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Abstract: The demand for air-to-ground communication has surged in recent years, underscoring
the significance of unmanned aerial vehicles (UAVs) in enhancing mobile communication, particu-
larly in emergency scenarios due to their deployment efficiency and flexibility. In situations such
as emergency cases, UAVs can function as efficient temporary aerial base stations and enhance
communication quality in instances where terrestrial base stations are incapacitated. Trajectory
planning and resource allocation of UAVs continue to be vital techniques, while a relatively limited
number of algorithms account for the dynamics of ground users. This paper focuses on emergency
communication scenarios such as earthquakes, proposing an innovative path planning and resource
allocation algorithm. The algorithm leverages a multi-stage subtask iteration approach, inspired by
the block coordinate descent technique, to address the challenges presented in such critical environ-
ments. In this study, we establish an air-to-ground communication model, subsequently devising a
strategy for user dynamics. This is followed by the introduction of a joint scheduling process for path
and resource allocation, named ISATR (iterative scheduling algorithm of trajectory and resource).
This process encompasses highly interdependent decision variables, such as location, bandwidth,
and power resources. For mobile ground users, we employ the cellular automata (CA) method to
forecast the evacuation trajectory. This algorithm successfully maintains data communication in the
emergency-stricken area and enhances the communication quality through bandwidth division and
power control which varies with time. The effectiveness of our algorithm is validated by evaluating
the average throughput with different parameters in various simulation conditions and by using
several heuristic methods as a contrast.

Keywords: unmanned aerial vehicles; resource allocation; trajectory planning; iterative scheduling;
cellular automata

1. Introduction

UAV-assisted mobile communication takes the role of an efficient technology that uses
unmanned aerial vehicles (UAVs) as communication nodes in wireless networks, with UAVs
performing as aerial base stations, communication relays, and data connection stations. In
research on B5G/6G communication, UAVs have already been widely applied [1]. They
can provide enhanced coverage, capacity, and connectivity for applications in various
communication scenarios, such as surveillance management [2], smart agriculture [3], and
aerial delivery [4]. Drone-assisted IoT (the Internet of Things) systems are also called
IoD (Internet of Drones) [5]. The authors in [6] have demonstrated the data collection
ability of drones, which is also applied in emergency [7] or MEC cases [8]. More than a
data transmitting node, a UAV can also serve as a cloud computation center with limited
ground processing capability [9]. In other applications, UAVs provide sensing [10], target
search [11], and healthcare supply service [12,13] based on their mobility.
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In recent years, the integration of UAVs into emergency communication systems has
caught significant attention due to their ability to overcome limitations in traditional ground
base stations [14]. In emergency-stricken cases, disasters such as earthquakes, hurricanes,
and wildfires can inflict severe damage on ground communication infrastructure, making
them either disabled or inaccessible. Consequently, timely and reliable communication
services in such contexts play a vital role in rescue and response. Both civil and military
institutions can benefit from UAV-assistance communication. Emergency response agencies
like FEMA (Federal Emergency Management Agency) would be interested in leverag-
ing UAVs to enhance communication capabilities during disasters or emergencies, while
telecommunication companies could benefit from UAV-assisted communication planning
algorithms to improve their capacity for assisting in affected areas. During the 2021 Henan
flood, China Mobile dispatched Yilong drones to temporarily restore communication in the
disaster area. UAV-assisted mobile communication has several advantages over traditional
terrestrial or satellite-based communication systems, such as flexibility, mobility, scalability,
ease of deployment, and low cost, therefore they can match the requirements needed in
emergency communication cases.

However, the field also encounters many challenges, especially in intricate problems.
In UAV deployment, costs of moving and energy consumption need to be considered,
which provide constraints on assistance quality optimization. In problems of trajectory
planning or routing, the communication environment changes rapidly, resulting in im-
perfect channel state information. Coordination, security, and power management also
matter in related problems, making the algorithm design rather complicated [9]. Generally
speaking, research on UAV-assisted communication mainly involves two aspects: one is
the establishment of an air-ground communication model, and the other is the design and
optimization of drone scheduling algorithms.

