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Abstract: A numerical model that incorporates temperature-dependent non-Newtonian viscosity was
developed to simulate the extrusion process in extrusion-based additive manufacturing. Agreement
with the experimental data was achieved by simulating a polylactic acid melt flow as a non-isothermal
power law fluid using experimentally fitted parameters for polylactic acid. The model was used to
investigate the temperature effect on the flow behavior, the cross-sectional area, and the uniformity
of the extruded strand. OpenFOAM, an open source simulation tool based on the finite volume
method, was used to perform the simulations. A computational module for solving the equations
of non-isothermal multiphase flows was also developed to simulate the extrusion process under
a small gap condition where the gap between the nozzle and the substrate surface is smaller than
the nozzle diameter. Comparison of the strand shapes obtained from our model with isothermal
Newtonian simulation, and experimental data confirms that our model improves the agreement
with the experimental data. The result shows that the cross-sectional area of the extruded strand is
sensitive to the temperature-dependent viscosity, especially in the small gap condition which has
recently increased in popularity. Our numerical investigation was able to show nozzle temperature
effects on the strand shape and surface topography which previously had been investigated and
observed empirically only.

Keywords: extrusion; additive manufacturing; fused filament fabrication; multiphase free surface
flow; computational fluid dynamics simulation; polylactic acid

1. Introduction

Extrusion-based additive manufacturing, also called fused deposition modeling (FDM) or fused
filament fabrication (FFF), is a type of additive manufacturing (AM) process which fabricates a 3D
part by building up extruded material layer by layer. A common choice of raw material for FDM is
thermoplastic polymers such as polylactic acid which is used in this study. A typical FDM process
consists of the following steps: (1) A thermoplastic filament is fed into the printer head, which consists
of a liquefier and a nozzle. (2) The filament is heated in the liquefier to just above its melting temperature
to reach a semi-molten state. (3) The molten filament is extruded through the nozzle. (4) The extruded
polymer is deposited on a substrate or on a previously extruded strand. (5) The deposited strand cools
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down to become a solid layer. If that strand is deposited adjacent to another strand, those strands
fuse together.

Due to the ability of FDM to rapidly and efficiently fabricate a complicated structure with the
help of computer-aided automation, there have been many applications and developments in the
field [1–3]. However, parts manufactured using FDM have problems with low mechanical strength,
high surface roughness, delamination, and major anisotropy. Studies have related process parameters,
such as operation temperature and feed velocity, to the final mechanical and thermal properties for
better prediction and control of the final part properties. Empirical modeling relating the process
parameters and the final properties was one of those approaches [4]. Computational fluid dynamics
(CFD) simulation, on the other hand, has been used for a deterministic approach [5–8]. Since accurate
prediction of extruded strand shape is required for controlling the mechanical and structural properties
of a final part [8–10], the CFD approach has garnered attention.

One such CFD simulation study of an extrusion-based additive manufacturing process was done
by Bellini [5]. Extrusion through a nozzle and the subsequent deposition of a ceramic melt flow was
simulated assuming shear-thinning (or power-law) and temperature-dependent behaviors. Although
the material flow was not a polymer melt, the viscosity model is generally applicable to simulations
of polymer flows. Many of these simulations have focused on the dynamics inside the liquefier.
For example, Ramanath et al. [11] simulated a flow of poly-ε-caprolactone in a nozzle for an FDM
process. They focused on studying the effects of nozzle geometry and filament inlet velocity on the
flow behavior, temperature distribution, and pressure drop where the polymer flow was assumed to
be an isothermal shear-thinning fluid. A similar method was applied in the simulation of the flow of
an acrylonitrile-butadiene-styrene/iron composite in a liquefier [12].

In contrast to the liquefier simulations, simulations of the extrusion and deposition of polymer
flows are more difficult due to the free surface and the very high viscosity. For simplicity, some
simulations have used an isothermal Newtonian fluid model [13–15]. These authors claimed that
the isothermal Newtonian assumption was accurate enough in comparison to experimental data.
A subsequent study directly compared the strand cross-sectional areas from experimental data to the
simulation results and showed that an isothermal Newtonian simulation can match the relation with the
strand shape and the process conditions from the experiment [15]. However, this agreement was only
for the case where the gap between the nozzle and the substrate is similar to the nozzle diameter, and
discrepancies were reported for the case of a smaller gap. Although the study claimed that the small
gap condition is not typical for FDM, a smaller gap has been utilized in recent developments [16,17].

