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Abstract: Electrochemical machining is a promising non-traditional manufacturing process to make
high-quality parts. The benefits of minimal thermally and mechanically induced stresses, free of
burr, and a low surface roughness are appealing for industry and research institutes. However,
the combined chemical reaction, electric field, fluid mechanics, and material properties involve
a significant number of independent parameters which are difficult to analyze in order to draw
comprehensive conclusions. To our current knowledge, process responses such as the material
removal rate, optimal feed rate, and cutting profile cannot be represented accurately by analytical
solutions. In recent years, deep learning has had tremendous success in analyzing sophisticated
systems. The improved computation efficiency and reduced size of the training dataset required for
deep learning have enabled various prediction models in the manufacturing industry. In this paper,
a new approach is developed using the deep convolutional network with the Bayesian optimization
algorithm to predict the diameters of the drilled hole from an electrochemical machining process.
The Keras application programming interface (API) was used to build the deep convolutional network;
the feed rate, pulse-on time, and voltage were used as input parameters to provide a fair comparison
with a neural network from previous research. Random dropout layers were added to prevent
overfitting of the network. Instead of tuning the network parameter by trial and error, the Bayesian
parameter optimization algorithm was implemented to find the optimal set of parameters of the deep
convolutional network that yields the minimum mean square error. The proposed algorithm was
compared with a previously developed neural network with partially embedded physical knowledge.
Improved training speed and accuracy were observed in comparison with the traditional neural
network. The prediction model using the proposed deep learning algorithm demonstrated better
prediction accuracy and provided a more systematic way to select the hyperparameter for the deep
convolutional network.

Keywords: Bayesian optimization; convolutional neural network; deep learning; electrochemical
micro-machining

1. Introduction

Starting from the early casting process to today’s hybrid subtractive and additive processing,
the increasing demand for product quality has driven the new development of manufacturing
processes. Maximizing productivity while reducing cost and achieving a better surface finish that
is free of induced residual stress has always been the goal of manufacturing industries. In recent
years, the popularity of non-traditional manufacturing processes has increased significantly because
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of the ability to process difficult-to-cut material while minimizing mechanically induced stresses.
The electrical discharge machining (EDM) process is capable of machining materials with high hardness
such as tungsten carbide and carbon fiber-reinforced polymers [1,2]. However, the recast layer by the
electrode deposition and thermally influenced machining zone could affect the material properties [3,4].
The heat-affected zone (HAZ) will potentially induce residual stresses and phase transformation for
heat-sensitive materials [5]. For materials used in critical applications such as nickel titanium alloys
the thermally induced phase transformation could significantly influence the proper function of the
device and reduce the fatigue life [6,7]. The laser beam machining (LBM) process is a non-contact
process that melts and vaporizes material from the parent material [8]. This process is generally used
for the high-precision manufacture of complex shapes. The high-energy beam provides a high material
removal rate and is not sensitive to material hardness [9]. However, based on the nature of the material
removal process of LBM, it poses the same or an even worse problem as the EDM process. The HAZ
could be as large as 3 mm in depth during the LBM process of Ti6Al4V, as reported by Yang et al. [10].
In comparison with the previously mentioned method, the electrochemical machining (ECM) process
is capable of processing hard-to-cut material while generating a residual stress-free surface with low
roughness [11]. However, the complexity of the ECM process and limited physical understandings
have prevented the processing from competing with other processes in mass production.

Lohrengel et al. investigated the anodic dissolution of the ECM process and reported that the
oxide film and supersaturated viscous film consist of the dissolved material and depleted ions could
affect the material removal [12]. However, these quantities are not easily measurable during the
machining process, and hence are difficult to control. Bhattacharyya et al. examined the influence of
current efficiency, power supply, tool design, electro-gap, and electrolyte of ECM [13]. Although it
provides insights into the qualitive selection of process parameters, quantitative measures such as the
applied voltage, current, and feed rate are important for manufacturers in the setup of the machining
process. McGeough presented analytical solutions for several process parameters in [14]. The hydrogen
bubble at the inter electro-gap is a key factor for the determination of the material removal rate.
Thorpe et al. [15] developed an analytical representation of the void fraction in the electrolyte between
the electrode. However, the equilibrium cannot be maintained during the process because of the small
inter electro-gap size and insufficient electrolyte supplies. Because of the abovementioned difficulties,
industry and research tend to seek help from intelligent techniques which are capable of analyzing
highly nonlinear problems through learning from experience. The emerging deep learning algorithm
has quickly gained favor across different industries for solving prediction problems.

