not listed due to the lack of definition within the investigated publications.
Accordingly, it is essential to arrange the test setup in such a way that it comes closest to
real conditions of usage. For the simulation of shot peening processes, the upsetting test
is most similar to the compressive stresses introduced by the spheres at the surface. For
low degrees of deformation, uniaxial deformation can be also provided, which is why the
experiments carried out in this study are based on this principle.

Table 2. Material parameters for the JC model for EN-AW-6082 T6 from literature sources.

A
[MPa]

B
[MPa]

C
[-]

n
[-]

m
[-]

.
ε0

[s−1]

[52] 250.00 243.60 7.47 × 103 0.17 1.31 1.0

[53] 305.72 304.90 4.37 × 103 0.68 - 10−3

[50] 277.33 307.93 3.2 × 103 0.69 1.28 10−4

5. Experimental Setup

For the determination of the material parameter of the investigated alloy EN-AW-6082
T6, cylindrical samples with a diameter of 8 mm and an initial height of 12 mm were
obtained from an extruded rod material. To receive the T6 condition, all specimens were
solution-annealed at 803 K for one hour, followed by water quenching. After these steps,
age hardening at 443 K for another five hours was carried out. For the determination of
realistic material parameters, the specimens were compressed longitudinal to the extrusion
direction at room temperature on the Gleeble 3800 thermal-mechanical Simulator, using the
Hydrawedge module at constant strain rates of 1 s−1, 10 s−1, and 100 s−1. The Hydrawedge
module is especially designed for the simulation of forging and forming processes requiring
a high strain rate, as it is capable of significantly reducing ringing of the hydraulic ram.
The capability of high-speed deformations allows the generation of flow curves, which
are relevant for the shot peening process. As shown within Figure 2, a graphite foil was
additionally placed between both contact surfaces to reduce the friction between specimen
and anvil, thus ensuring a uniform stress state during compression.

Figure 2. Experimental setup for the obtainment of JC material parameters.
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Table 3 shows the resulting JC parameters, derived from the practical experiments
and calculated according to Section 4. The experiments were carried out until a strain of
0.035 was reached, as higher strains are not relevant considering the shot peening process.

Table 3. Material parameters for the JC model for EN-AW-6082 T6 obtained from practical experi-
ments.

A
[MPa]

B
[MPa]

C
[-]

n
[-]

m
[-]

.
ε0

[s−1]

385.02 116.01 7.97 × 103 0.50 - 1.0

6. FEA Setup and Resulting Data Mining Algorithm

For the implementation of the initial state white box model, a fundamental Abaqus
input script was defined in first instance. This script contains all necessary input parameters
for the simulation model to be automated and is scripted within the Abaqus Python
environment. Table 4 shows a brief overview of the most important variables changeable
within this input script.

Table 4. Variables changeable within the Python input script.

Input Variable Functionality

Radius Possible variation in sphere radius
x_specimen Width of investigated specimen
y_specimen Depth of investigated specimen

rows Number of rows of spheres
angle Angle of sphere impact (initially 90◦)

number_spheres Number of spheres (per defined rows)
delta_x Horizontal distance between each sphere
delta_y Vertical distance between each sphere

row_offset Offset between different rows
step_time_shot Step time related to the impact phase

dens_mat; YM; pois; Density and elastic behavior of investigated material
A; B; n; JC material parameters for the investigated material

C; eps_dot_0 Strain hardening parameters according to the JC model
damping_time Additional step time for stress oscillation analysis

friction_coefficient Defined friction state between specimens and impacting spheres
field frames Number of field output frames within each step

v_shot Shot velocity of spheres
mat Density of spheres (depending on the material)

fine_mesh_region Mesh size of direct impact zone
ground_mesh_region Mesh size of the remaining geometry

RS_node Node set definition for the residual stress analysis

In order to keep the number of degrees of freedom (dof) for the upstream data
analysis reasonable, only the variables v_shot, radius, mat, elastic, and JC parameters of the
investigated material (Section 3) were changed. For a further extending of simulation dof,
a link between the Python input script and the overlaying automation layer is prepared.
The fundamental FEA is defined as dynamically explicit, with widely used element type
CPS4R (mesh size 0.01 mm) and a steady friction coefficient of 0.3. To achieve a high shot
peening coverage rate on the specimen’s surface, 90 spheres within three different rows
were created, with a horizontal and vertical distance of 0.025 mm and a vertical offset
between each row of 0.02 mm. The specimen’s length as well as width was defined with
1.0 mm. Additionally, the impact angle was set to 90◦ and not changed in this study. To
avoid contact definition dependent errors, a loop within the script automatically defined a
surface-to-surface contact between each sphere and the target. Table 5 shows the resulting
parameters varied within this paper.
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Table 5. Varied variables within this case study.