In this study, we performed CFD simulations to investigate the effect of the temperature-dependent
viscosity on the strand shape, particularly cross-sectional area, in the small gap extrusion condition.
Since the viscosity is sensitive to temperature, we hypothesize that temperature-dependent viscosity
affects the flow behaviors in the deposition flow and, consequently, the strand shape. There have
been studies describing the temperature effect on strand deformation; but many of these studies only
focused on the solid state [18,19], and the extrusion process was not considered [20]. Other simulation
studies have focused on both viscoelasticity and temperature-dependent viscosity [21–23]. McIlroy and
Olmsted focused on the polymer molecular structure in the deposition flow right after extrusion [21].
Liu et al. only performed a 2D simulation. They did consider temperature-dependent solidification,
but the viscosity in the liquid phase remained constant [22]. Xia et al. showed that viscoelasticity
affects the strand shape, however, their maximum viscosity was set to 5000 Pa·s, which seemed to result
in the simulated strands looking more liquid-like than the actual experimental behavior [23]. In this
study, we use the rheological data of a polylactic acid (PLA) filament, which is commonly used in FDM
as well as in many biomedical applications [24,25], and compare the simulated polymer behavior with
the strand shape experimentally measured by Serdeczny et al. [15].

This paper is organized as follows: Section 2 describes our simulation method along with the model
parameters for shear-thinning and temperature-dependent viscosity. In Section 3.1, a time-evolution
of an extruded strand simulated by our model is shown. In Section 3.2, the strand shapes extruded
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from different process conditions obtained from our simulations are compared with the experimental
observations and the isothermal Newtonian simulation results. In Sections 3.3 and 3.4, the effects of
the nozzle temperature on the strand shape and the surface roughness are investigated. Section 4
summarizes the findings and describes the future works.

2. Numerical Simulation

2.1. Governing Equations

The extrusion and deposition of a polymer melt flow is simulated as a free surface flow with
temperature and shear rate dependent viscosity. The following governing equations can describe the
flow behaviors in both liquid and gas phases:

∂ρ

∂t
+∇·(ρu) = 0 (1)

∂(ρu)
∂t

+∇·(ρuu) = −∇p−∇·τ+ ρg (2)

where ρ, u, p and g are density, fluid velocity vector, pressure, and gravitational acceleration, respectively.
The gas phase is assumed as air and the liquid phase as a PLA melt. More specifically, we chose the
properties of a PLA filament used in the work by Phan et al. [24] (see the next section). The stress
tensor, τ, is described by a power-law model:

τ = K
(∆ : ∆

2

) n−1
2

∆ (3)

where K and n are power-law model consistency and index, respectively. The velocity gradient tensor
is defined as ∆ ≡ ∇u + ∇uT. We used the Arrhenius relation for the consistency of a shear thinning
fluid, K, to describe the temperature effect on the polymer viscosity according to a study on PLA
rheology [24]:

K = K0 exp(− f (1/T − 1/T0)) (4)

where T is temperature in Kelvin and K0 is the value of K at a reference temperature, T0. The variation
of K with T is governed by the parameter, f, which is obtained by fitting experimental data.

The temperature distribution in the PLA flow is solved by the energy equation:

∂(ρcPT)
∂t

+∇·(uρcPT) = k∇2T (5)

where cp and k are specific heat capacity and thermal conductivity, respectively. We assume that there
is no heat generation or viscous dissipation since it was found that its contribution to a 1-K temperature
rise is less than 5% (personal communication with Dr. M. Mackay, the author of Ref [24,26]).