1.1. Related Works

Differing from conventional ground-based communication, air-to-ground (A2G)) com-
munication is subject to the influence of altitude differentials, thus presenting a more
complex and dynamic model of the environment [15]. In recent years, many researchers
have focused on the design of evaluating indicators, along with communication models
in both general and certain environments [16] for air-to-ground channels. To assess the
effectiveness and robustness of UAV-assisted networks, various metrics have been pro-
posed for A2G networks. The authors in [17] considered energy efficiency, while [18]
considered throughput. In [19], the average completion time of subtasks was applied
for assessment. Other evaluating factors include the arrival rate, spectral efficiency, and
channel capacity, while factors such as time delay, coverage [20], and outage probability
also affect A2G networks.

Communication parameters of A2G channels differ in typical scenes involving differ-
ent environments such as urban, dense urban, suburban, etc. In [21], researchers developed
the A2G path loss model in the urban environment, while [22] focused on multilink channel
model analysis at 2.4 and 5.9 GHz, both in low altitude circumstance. For aerial sensor
networks, [23] introduced a realistic channel model leveraging cooperative UAVs in order
to reach maximum spatial exploration efficiency. In [24], the statistical characteristics of
the airframe shadowing loss were further analyzed. In [25], the authors gave a spatially
and temporally correlated A2G channel model in cellular-connected UAV swarms, as well
as a design for performance analysis. Ref. [26] considered atmospheric refractivity and
precipitation, and they obtained path loss along the range and altitude. Moreover, [27]
proposed a clustering method to analyze time-varying channels.

Blessed with auto-mobility and self-decision ability, UAVs can usually perform as
aerial base stations in emergency cases when ground base stations are blocked. To execute
communication assistance missions, researchers need to design trajectory planning and
resource allocation algorithms for UAVs’ scheduling. In the field of UAV trajectory planning,
researchers have proposed various algorithms and methods to address path-planning
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problems in different environments. Heuristic-based methods employ heuristic algorithms
such as genetic algorithms, simulated annealing, etc., to find optimal paths. Heuristic-based
methods are often suitable for complex environments but may exhibit lower efficiency
for large-scale problems. Ref. [28] introduced a 3-D path planning method improved
from ant colony optimization, and Ref. [29] searched the UAV configuration space with
a modified Mayfly algorithm. For collision avoidance, the slime mold algorithm (SMA)
performs well with a design preventing it from local optimization points [30]. Inspired by
a genetic algorithm, [31] proposed the ANSGA-III method with enhanced planning ability
in complex environments. Graph theory-based methods model the environment as a graph
and use classical graph algorithms to find the shortest or optimal paths, which also tend to
perform well in simple environments. Ref. [32] discussed an approach of dynamic coloring
for UAV planning in emergency cases, and [33] proposed a 3-D deployment method
based on Dijkstra’s algorithm, with UAV playing both as an aerial base station and relays.
The idea of TSP (Traveling Salesman Problem) was applied in [18] with classified stressed
regions, while [34] combined graph theory and convex optimization. Moreover, recent years
have witnessed remarkable advancements in path planning facilitated by deep learning
methodologies. Convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) have been employed to predict flight trajectories and have shown impressive
performance in complex environments. Deep reinforcement learning (DRL) techniques
have also been harnessed for this purpose, further contributing to enhanced performance.
The trajectory planning method varies with the environment. Path planning for UAVs in
windy environments was proposed in [35], with simulated moving targets for UAVs to
pursue. Ref. [36] took advantage of the traditional collision avoidance method and DRL
method, resulting in long trajectory planning with unknown obstacles. In [37], UAVs serve
in a warehouse for stock inventory, updating real-time paths with image recording.

Resource allocation constitutes another critical aspect of ensuring UAV assistance. The
efficiency of UAVs is often limited by their battery life, prompting research into spectrum
resource allocation and efficient energy management [38], including task scheduling and
dynamic recharging strategies. Given that the resource allocation problem is NP-hard,
researchers strive for sub-optimal solutions using methods from convex optimization,
machine learning, etc. Zhang et al., in [39], proposed a safe-DQN method to optimize
UAV trajectories, considering constraints such as user equipment (UE) energy limits and
obstacles in emergency scenarios. Furthermore, for target assignment in multi-object
scenes, multi-agent reinforcement learning (MARL) has been demonstrated to be effective,
as shown in [40].