Zain et al. implemented neural network to predict surface roughness in the machining process
using cutting speed, feed rate, coating, and radial rake angle [16]. Various network structures are
compared to determine the best selection of network structure using trial and error. Lu et al. [11]
developed a neural network with partially imbedded physical understanding to predict drilling
diameter for the ECM process. The structure of the network is pre-defined using known analytical
solutions; however, the rest of the neural network structure is determined by trial and error. Fu et al.
proposed a deep belief network (DBN) to classify the cutting state for machine monitoring in [17].
The network has shown significant improvement in error reduction in comparison to the traditional
neural network and support vector machine. However, the details of selection of the network structure
were not discussed. Li et al. implemented DBN to predict machine backlash error using inputs such as
machining torque, ambient temperature, and measured position [18]. The trained network yields an
accurate prediction for the backlash error. However, the selection of the network structure appears
to be arbitrary. Other similar works using learning algorithms are presented in [19]. The lack of a
systematic method to select the optimal network structural remains a challenge today. To shorten the
time-to-market, a more systematic and scientific approach needs to be developed for neural network
hyperparameter optimization.

In this paper, a Bayesian optimization algorithm is implemented to optimize structures of a
deep convolutional neural network which uses voltage, feed rate, and pulse-on time to predict the
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ECM drilled diameter at the entry and exit of the hole. The deep learning convolutional neural
network consists of one convolution layer, one random drop out layer, and three fully connected layers
to map out the relationship between inputs (feed rate, voltage, pulse-on time) and outputs (entry
and exit hole diameters). Because ECM is a very complicated process, the implementation of the
highly nonlinear deep convolutional network helps improve the prediction accuracy. The Bayesian
optimization algorithm aims to find an optimal set of parameters that will minimize the mean square
error (MSE) without performing an exhaustive search that demands significantly more computation
power. The proposed network is compared with a previously developed physics embedded neural
network and a traditional neural network to demonstrate its improved performance. The rest of
the paper is organized as follows: Section 2 briefly describes the deep convolutional network and
Bayesian optimization; Section 3 describes the experimental setup of the µ-ECM; Section 4 presents the
results based on the proposed approach and a comparison with previous work; and Section 5 presents
conclusions from the presented work as well as possible future directions.

2. Deep Convolutional Network Prediction Model for ECM

2.1. Deep Convolutional Network

The deep convolutional network, as a novel and powerful tool to capture the complex dependency
between input and output signals, to the best of our knowledge, has not been implemented in
the ECM process. In addition, the networks are generally tuned by trial and error. The Bayesian
optimization algorithm facilitates the automatic tuning of the network without human intervention,
which significantly reduces the effort or skill level required for industrial applications. In previous
documented research, the convolutional neural network (CNN) was demonstrated to work well in
identifying patterns in data. Moreover, it has been adopted in various applications in scenarios with
the absence of human experts or for the adaption of solutions to specific cases [20–22] because of its
capability of solving highly nonlinear problems and its generalization to different data types. It was
initially proposed for pattern recognition with back propagation in 2D or 3D applications such as
images and video frames [23]. Alternatively, 1D CNN was developed for applications over 1D signals
such as electrocardiogram (ECG) and mechanical data. Our 1D CNN architecture has a combination of
two types of layers: convolution and fully connected. In the convolution layers, the data are convolved
using local learnable kernels to form the output feature maps. For the neural nets with a specified
nonlinear function and choice of activation function, the following equation is given:

x(l)out = g(h(l−1)) = σ(
∑

xin ×W j + b j) (1)

where x(l)out is the output feature map of the current layer l, xin is the input data, and W j and b j are the
kernel and bias for the current layer.