Our simulation uses the volume of fluid (VOF) approach to simulate the two-phase system.
In VOF, as an Eulerian approach, a color function at each position x and time t is defined as:

φ(x, t) =
{

1 for x ∈ Dl at time t
0 for x ∈ Dg at time t

(6)

where Dl and Dg are domains of liquid and gas, respectively [27]. If the color function is averaged over
the volume of a cell, Vcell, the liquid fraction of the cell is calculated as:

α(xi, t) =
1

Vcell

∫
Vcell

φ(x, t)dV (7)
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where xi is the i-th cell in the domain. The density at each position and time, then, is:

ρ(x, t) = ρlφ(x, t) + ρg(1−φ(x, t)) (8)

By replacing the density in the continuity Equation (1) with the density defined in Equation (8),
another governing equation for the liquid fraction of the cell is derived:

∂α
∂t

+∇·(αu) = 0 (9)

2.2. Numerical Model Solver

We performed the CFD simulation utilizing OpenFOAM, an open source CFD software based
on a finite volume method. Various modules, based on object-oriented programming, for solving
different equations for various CFD problems are available online. For velocity-pressure coupling
(solving Equations (1) and (2)), the PIMPLE algorithm was adapted. The PIMPLE algorithm is a
combination of PISO (Pressure Implicit with Splitting of Operators) and SIMPLE (Semi-Implicit Method
for Pressure-Linked Equations). The PISO algorithm works well in solving transient problems while
the SIMPLE algorithm works for steady-state problems. Thus, the PIMPLE algorithm can solve
steady-state problems as well as transient problems and can do so using larger time-steps than the
PISO algorithm. Further information regarding the PIMPLE algorithm can be found in [28].

In OpenFOAM, users can modify existing modules or develop their own modules for their own
problems. In our study, we developed a new solver for non-isothermal free surface flows by improving
an existing solver called “InterFoam” which is used for isothermal, incompressible, immiscible,
two-phase fluids based on VOF. The new solver accounts for the non-isothermal nature of the extrusion
process by including the Arrhenius model for the power law model consistency (Equation (4)) and
the energy equation (Equation (5)). It is aimed to simulate transient free surface problems where
transport properties vary with temperature. To accomplish this, the energy equation was coupled with
the continuity (Equation (1)) and the momentum equations (Equation (2)). Similar to “InterFoam”,
both phases are considered incompressible. It was assumed that the dependence of liquid viscosity on
temperature follows Equation (4). The validation of our new solver is shown in Appendix A.

2.3. System Description

Figure 1 depicts the simulated system which consists of a cylindrical nozzle, a substrate plate,
and the surrounding atmosphere. The nozzle has an inner diameter of d = 0.4mm and outer diameter of
2d. We chose the cylindrical nozzle for the purpose of comparing with the published experimental data
by Serdeczny et al. [15].The gap distance between the nozzle exit and the substrate plate is g; we are
particularly interested in the small gap condition g/d = 0.4, which is a condition where the isothermal
Newtonian simulation showed a considerable discrepancy from the experimental data [15]. A viscous
polymer melt inside the nozzle with an average flow velocity (the z-component of u is averaged over
a cross-section of the nozzle) of <u> = 0.02 m/s is extruded through the nozzle. In this simulation,
instead of moving the nozzle horizontally, the nozzle is stationary while the substrate plate moves
horizontally at three different velocities, (U = 0.02, 0.015 and 0.01 m/s). The no-slip boundary condition
is imposed on the nozzle wall as well as the substrate surface. The liquid-air interface has the boundary
condition of equal stress and velocity on each phase. The air velocity at the top of the surrounding
atmosphere domain is set to 0. The distance between the top of the surrounding atmosphere and the
substrate plate was chosen as 0.76 mm, which does not affect the result of the simulated strand shape
while maintaining a reasonable computational load. As shown in Figure 2, a hexahedral grid was used
for meshing the 3D simulation domain which resulted in 242,000 cells. Velocity profiles simulated in
finer meshes did not give noticeable differences.
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Temperatures inside the nozzle and in the surrounding air were initially set to 463–503 and  
298 K, respectively. Nozzle temperatures were kept at the inlet temperature by imposing a no heat 
flux boundary condition on the nozzle wall. Heat flux from the extruded liquid surface was 
continuously transferred to the air phase by conduction because the bulk air phase is stationary. The 
polymer melt flow is assumed to have the properties of a PLA melt, as reported in the literature 
[23,24]. The density, heat capacity, and thermal conductivity of PLA were set to 1300 kg/m3,  
1641 J/kg⋅K and 0.2 W/m⋅K, respectively. The polymer viscosity data was fitted to Equation (3) as well 
as Equation (4) for the shear rate and temperature dependencies. The fitting parameters were found 
to be n = 0.8, K0 = 5.87 × 108 Pa⋅s0.8, T0 = 298 K, and f = 1.11 × 104 (Figure 3). Based on an experimental 
investigation of PLA melts, the temperature dependence of K can be described by Equation (4) in the 
temperature range right above the glass transition temperature of PLA (423K) [25]. Therefore, we 
extrapolated the fit in Figure 3 near the glass transition temperature. It should be noted that, for the 
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Figure 2. Discretization of the simulated system using hexahedral meshes.