In the context of an evacuation, the trajectory of moving ground users requires statisti-
cal data or simulation for accurate consideration [41]. Since the moving behavior of users
varies with the environment, cellular automata can be employed to adjust their trajectories.
Cellular automata model the map as a two-dimensional grid space and assign different val-
ues to different grids to represent users, obstacles, exits, etc. Therefore, the state transition
of certain grids can be predicted according to the states of their neighboring grids. Ref. [42]
utilized cellular automata in forest fire spread prediction, specified influencing factors to
adjust cell state and cell transition rules, and gave a 3D visualization for the fire spread
model. In [43], cellular automata and the ant colony algorithm were used to optimize the
evacuation model, which is applicable in emergency scenarios.

1.2. Our Contributions

To address the challenges in the communication of emergency cases, we propose
an iterative scheduling algorithm for trajectory and resource (ISATR) for path planning
and limited resource allocation in a UAV-assisted emergency communication network. In
addition to commonly discussed variables, we consider the dynamics of ground users
and present a comprehensive approach using a quasi-convex method to optimize UAV
path, power, and bandwidth allocation across different time slots. This approach spans
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dimensions of time, space, spectrum, and energy; therefore, it can provide a rather accurate
and comprehensive plan. The main contributions of this paper are summarized as follows:

1. UAV-assisted communication model with the dynamic environment. For emergency
cases, few researchers test their algorithm with dynamic users. We have established
an A2G communication model with moving ground users, where the energy con-
sumption and assistance communication quality are jointly optimized.

2. Dynamic bandwidth allocation. For resource allocation in UAV-assisted communi-
cation, few researchers focus on bandwidth, due to its high complexity. Our work
tackles dynamic bandwidth allocation, providing an algorithm for real UAV planning.

3. Designed iterative algorithm. For the NP-hard optimization problem of UAV planning
in emergency communication, we leverage the idea of subtask iterative algorithm and
work out an effective iterative scheduling algorithm of trajectory and resource.

4. Simulation analysis. Experiments are implemented to evaluate the effectiveness of the
proposed optimization algorithm, which achieves obvious performance compared
with non-optimized and several other methods and can maintain the performance in
different environments.

Benefiting from its high accuracy, ISATR can serve as a necessary baseline in case of
emergency communication situations, applied for a pre-planning scheme derived before
emergency strikes.

This paper is organized as follows:

• The A2G communication model, user moving strategy, and mathematical optimization
model are established in Section 2.

• The iterative scheduling algorithm for trajectory and resource (ISATR) is elaborated
on in Section 3.

• In Section 4, the results and performance are discussed, with comparisons in different
environments.

• Section 5 concludes the paper.

2. Modeling of UAV-Assisted Communication
2.1. UAV Air-to-Ground Channel Model

In dense urban environments, communication is primarily supported by ground-based
stations serving mobile users distributed across cellular networks. However, during certain
emergencies such as earthquakes, urban communication infrastructure may fail. When
the ground-based station in the earthquake-stricken area malfunctions, it results in the
loss of signal coverage within the community. This disruption complicates communication
for ground users, leading to panic and impeding emergency relief efforts. Therefore,
unmanned aerial vehicles (UAVs) are introduced as temporary aerial base stations to
provide communication services in emergency scenarios. In this section, we present the
basic model of UAV-assisted A2G communication.

When the ground base station malfunctions, the UAV can be utilized as an aerial base
station to serve urgent communication. Before establishing a UAV-assisted emergency
communication model, it is necessary to discuss the air-to-ground channel. In A2G com-
munication, there are LoS (line of sight) paths and NLoS (not line of sight) paths, in which
the NLoS is obstructed by obvious obstacles. While A2G communication can enjoy LoS
channel in common cases, NLoS channel occurs when obstacles exist. As Figure 1 demon-
strates, urban architecture and natural landscape both perform as obstacles in UAV-assisted
communication. The occurrence probability for LoS/NLoS channel differs according to the
location of UAV and the density of obstacles.

It can be seen that the ratio of LoS and NLoS path varies with the height of UAV.
Therefore, a probabilistic LoS/NLoS channel model is applied [21] with parameter pLoS to
denote the occurrence probability of LoS channel and pNLoS for that in NLoS channel. In
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consideration of varied environmental factors, pLoS and pNLoS for a single A2G link can be
calculated by Equations (1) and (2).

pLOS = α(
180θ

π
− 15)γ, (1)

pNLOS = 1− α(
180θ

π
− 15)γ, (2)

in which θ refers to the elevation angle between each user equipment and UAV, reflecting
the impact of UAV height and position on the link. Parameters α and γ are influenced by
environmental characteristics at the same time.