The output feature maps are then flattened and fed into the next layers for processing. The added
convolution is sensitive to nonlinear functions such as sinusoidal and periodic functions—those used
in Fourier transform. For the ECM application, because of the unknown intermediate parameters
such as the gas bubble fraction, current density, and efficiency, adding the convolution layer could be
beneficial to capture their interaction. The softmax function is discarded because the CNN is used for
prediction instead of classification. The activation function σ(·) between each layer is selected to be a
Rectified Linear Unit (ReLU):

[σ(z)] j = max
{
z j, 0

}
(2)

for computation efficiency [22]. The voltage, feed, and pulse-on time are selected as the input of the
network and the drilled hole diameter at the top and bottom are selected to be the output.

The network structure used in the ECM application is shown in Figure 1.
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Figure 1. Deep convolutional network to predict electrochemical machining (ECM) drilling.

A random dropout layer with an optimized percentage of dropout ratio is added between the
first and second hidden layer to prevent overfitting [24]. By dropping out subsets of features in the
training process, dropout can effectively prevent overfitting. The random dropout for the l-th layer can
be described as:

h(l)drop = h(l) �maskl (3)

where � is the element-wise multiplication and maskl is a vector of the independent and identically
distributed (i.i.d.) Bernoulli dropout variable with success probability p. The data are split into training
and validation sets. The validation split percentage, dropout ratio, and number of neurons in the first,
second, and third hidden layers are optimized using the Bayesian optimization algorithm described in
the following section.

2.2. Bayesian Optimization of Hidden Layers with Gaussian Process Priors

The Bayesian optimization aims to utilize Bayes’ rule to find the minimum or maximum of an
objective function f(x) within a bounded set χ. In comparison with the traditional grid search method,
which requires a significant amount of computational power, the Bayesian algorithm obtains an optimal
set of solutions with less iterations, which is critical for online diagnostic applications. The Bayesian
optimization is able to automatically quantify the uncertainty of the minimizer or maximizer. For a
generic family of models with data observation D and parameter x ∈ χ, we assume a prior distribution
p(x) and a likelihood p(D

∣∣∣x) with given data D. We can infer the posterior distribution using Bayes’
rule p(x|D) ∝ p(D|x)p(x). The maximizer (or minimizer) of the objective function then follows the
maximum a posteriori (MAP) probability:

x∗ = argmin
x∈χ

f (x) = argmin
x∈χ

(x|D). (4)

In this case, domain χ will be the range of the parameter within the network. We assume
the Gaussian process prior such that the observation D1:t =

{
x1:t,y1:t

}
follows y1:t ∼

Normal( f (x1:t),
∑
(x1:t,x1:t)). Then the posterior probability distribution has the form f (x)| f (x1:t) ∼

Normal(µt(x|D), σ2
t (x|D)), where µt(x|D) and σ2

t (x|D) have complicated forms that are usually
intractable. The Bayesian optimization establishes a probability model for f(x) by selecting various
parameter values within the set χ. The model stores the previous calculated f(x) value and evaluation
the area with higher probability to generate the minimum or maximum of f(x) without relying on
the local gradient [25]. Rather than using an exhaustive search algorithm, the Bayesian optimization
targets the area with a higher density of lower values of the cost function f(x), which reduces the
computation effort significantly. The basic algorithm [26] is described as follows:

We assumed an optimized solution x̂ which solves the relationship x̂ = argminx f (x) =

argmin
x∈χ

p( f (x)| f (x1:t)) or x̂ = argmaxx f (x) = argmax
x∈χ

p( f (x)| f (x1:t)), the objective is assumed to

be a continuous function that is differentiable. For t = 1, 2, . . . , select various xt by optimizing the
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acquisition function over the Gaussian process: xt = argmaxxu(x|D1:t−1), where D1:t stores the previous
observations

{
x1:t, y1:t

}
. In this case, a prior distribution p(f(x)) can be assumed as normal distribution.