Temperatures inside the nozzle and in the surrounding air were initially set to 463–503 and 298 K,
respectively. Nozzle temperatures were kept at the inlet temperature by imposing a no heat flux
boundary condition on the nozzle wall. Heat flux from the extruded liquid surface was continuously
transferred to the air phase by conduction because the bulk air phase is stationary. The polymer
melt flow is assumed to have the properties of a PLA melt, as reported in the literature [23,24].
The density, heat capacity, and thermal conductivity of PLA were set to 1300 kg/m3, 1641 J/kg·K and
0.2 W/m·K, respectively. The polymer viscosity data was fitted to Equation (3) as well as Equation (4)
for the shear rate and temperature dependencies. The fitting parameters were found to be n = 0.8,
K0 = 5.87 × 108 Pa·s0.8, T0 = 298 K, and f = 1.11 × 104 (Figure 3). Based on an experimental investigation
of PLA melts, the temperature dependence of K can be described by Equation (4) in the temperature
range right above the glass transition temperature of PLA (423 K) [25]. Therefore, we extrapolated
the fit in Figure 3 near the glass transition temperature. It should be noted that, for the simulation,
the minimum and maximum viscosities of the liquid phase were set to 0.001 and 106 Pa·s to avoid
infinite viscosity, particularly when the melt inside the nozzle starts to move.
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For the simulation of a fluid of which viscosity is so high that it behaves like a solid, its maximum
viscosity must be chosen carefully. If the maximum viscosity is set too high, a much smaller time
step is required. In contrast, a very low maximum viscosity, such as 5000 Pa·s set by Xia et al. [23],
may result in a seemingly more liquid-like strand shape than the actual one. In order to handle the
high viscosity, we utilized the non-constant time step option of OpenFOAM. At the beginning of the
simulation, the range of the time step size was set as 10−8

−10−7 s. After approximately 10 time steps,
the time step size reached 10−7 s. At the moment when the liquid surface in the nozzle started to
move, the maximum time step size was changed to 10−6 s. This method enabled us to reduce the
computational load while maintaining reasonable and convergent numerical results. Under these
simulation conditions, the polymer melt part maintained its liquid state since the temperature of
the liquid part did not fall to the melting temperature of PLA (318 K). As such, solidification can
be neglected in the simulation. In future simulations, however, such as a multilayer deposition
simulation, we plan to include solidification as in the work by Liu et al. [22] which did not consider the
temperature-dependent viscosity in the liquid phase.

3. Results and Discussion

3.1. Simulation of the Extrusion Process

The process where a PLA melt is extruded through the nozzle and deposited on the substrate
surface is simulated in this procedure, as described in Section 2. The simulated time-evolution of the
liquid fraction (α ≥ 0.5: red) is presented in Figure 4. Note that the color fraction 0 ≤ α < 0.5 is set to
the atmosphere (blue). This color definition of each phase gives a clear surface contour to compare
to the actual shape of the PLA melt flow [15]. At t = 0, a PLA melt in the nozzle with T = 473 K
(for atmosphere, T = 298 K) starts flowing out of the nozzle. As time lapses, the PLA melt is extruded
with <u> = 0.02 m/s and subsequently is being deposited along the substrate surface which is moving
at U = 0.02 m/s.