LoS Channel User Equipment Urban Obstacles Natural Obstacles UAV base stationNLoS Channel

High Altitude

Low Altitude

Figure 1. LoS/NLoS A2G channels in UAV-assisted communication. The model consists of a
UAV aerial base station, ground user equipment, urban obstacles, and natural obstacles, which can
influence LoS probability and then determine the A2G channel.

In the discussed earthquake-stricken cellular cells, mobile users evacuate from build-
ings and move toward certain exits. The ground base station breaks, interrupting commu-
nication. To plan a UAV for urgent communication, we need to model the environment
of the cell, and then adjust the UAV’s resources and location to maximize communication
quality.

As Figure 2 displays, the path of a UAV can be planned according to ground users’
evacuation trajectory in order to enhance communication quality and increase coverage.

Mobile Ground 

User

Urban Obstacles Natural Obstacles UAV base station Malfunctioned 

base station

NLoS ChannelNLoS Channel

LoS ChannelLoS Channel

Figure 2. UAV-assisted emergency communication with malfunctioned ground base station and
moving users. The model considers obstacles that impact both the trajectory of users and the signal
transmission with the UAV base station, and our research is dedicated to the scheduling of UAV
trajectory and resources to optimize the efficiency of communication during the evacuation.
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The LoS path of UAV is obstructed by several obstacles, including compound buildings
and greenery such as trees. Buildings are also regarded as obstacles for mobile users
to evacuate from. Moreover, at each communication timeslot, transmission power and
spectrum division of the UAV are determined.

As the proposed problem mainly focuses on the path planning and resource allocation
algorithm of the UAV base station, a number of assumptions are introduced to simplify the
model with no influence on algorithm construction. The UAV and valid moving ground
users are constrained in the area of earthquake-stricken cells, which means one user turns
invalid as soon as he/she runs out of the exit. When optimizing the trajectory, the height of
UAV is fixed in each experiment. The FDMA (frequency division multiple access) technique
is applied; thus, there is no interference between ground users and between ground users
to drones.

To build up this UAV-assisted communication model, specifically defined parame-
ters, formulas, and functions are introduced as follows. Briefly speaking, air-to-ground
communication quality is used as an evaluation index and expressed in terms of sys-
tem throughput.

Communication throughput depends on the arrival rate of bi-directional links. There-
fore, transmission power of uplink and downlink channels in A2G communication can be
calculated, followed by the corresponding SINR (Signal to Interference plus Noise Ratio).
Pug denotes received power at ground users in downlink communication, with Pgu defined
for received power at UAV in uplink mode. Taking the link parameter into consideration,
P(u, gj) describes transmission power between link j, in which u refers to UAV and gj

refers to jth ground user. The probabilistic LoS/NLoS space power propagation model is
clarified in (3) and (4), which defines transmission power P, received gain G, euclidean
distance d, and environmental loss parameter k0. PLoS and PNLoS refer to the occurrence
possibility of LoS and NLoS channel, while ϕLoS and ϕNLoS refer to the corresponding
shadow parameters.

Pug(u, gj) =
PuG(dj)

(k0dij)n(pLoSϕLoS + pNLoSϕNLOS)
. (3)

Pgu(u, gj) =
PgG0

(k0dij)n(pLoSϕLoS + pNLoSϕNLOS)
. (4)

SINRug =
Pug(ui, ej)

σ2 , SINRgu =
Pgu(ui, ej)

σ2 . (5)

Finally, the throughput is calculated through Shannon’s law as follows, as the consid-
ered communication occurs in the channel with AWGN (Additive White Gaussian Noise).

C = B× log2(1 + SINR). (6)

2.2. User Trajectory Prediction Model

Before conducting optimization for UAV path planning and resource allocation, it is
essential to define the ground users’ moving trajectories as the initial input data for optimiz-
ing UAV strategies, as we consider user dynamics. In this context, we introduce the cellular
automata (CA) method as a means to simulate and predict the users’ moving trajectories.