The dataset D1:t will be augmented with the newly acquired
{
xt, yt

}
. Then, the whole process will

repeat until certain criteria are met. The Bayesian optimization algorithm is combined with the CNN
deep learning network to optimize the parameters within the network while reducing the training
MSE. The Bayesian optimization is implemented to automatically tune the parameters in the CNN,
playing the similar role as the widely used cross-validation. The next section explains the case study
with the ECM drilling process.

3. Experimental Study

The experimental data collected in [11,27,28] were adopted to validate the proposed deep
convolutional network. The experimental setup of the ECM process is shown in Figure 2. The system
is composed of a three-axis computer numerical controlled table, a small-scale power supply of 100 A,
and an electrolyte-delivering pump with a built-in filtration system for slag removal and electrolyte
refreshing. The operating system is controlled by an RTX real-time Windows kernel program which
shows the machining parameter and machine positions. A pulse generator supplies a periodical voltage
to the ECM machine to ensure a sufficient replenishing rate of active ions in the electro-gap. A digital
oscilloscope ensures that the pulse generator produces a rectangular waveform with the desired
amplitude. A short-circuit protection/detection mechanism is implemented if the electrode feed rates
are excessive, to prevent the tool from contacting the workpiece. Whenever the oscilloscope detects
a short circuit, a signal is sent rapidly to the controller and the electrode is retracted gradually until
the measured voltage returns to normal. The electrode consists of arrays of a cylindrical copper tool,
a polyvinyl chloride (PVC) mask, and a tool fixture. The electrolyte is pumped to a multiple-electrode
cell and exits through the small nozzles directed towards the anode workpiece.
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Figure 2. Schematic diagram of electrochemical micromachining system (left) and micro-array hole
electrode module (right) [11,27,28].

The electrolyte velocity at the outlet of the pump was set at 10 m/s; the average electrolyte
temperature was measured to be 27 ◦C; the initial gap between the tool and the workpiece was set at
100 µm; the total tool travel was 800 µm; the workpiece material was 304 stainless steel; the electrolyte
used was 10% wt. NaNO3; the nominal diameter of the hole to be drilled was 900 µm; and the depth of
the hole was 500 µm. The voltage, pulse-on-time, and feed rate were used as the controllable process
parameters because of the relatively low difficulty in measuring these factors, while the entry diameter
of the micro-hole Din and the exit diameter Dout were the response variables. Figure 3 shows the
charge coupled device (CCD) camera image of the array of holes drilled during the µ-ECM experiment.
It was observed that even the cutting parameters such as feed rate, pulse-on time, and voltage were the
same. The patterns of the drilled hole were different. The possible causes were determined from the
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difference in electrolyte velocity at different parts of the workpiece, the interaction of the electrical
fields between tools, and the existing active ions at different areas of the workpiece.
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(b) the exit side of the hole (Dout) [28].

In order to create a forward prediction model for ECM drilling, the design of the experiment was
implemented with three different sets of experiments generated. The cutting input parameter and
output parameter were recorded. The experimental data results are shown in Table A1 in Appendix A.

4. Results

The proposed deep convolutional network was trained using the data shown in Table A1.
The parameters to be optimized were the training and validation split, the drop-out ratio of the layer,
the neurons in each layer, and the training iteration. The input and output were normalized from 0 to
1. Rather than using the time-consuming grid and random search methodology, the Bayesian-based
optimization was implemented to optimize the model parameter. To initialize the tuning parameter
boundary, a trial-and-error based approach was implemented to determine the basic structure of the
deep convolution network. The structure of the network refers to the previous work in [11,27,28]
with an added convolutional layer and dropout layer to add nonlinearity and prevent overfitting.
The network was initialized with a convolutional layer and one dense layer with 20 neurons. The entry
and exit drilled diameters were predicted by the network. After the MSEs between the actual and
predicted values were obtained, one more layer was added while reducing the neurons in the previous
dense layer. The procedure was repeated until no significant improvement (less than 10%) in reducing
the MSE was observed. The network structure was determined to be one convolutional layer for the
first layer with four subsequent dense layers. The dropout layer was added in between the first dense
layer and second dense layer.