Figure 5 presents the simulation results of the velocity magnitude distributions in the extruded
strand as well as in the nozzle under the same condition as Figure 4. In Figure 5 (top), as the extruded
liquid is deposited away from the nozzle, the velocity distribution in the deposition flow becomes
almost uniform due to the free surface effect (the stress on the liquid surface becomes negligibly
small). This transition of the flow pattern in the moving substrate direction indicates that a shear rate
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dependent property, such as the shear thinning viscosity, is dominant near the nozzle but becomes
weaker in the deposition flow. The flow in the nozzle behaves like a pressure-driven flow in a cylinder
which has the centerline velocity close to 2<u> of a Newtonian fluid and a maximum shear rate on the
inner nozzle surface (Figure 5 bottom). The simulated velocity profile also shows good agreement
with the corresponding analytical expression for a power-law fluid.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 7 of 15 

 

 

Figure 4. Time evolution of the PLA melt extrusion process: The melt flow is visualized by showing 
α ≥ 0.5 as red color. The surrounding atmosphere (0 ≤ α < 0.5) is represented as blue. 

 

. 

Figure 5. The distributions of a velocity component: (Top) the x-component of u, ux, in the strand flow 
from our simulation and (Bottom) the z-components of u, uz, inside the nozzle, evaluated from 
Newtonian model, analytical calculation of Equation (3), and our simulation The dash lines in each 
offset image show the location where the velocity component distributions were obtained. 

Figure 5 presents the simulation results of the velocity magnitude distributions in the extruded 
strand as well as in the nozzle under the same condition as Figure 4. In Figure 5 (top), as the extruded 
liquid is deposited away from the nozzle, the velocity distribution in the deposition flow becomes 
almost uniform due to the free surface effect (the stress on the liquid surface becomes negligibly 
small). This transition of the flow pattern in the moving substrate direction indicates that a shear rate 
dependent property, such as the shear thinning viscosity, is dominant near the nozzle but becomes 

Figure 4. Time evolution of the PLA melt extrusion process: The melt flow is visualized by showing
α ≥ 0.5 as red color. The surrounding atmosphere (0 ≤ α < 0.5) is represented as blue.

J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 7 of 15 

Figure 4. Time evolution of the PLA melt extrusion process: The melt flow is visualized by showing 
α ≥ 0.5 as red color. The surrounding atmosphere (0 ≤ α < 0.5) is represented as blue.

. 

Figure 5. The distributions of a velocity component: (Top) the x-component of u, ux, in the strand flow 
from our simulation and (Bottom) the z-components of u, uz, inside the nozzle, evaluated from 
Newtonian model, analytical calculation of Equation (3), and our simulation The dash lines in each 
offset image show the location where the velocity component distributions were obtained. 

Figure 5 presents the simulation results of the velocity magnitude distributions in the extruded 
strand as well as in the nozzle under the same condition as Figure 4. In Figure 5 (top), as the extruded 
liquid is deposited away from the nozzle, the velocity distribution in the deposition flow becomes 
almost uniform due to the free surface effect (the stress on the liquid surface becomes negligibly 
small). This transition of the flow pattern in the moving substrate direction indicates that a shear rate 
dependent property, such as the shear thinning viscosity, is dominant near the nozzle but becomes 

Figure 5. The distributions of a velocity component: (Top) the x-component of u, ux, in the strand
flow from our simulation and (Bottom) the z-components of u, uz, inside the nozzle, evaluated from
Newtonian model, analytical calculation of Equation (3), and our simulation The dash lines in each
offset image show the location where the velocity component distributions were obtained.



J. Manuf. Mater. Process. 2020, 4, 46 8 of 15

Figure 6 presents the simulated temperature distribution of an extruded strand under the same
condition in Figures 4 and 5. As soon as the hot melt in the nozzle (473 K) is extruded through the
nozzle, it is exposed to the colder atmosphere (298 K), and its temperature distribution becomes
non-uniform indicating that the temperature-dependent viscosity has also changed.
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3.2. The Effect of the Viscosity Model on the Relation between Strand Shape and U/<u>