Varied Input Variable Range (Step)

mat Mat 1.0 (steel spheres)/Mat 2.0 (glass beads)
Radius 0.1–0.5 mm (0.05)
v_shot 30–200 m/s (10)
A; B; n;

C; eps_dot_0 Literature value (Table 2, [53]) and values obtained (Table 3)

Figure 3 shows the visualization of an exemplary setup for one defined sphere radius.
Depending on the varying radii of the respective spheres, the resulting point mass of each
sphere changes. To reduce computational time for the required simulations, the spheres
were defined as rigid. For the automated data generation, the Abaqus GUI was excluded
from the solver operation.

Figure 3. Visualization of the experimental setup and definition of geometric variables.

For the development of the white-box model, an initial database with all resulting
residual stresses for each node included in the RS_node node set has to be created. This
database also includes the different impact velocities and sphere diameters and serves as a
basis for the initial GUI. In order to receive the steady-state residual stresses, the resulting
amplitude at each respective node within the node set was analyzed. To consider a residual
stress value for a node within RS_node as steady, the residual stress amplitude ∆σ for this
node at a specific time increment has to be underneath 10 MPa (Figure 4). The fulfillment
of this condition is checked within the initial Python algorithm. In this case, for a step
time of 10−3 s, the condition is valid for each node within all performed simulations. The
steady-state residual stress was returned and stored in the master database. As a result,
one stress value for every 10 µm in each simulation is obtained.

Figure 5 visualizes the programming logic for the creation of this database, starting by
the initial input script.
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Figure 4. Exemplary residual stress amplitudes over step time with included nodes in RS_node.

Figure 5. Programming logic for the obtainment of the database and master data frame from FEA data.
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The master data frame extracted from the steady-state database contains all necessary
information for further analysis and implementing the initial white-box-model-based logic.
Figure 6 shows the comparison between different velocities for one exemplary sphere
diameter (0.4 mm), whereas both investigated sphere materials (steel (red) and glass beads
(blue)) are visualized. Additionally, the results for the JC material parameters from [53] are
shown (steel spheres (green) and glass beads (orange)).

Figure 6. Resulting residual stress profile for a defined sphere diameter (0.4 mm) for the JC parameters
obtained experimentally (steel spheres (red), glass beads (blue)) and alternative parameters derived
from [53] (steel spheres (green), glass beads (orange)).

As demonstrated in Figure 6, a significant difference between the JC parameters
determined from literature and own experiments can be seen, for the reasons explained
previously in Section 4. In general, the impact of steel spheres results in higher residual
stresses within comparable velocities and diameters. This effect can be explained by the
higher resulting momentum of the iron-based sphere material, as the density is 3.1 times
higher than the density of glass. The observed tensile stresses at the surface are a result
of the material flow through adjacent impacts. This effect can be enhanced by the rigid
definition of the spheres as well as the chosen mesh size. As the main objective of this
framework is to obtain valid residual stress minima under reasonable computational time,
this divergence was not considered any further [54].

Figure 7 shows the same sphere material and material parameter variation for a steady
velocity (100 m/s) with varying sphere diameters (0.2–1.0 mm). The increase in maximum
negative residual stresses with bigger sphere diameter can be explained again by the higher
resulting momentum for a steady velocity [28].
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Figure 7. Resulting residual stress profiles for a defined velocity (100 m/s) for the same variations
defined within Figure 7.

Figure 8 illustrates the difference between literature values and the data obtained from
the experiment exemplarily.

Figure 8. Resulting residual stress profiles for velocity = 60 m/s and a sphere diameter of 0.4 mm for
literature and experimental data.
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7. Development of the Initial White-Box Model for the Residual Stress Prediction

Figure 9 visualizes the initial white-box logic, beginning with the input parameters
defined by the respective user to the final values returned from the algorithm.

Figure 9. Algorithm for the transformation of user input data (real sphere diameter and desired
residual stress, optionally required depth) into shot peening parameters (velocity options suitable for
the defined input) by using the master data frame defined in Figure 6.
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For the user to be able to adapt the initial sphere diameter to the real value, the model
has to be capable of interpolating within the given data set. To achieve this, an interpolation
scheme, including a linear weighting factor α which interpolates between given boundaries
of the initial (FEA-based) data set, was defined. For the practical usage, the respective user
is able to define the desired residual stress required for the individual case. Additionally, it
is possible to define the desired depth in which the specified stress value should be obtained.
If no depth is defined, the user gets a data frame which includes all shot velocities fulfilling
the defined input value, including the depth in which the residual stress is reached first. To
ensure that the calculated value will be reached in practice, a security factor s was set in
the back end, which multiplies the input stress value with the factor 0.2.