The loss function was selected to be the mean square error to provide a fair comparison with
the previously developed work. The optimizer was selected to be the Nesterov adaptive moment
estimation [29,30], which has been proven to improve the rate of convergence and reduce the loss
function. The range of the parameter was selected as shown in Table 1.

Table 1. Deep convolutional network parameter range.

Validation
Split

Drop-Out
Layer Ratio

Dense Layer
1 Neurons

Dense Layer
2 Neurons

Dense Layer
3 Neurons

Training
Iteration

Range 0–0.2 0–0.3 3–8 3–8 3–8 50–400 in
increments of 50

Data Type Continuous Continuous Discrete Discrete Discrete Discrete

The optimized network parameter by the Bayesian algorithm is shown in Table 2, and the result
of the mean square error (MSE) and mean average error (MAE) at the end of the training is shown in
Table 3. The average value was calculated based on five different simulations.
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Table 2. Bayesian optimized deep convolutional network parameter for ECM.

Validation Split Drop-Out
Layer Ratio

Dense Layer
1 Neurons

Dense Layer
2 Neurons

Dense Layer
3 Neurons

Training
Iteration

Value 89.5% training
10.5% validation 5.23% 8 7 6 400

Table 3. Bayesian optimized deep convolutional network performance in terms of the prediction of
entry and exit diameters of the ECM drilled holes.

Simulation # Training MSE Validation MSE Training MAE Validation MAE

1 0.0297 0.0329 0.135 0.143
2 0.0257 0.0219 0.125 0.119
3 0.0246 0.0235 0.121 0.121
4 0.0276 0.0261 0.131 0.129
5 0.0248 0.0207 0.122 0.115

Average 0.0265 0.0250 0.127 0.125

Figures 4 and 5 show the change of MSE and MAE during the training and validation processes.
It can be observed that the training converges within 50 iterations, which shows the high training
efficiency of the deep CNN.
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To validate our proposed model, the networks developed in [11,27,28] were compared with the
proposed CNN. The mean least square support vector regression machines in [31] were also added for
comparison. The result is shown in Table 4. It can be observed that the deep CNN yields the minimum
error among all four models. In addition, by comparing Figures 4 and 6, it can be observed that the
CNN has a faster convergence speed than the traditional neural network. A statistical test with a null
hypothesis that the compared method is equivalent was conducted between the proposed method
and the multioutput least square support vector regression (MLS-SVR) method in [31]. The Statistical
Tests for Algorithms Comparison (STAC) platform from [32] was implemented. The p-value was 0.019.
Therefore, the null hypothesis was rejected.

Table 4. Comparison with different models.

Deep CNN with
Bayesian

Physics
Embedded NN [4] NN from [5] MLS-SVR [31]

Average Validation MSE 0.0250 0.090 0.114 0.0617
Average Validation MAE 0.125 0.198 0.222 0.234
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5. Conclusions

In this paper, a new approach using the deep CNN with Bayesian optimization was introduced
to increase the prediction accuracy and rate of convergence for the ECM drilling process. Rather
than tuning the parameter by hand or using the grid and random search method, the Bayesian-based
optimization algorithm helps navigate to the optimal set of parameters of the CNN. An initial guess
of the network structure is made by trial and error to search for the network structure. Then the
boundary of the parameter to be optimized is determined based on knowledge of the process and
previous documented research. The Bayesian algorithm searches within the prescribed boundary and
finds areas that have a higher probability of obtaining the optimal set of parameters. With sufficient
sampling, an optimal set of parameters of the deep convolutional network is obtained. The automatic
parameter tuning does not require knowledge of the ECM process and the network structure, which is
ideal for industrial applications. The deep convolutional network prediction model is compared with a
traditional neural network and physics-based NN. The proposed model has the advantages of requiring
fewer training iterations to converge and fewer prediction errors in comparison with the previously
proposed prediction models. In addition, with the added random dropout layer, the possibility of
overfitting the network is decreased. With enough experimental data and more inputs, the proposed
model offers a viable route to predict the relationship among the input and output parameters of an
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ECM process. The algorithm can be built into the computer system of an ECM drilling machine to
facilitate the accurate process control and improve the throughput of the ECM drilling process.
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Appendix A

Table A1. Data used for training and testing the neural network [28].