Serdeczny et al. [15] studied the relation between the strand shape and the process conditions.
They experimentally measured the width, W, and the thickness, H, of a strand extruded with various
conditions of g/d and U/<u>. Their CFD simulation assumed the polymer melt to be an isothermal
Newtonian fluid and was able to match the experimentally observed relation for a large gap of g/d = 1.
However, it showed a discrepancy for a smaller gap, g/d = 0.4. We hypothesized that the discrepancy is
due to the non-uniform viscosity and investigated the strand shape and U/<u> for g/d = 0.4 using our
numerical model based on a non-isothermal power-law fluid. As demonstrated in Figure 8, W and H
are measured at the cross-section of the liquid fraction of an extruded strand (at x = d).
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Figure 9 shows the relations between H/d and U/<u> obtained from various simulation methods
and the study by Serdeczny et al. [15]. The overall qualitative trend is that H/d decreases with
increasing U/<u> (as U gets slower than <u>, the strand becomes thicker). The result from
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the isothermal Newtonian simulation (with the same approach as Comminal et al. [14] and
Serdeczny et al. [15]) shows the largest quantitative discrepancy from the experimental data. However,
the result from our non-isothermal simulations show improved agreement with the experimental data.
The non-isothermal power law simulation results in the smallest discrepancy from the experiment.
We also performed a non-isothermal Newtonian simulation (set n = 1 in Equation (3)) for comparison.
The improvement by the non-isothermal Newtonian simulation is not as much as that of the
non-isothermal power-law simulation.
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Figure 10 shows the relationship between W/d and U/<u> obtained from the same simulations and
experiments as Figure 9. Again, our non-isothermal power-law simulation shows the most improved
agreement with the experimental data and the non-isothermal Newtonian simulation results in limited
improvement. The differences shown in Figures 9 and 10 according to different models indicate that
both the effect of temperature and shear rate contributes to the strand shape. As shown in Figures 5–7,
the temperature and the velocity profiles in the extruded strand are non-uniform, which affects the
viscosity, resulting in the shape of the cross section. Figure 5 (top) showed that the shear rate in the
strand diminishes along the distance from the nozzle. However, the formation of the cross-sectional
shape happens mainly near the nozzle where the liquid fraction has higher fluidity and shear rate than
the deposited part away from the nozzle.

Figure 11 directly compares the cross-sections of an extruded strand obtained from various
simulations and experiment. The cross-section obtained from the isothermal Newtonian simulation
is wider than the experimental measurement and this work’s simulation. This can be explained by
considering the temperature and viscosity profiles seen in Figures 6 and 7. The surface of a strand has a
lower temperature and higher viscosity than its inside. The exterior’s higher viscosity has low fluidity
which limits the spreading of the strand. Therefore, the width should be smaller than that of the
isothermal Newtonian simulation where a constant viscosity of 1000 Pa·s is imposed. We believethat
the quantitative agreement with the experimental data is improved because the temperature-dependent
power law viscosity model is fitted to the experimental data measured from the PLA commonly used in
the FDM, and the time step size is properly adjusted to handle very high viscosity. However, there still
remains the quantitative discrepancy from the experimental data. Direct experimental measurement
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rather than using data from literature as well as including viscoelasticity is expected to be able to
improve the quantitative agreement [29].
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Figure 11. Comparison of the cross-sections obtained from simulations and experiment (The images
were adapted from Serdeczny et al. [15] by permission from Elsevier).

3.3. The Effect of the Nozzle Temperature on the Strand Shape

As shown in the previous section, the temperature is an important factor in accurately modeling
the strand shape. We performed the simulation with different temperatures of the PLA in the nozzle to
learn more of the temperature effect on the strand shape. Figure 12 shows the strand height and width
obtained from the simulation with three different nozzle temperatures and a processing condition of
g/d = 0.4 and U/<u> = 1. As the temperature increases, H/d decreases and W/d increases. The polymer
flow inside the nozzle has the assigned temperature. As it is extruded into the air and onto the substrate
surface, the flow is cooled to the ambient temperature (298 K in this simulation) and the viscosity
significantly rises. Higher fluid temperatures in the nozzle result in a higher temperature and a lower
viscosity of the deposited fluid which spreads more (larger W/d) resulting in a wider strand. Since the
cross-sectional area of the strand must remain constant, H/d shows the opposite trend.
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simulation (g/d = 0.4 and U/<u> = 1). (Lines connecting symbols are for visual guidance).