8. Experimental Data-Driven Machine Learning Algorithm

As within every simulation, a deviation between the calculated results and experi-
mentally determined data occurs. To close this gap in an efficient and sustainable way,
the possibility of including actual test data in the model is considered, whereas the ac-
tual test data can be gained from different experiments (e.g., XRD measurements). In
general, these results contain a few data points for each experiment carried out. To be
able to adapt the initial FEA-based data cloud within the master data frame, at least four
experiments have to be executed, analyzed, and transferred into the Python environment.
These experiments have to be within a defined range of velocities (∆v < = 30 m/s) and
sphere radii (∆r < = 0.2 mm). Based on this data set, non-linear functions with a sufficient
amount of respective supporting grid points (initially 100 per three original data points)
are created. For more complicated residual stress profiles, this range must be decreased to
ensure accuracy. Based on this additional data, the curves received from the FEA within
the range of the experimental data sets are overruled and excluded from the master data
frame and steady-state database. Furthermore, interpolations that include experimentally
obtained curves change significantly. This procedure is carried out automatically within a
Python algorithm, which leads to a steady increase of data-driven analytics. This data is not
directly connected to real-physics, which includes black-box approaches within the initially
white-box model, resulting in a grey-box model. Figure 10 demonstrates this paradigm
change over increasing experimental data infeed.

Figure 10. Change of model characteristics with increase of infeed data: the original FEA and
real-physics-based model is overruled with more data from practical experiments.

Figure 11 shows the logic behind this machine learning approach, programmed within
the same Python environment. To smoothen the resulting experimental data points without
producing overfitting and therefore unrealistic behavior, a non-linear, second-order fitting
approach between experimental data points was chosen. For the same purpose, a mean
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value between two overlapping functions for the same data point was used. The resulting
second order functions serve as boundaries for the creation of support data points, to be
able to interpolate between the new resulting data sets with the same algorithm as for the
initial white-box model.

Figure 11. Cont.
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Figure 11. Python logic implemented to adapt the initial FEA based white-box model by adding
data from residual stress experiments. 1: Import data; 2: generation of support data points from
experimental data and storage in a new data frame; 3: loading master data frame; 4: import data
points from 2 and overrule data points of the master data frame to increase prediction efficiency; 5:
overwrite master database with new data points.

9. Graphical User Interface

Based on the logic explained in Sections 7 and 8, a simple and user-friendly GUI
was developed, using a C++ based open-source visualization environment. Due to an
included library package within the Python environment, a direct programming within the
same environment is possible. Figure 12 visualizes the automatic interaction between the
resulting GUI and the algorithm developed.
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Figure 12. Interaction between the developed residual stress algorithm and GUI. To avoid confusion
of respective users, the input of experimental data from practical experiments is excluded from this
visualization.

Figure 13 shows the implemented GUI without optional definition of desired depth.

Figure 13. GUI with exemplary values for the prediction of residual stresses (without user-defined
stress-corresponding depth).

As can be seen in Figure 13, a range of different velocities for the user-required residual
stress is returned. If the stress value is necessary within a certain depth, the back-end
algorithm changes, resulting in a recommendation for only those shot peening parameters,
which result in a smaller depth while fulfilling the required stress (according to Figure 9).
Figure 14 demonstrates this by using the same exemplary variables as in Figure 13.

Figure 14. GUI with exemplary values for the prediction of residual stresses (with user-defined
stress-corresponding depth).
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10. Results

This paper describes the development of a residual stress prediction module for
the shot peening process. In order to demonstrate the logic implemented, an EN-AW
6082 T6 alloy was examined to obtain valid input parameters for the FEA simulation.
This FEA model is set up according to literature [26,32,54–56], whereas the reduction of
computational time without losing required accuracy was focused on. As a result, over
350 simulations with varying input parameters were automatically executed, resulting in
residual stress profiles within common shot peening process ranges for two different sphere
materials, 18 different velocities, and ten different sphere sizes. These simulations serve as
a basis for the data mining algorithm introduced in Section 7. To enhance the predictor’s
accuracy, an algorithm for the implementation of experimental data from residual stress
tests was additionally implemented. This algorithm is capable of overwriting the initial
database within a defined range. For the usage in a production environment and for
demonstration to interested parties, a user-friendly, front-end GUI was created, using the
same open-source environment as for the logic introduced by the authors.