No. Voltage
(V)

Pulse-On
Time (µs)

Feed Rate
(µm/s)

Din
(µm)

Dout
(µm) Taper Overcut

(µm)

1 16 25 8 893 860 0.066 3.5
2 18 25 8 929 913 0.032 14.5
3 20 25 8 923 910 0.026 11.5
4 16 25 6 904 892 0.024 2
5 18 25 6 934 931 0.006 17
6 20 25 6 999 977 0.044 49.5
7 16 25 4 983 979 0.008 41.5
8 18 25 4 1050 1045 0.01 75
9 20 25 4 1125 1123 0.004 112.5
10 8 50 8 657.5 627.5 0.06 121.25
11 10 50 8 809.5 807.25 0.0045 45.25
12 12 50 8 866.25 858 0.0165 16.875
13 8 50 6 760 741 0.038 70
14 10 50 6 828.5 829.5 0.002 35.75
15 12 50 6 908.75 905.5 0.0065 4.375
16 8 50 4 781.75 780.25 0.003 59.125
17 10 50 4 887.25 881.75 0.011 6.375
18 12 50 4 957.75 970 0.0245 28.875
19 8 60 8 771.33 759.33 0.024 64.335
20 10 60 8 806.75 799.5 0.0145 46.625
21 12 60 8 862.75 847 0.0315 18.625
22 8 60 6 756.5 739.75 0.0335 71.75
23 10 60 6 776.75 777.5 0.0015 61.625
24 12 60 6 840.25 841.25 0.002 29.875
25 8 60 4 769 771.5 0.005 65.5
26 10 60 4 854.75 865.25 0.021 22.625
27 12 60 4 928.25 945.5 0.0345 14.125
28 8 70 8 718 721.5 0.007 91
29 10 70 8 779 796.75 0.0355 60.5
30 12 70 8 841.5 849.75 0.0165 29.25
31 8 70 6 736.5 744.5 0.016 81.75
32 10 70 6 802 829.75 0.0555 49
33 12 70 6 858.75 865 0.0125 20.625
34 8 70 4 783.25 783.25 0 58.375
35 10 70 4 878.75 872 0.0135 10.625
36 12 70 4 946.25 955.25 0.018 23.125
37 8 50 8 874 704 0.34 13
38 9 50 8 914 789 0.25 7
39 10 50 8 999 827 0.344 49.5
40 8 50 6 922 765 0.314 11
41 9 50 6 955 807 0.296 27.5
42 10 50 6 1039 837 0.404 69.5
43 8 50 4 932 797 0.27 16
44 9 50 4 1044 790 0.508 72
45 10 50 4 1130 858 0.544 115
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Table A1. Cont.

No. Voltage
(V)

Pulse-On
Time (µs)

Feed Rate
(µm/s)

Din
(µm)

Dout
(µm) Taper Overcut

(µm)

46 8 60 8 903 708 0.39 1.5
47 9 60 8 967 766 0.402 33.5
48 10 60 8 1084 817 0.534 92
49 8 60 6 917 760 0.314 8.5
50 9 60 6 1043 856 0.374 71.5
51 10 60 6 1115 871 0.488 107.5
52 8 60 4 1071 754 0.634 85.5
53 9 60 4 1087 972 0.23 93.5
54 10 60 4 1263 1044 0.438 181.5
55 8 70 8 875 789 0.172 12.5
56 9 70 8 1071 842 0.458 85.5
57 10 70 8 1158 862 0.592 129
58 8 70 6 987 846 0.282 43.5
59 9 70 6 1212 886 0.652 156
60 10 70 6 1243 1056 0.374 171.5
61 8 70 4 1134 877 0.514 117
62 9 70 4 1260 935 0.65 180
63 10 70 4 1348 1016 0.664 224
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