3.4. The Effect of the Nozzle Temperature on the Strand Uniformity

One of the problems of FDM is due to the surface roughness of the final product [30]. The process
requires a finalizing stage so that resolution of the final product meets customers’ expectations. One of
the reasons for the surface roughness of the final product is the non-uniformity of layers. In other
words, the thickness and width of the final product is not constant and changes along the layers.
In previous studies, layer uniformity had been adjusted by introducing additives [31–34]. One study
also considered the temperature effect on the strand uniformity: the surface roughness of the final
product is reduced with increasing nozzle temperature [34]. We performed a simulation using our
numerical model to investigate the temperature effect on surface uniformity. Figure 13 shows a
simulation result of the strand width change along the strand axis (distance from the nozzle) with
three different fluid temperatures in the nozzle.
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The results show the width becomes more uniform with higher temperatures. Standard deviations
at each temperature are measured as 0.144, 0.0635, and 0.0319 mm for 463, 483, and 503 K, respectively.
Our simulation can show the relation of surface uniformity and nozzle temperature similar to the
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experimental observation in [34]. This observation can be explained by the viscosity–temperature
relationship discussed in the previous sections. Higher temperatures in the nozzle lead to a more
fluidic material being deposited on the substrate. This fluid will spread more and has a larger chance
of obtaining a uniform surface before cooling to the point of solid-like viscosity. Although our current
model can show the temperature-dependent uniformity, there are many rheological factors to be
considered in the extrusion process in FDM for controlling the surface properties. For example, shark
skin and die swelling are attributed to viscoelasticity and affect the surface uniformity of printed
products [26]. Therefore, the addition of viscoelasticity to the numerical model will be the next step in
further investigation.

4. Conclusions

We used OpenFOAM to simulate the extrusion process of FDM considering the temperature and
shear-dependent viscosity which was fitted from experimental data. We compared our simulated
strand shape extruded under a small gap condition and straight nozzle with published experimental
data under the same conditions. The comparison showed that temperature-dependent viscosity is
effective in improving the agreement with experimental observation: As the surface of the extruded
strand becomes cooler, the higher viscosity surface hinders the strand from spreading across the
substrate which is not observed in the isothermal Newtonian simulation. The parametric studies with
various nozzle temperatures also showed that non-isothermal flow behavior is significant in strand
shape and surface uniformity: The less viscous liquid portion with the higher nozzle temperature
makes the extruded strand spread more across the substrate with a higher strand uniformity.

In our particular choice of geometry and process, due to the comparison with the available
published data, the temperature and shear rate-dependent viscosity model was the major contribution
to the improved prediction of extruded strand shape. The addition of viscoelasticity to the numerical
model is ongoing for further improving its fit to experimental data and its predictive capabilities in
other geometries and processes, such as welding of extruded strands.
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Appendix A

The ability of the new solver to calculate the temperature distribution in multiphase fluids was
validated by comparing the results of a simple benchmark simulation using COMSOL Multiphysics,
a popular commercial CFD software. For the benchmark simulation, a two-phase system with transient
heat transfer was chosen. Detailed geometry of the two-phase system is depicted in Figure A1.
The liquid phase is a hypothesized material with ρ = 800 kg/m3, η = 0.002 Pa·s, cp = 1800 J/kg·K and
k = 13 W/m·K. The temperature of the entire system was initially set to T = 298 K. At t ≥ 0, all the wall
temperatures are maintained at 298 K except the wall at the bottom of the liquid domain which was set
to 500 K. The gas phase is set as air with 1 atm. Dimensionless temperature was defined as:

θ =
T − 298

500− 298
(A1)

Dimensionless temperature distribution in the liquid as a function of the distance from the bottom
wall is plotted for both COMSOL and OpenFOAM at t = 1 min (Figure A2). Figure A2 shows that the
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simulation results from both OpenFOAM and COMSOL are almost identical. Therefore, we deemed
our model valid for describing the heat transfer in the open surface flow problems.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 13 of 15 
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