11. Discussion

Due to the ongoing fourth industrial revolution, the technologies implemented in
the metal processing and manufacturing environment change significantly. Recent devel-
opments in automatic data exchange between production systems do not just increase
the productivity within the production operation. The implementation of standardized
interfaces additionally offers new possibilities to include other technologies into the process
chain with reasonable effort. Numerical simulation, especially FEA, is a common tool in
research and development, whereas the direct integration into the process chain is not
state-of-the-art in practice. Nevertheless, the possibilities and potential advantages of FEA
are pointed out recently in current literature [57,58]. The framework developed by the
authors offers the possibility to be implemented into a digitalized production network. The
algorithms introduced are programmed completely open-source, which allows interested
companies the implementation without high economic barriers. Furthermore, the FEA
solver used can be exchanged with every other software package suitable, as long as an
interface to an open-source programming language is available. Despite the advantages of
the ongoing digitalization and data-driven modeling, real-physics-based engineering has
to be included to a certain extent. For the shot peening process, the relationship between
workpiece and shot peening material as well as process parameters is complex. Using
only black-box approaches would result in an unreasonable amount of required data from
practical experiments to be obtained. On the other hand, using only real-physics-driven
models often do not consider influences occurring in the manufacturing environment
(e.g., sensor offset of respective aggregates, deviations from executed experiments due to
different users). The combination of both techniques, although, can reduce the effort as
well as deviations, offering an efficient and effective possibility to enhance the production
process. Another advantage of the framework introduced in this work is the possibility
of extension for all kinds of materials as well as according varieties in heat treatments,
as already implemented in the respective GUI. Due to the possibility of changing the
interpolation range within the machine learning algorithm, more complex residual stress
profiles can be predicted with similar accuracy. However, it is important to note that
smaller interpolation ranges result in a higher amount of required input data.

The GUI is designed under special consideration of user-friendliness, giving respective
technicians the possibility to choose between two different initial options. Furthermore, the
back-end programming carried out in Python ensures fast understanding and can therefore
be used for educational purposes. The high connectivity provided within the Python
environment allows easy coupling to superordinate networks, enabling users to connect
the process simulation easily into a digitalized production system. For this purpose, the
two-dimensional setup of the described FEA model should be the optimal compromise
between accuracy and efficiency. Nevertheless, for more complex geometry (e.g., bevel,
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material steps), a three-dimensional approach is recommended, as the difference between
experiments and simulations for more complex geometries cannot be neglected. As the
simulation model is based on Python, the implementation of such variations as well as the
transformation to a 3-D model can be done shortly. Furthermore, by slightly adapting the
initial post-processing, the resulting three-dimensional stress state can be easily obtained.

12. Conclusions and Outlook

In this article, a white-box-based framework for the prediction of residual stress
profiles after shot peening treatments based on FEA simulations is presented. To include
decisive influencing factors, the shot velocity, the sphere’s diameter, and the material
parameters were varied. According to this framework, a GUI was developed that enables
the user in industrial environments to insert preferred residual stresses that should be
obtained, receiving the optimal process conditions for this case. Due to the reduction of
the simulation setup by using a two-dimensional FEA simulation that is based on the JC
material model, the underlying algorithm presents a reasonable fit between efficiency and
accuracy. The entries of the JC model can be extended for different materials based on a few
practical experiments. The possibility to enhance accuracy of the predictions is given by
the ability of the user to insert experimentally investigated resulting stress profiles, which
the model adopts while cancelling imprecise entries.

To enhance the usage of the introduced algorithm, additional experiments to obtain
valid input parameters from different materials are planned. Based on this additional
data, other materials of interest will be inserted into the database. Further results from
XRD-based residual stress experiments will also be included for the investigated material as
well as additional materials, resulting in a significant increase of accuracy of the algorithm.

The model presented will be implemented within the Smart Forming Lab at the
Chair of Metal Forming, connected with different types of Cyber Physical Production
Systems by an open-source based MES. The main objective for this specific algorithm is to
calculate accurate process parameters for processed workpieces, in order to increase the
effectiveness and efficiency of the value chain, from casting to recycling. A possibility to
extend this model is the incorporation of the resulting topology. This can be achieved by
using the approach of Zeng et al. through comparative measurements, calculations, and
adapted simulations [59]. Including the resulting mechanical properties and the expected
hardness after shot peening would improve the model considerably. Due to the easy-to-
implement logic of this framework, it is possible to apply this model to further mechanical
surface treatments. Uprising technologies that are currently heavily investigated such as
laser shock peening could be considered. A comparison of the three-dimensional FEA
carried out by Li et al., also using the JC model to the two-dimensional model, will be
considered [60]. Recent work from Dong et al. describes the development of a FEA for
machining operations [61]. In this work, the effect on residual (tensile) stresses combined
with a bimodal Gaussian function is used to predict existing stresses after machining and
before mechanical surface treatment. This approach can be used to integrate the initial
stress state of components to be shot peened. As a result, the accuracy of the initial white-
box model presented in this work can be increased. Based on this combination, the number
of practical experiments for the calibration of the algorithm can be further reduced. Recent
work from Bock et al. [62] can additionally serve as a basis for the training of a physical
data-driven artificial neural network.
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