Cellular automata (CA) is a discrete grid-based dynamic model that encompasses
discrete representations of time, space, and state variables. Notably, it exhibits a local-
ized spatial interaction and temporal causality, enabling it to simulate the spatiotemporal
evolution process of intricate systems. CA methods have been found with extensive ap-
plications, including fire spread simulations and other domains. Due to its capability to
achieve a balance between accuracy and efficiency, CA is also well-suited for simulating
evacuation scenarios.

The CA model is kind of a multi-dimensional dynamic programming method to some
degree, as shown in Figure 3. Grids represent states at each location and are influenced
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by neighbor grids based on certain transition probability matrices. With the idea of the
CA model, the method for predicting users’ trajectories is then derived. To simplify the
evacuation model, we suppose all the mobile users in the earthquake-stricken compound
have already left their residential buildings and, therefore, are initially located within
so-called valid areas. Once a user successfully escapes from the evacuation exit, his or
her location becomes invalid and is no longer considered in the calculation of the overall
communication throughput.

Figure 3. Cellular automata schemes. States of grids change according to states of neighbors; thus,
they can predict data along time sequence with an initial input. CA model is applied to generate the
evacuation trajectory data of users.

Considering that the moving ground users are residents of the neighborhood, it is
reasonable to assume that they possess knowledge of the map, including the distribution
of obstacles and the location of exits. Accordingly, it can be supposed that the moving
trajectory of each ground user follows the shortest path from their current location to the
evacuation exit.

Suppose there are overall K users placed randomly in the valid area of the cellular zone,
with only one exit, while residential buildings play as obstacles in the area. The environment
is modeled as a 2-dimensional grid map, and the moving direction of the ground user can
be defined in a discrete direction set D = {east, south, west, north, northeast, southeast,
northwest, southwest}, mapping to numbers 0 to 7.

Mobile users select their moving direction from the direction set D according to the
current location, and adjust moving speed regarding current crowd density, namely the
influence of neighbor grids. The moving speed affected by the current density of adjacent
users is defined in the following equation:

v = v0/ρ (m/s), (7)

in which v0 refers to the typical moving speed of humans with no obstacles and neighbors.
ρ changes with the current number of users in a neighbor range, being an integer no less
than 1 m/s. Therefore the state of any grid can be initialized and then transformed into a
next state step by step, until reaching convergence.

By this means, after gridding the current map, the evacuation trajectories of users with
different initial distributions can be obtained through the CA method, and obtain the data
of user positions at each time point. The gridded map is illustrated in Figure 4.
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Exit

Obstacle

Obstacle

Figure 4. Grid map of valid evacuation area. The area includes obstacles, one exit, and 10 ground
users in the simulation. Each grid equals a square area of 1 m × 1 m in actual simulation.

2.3. Optimization Mathematical Model

In the UAV-assisted emergency communication discussed above, we propose the
air-to-ground communication model and simulation of the user evacuation trajectory. The
optimization mathematical functions are defined in this section, followed by complex-
ity analysis.

The main task is to recover the interrupted service and enhance communication
quality; thus, we set the total throughput as the objective function in optimization, as
shown in Equation (8). In the planning model with K users and N time slots, user location,
bandwidth division, and transmission power are considered decision variables. Both uplink
and downlink communication happens, regarding the UAV as the aerial base station.

Ri,n =
1
2
· Bn · [log2(1 + SINRug) + log2(1 + SINRgu)]. (8)

Subscript i represents the current moving user and subscript n represents the current
time slot. Moreover, design for constraint functions is also necessary. In the above discus-
sions, it can be seen that the objective function consists of the bi-directional arriving rate
Ri,n at each resource block. On one side, as UAVs have real physical characteristics, the
energy, velocity, and power are limited. On the other, the communication resource is also
limited, involving maximum bandwidth.

Therefore, the constraint variables are divided into 3 sets, which are U = [vn, an],
B = [Bn], and P = [EC

n , EF
n , Pn], referring to variables of UAV’s location and velocity,

variables of bandwidth resource, and variables of energy and power consumption. EC
n

represents communication energy cost at time slot n, and EF
n refers to flight consumption. To

ensure data communication, the lower bound of Ri is also specified. The total optimization
functions are shown in Equation (9),

max
UBP

N

∑
n

K

∑
i

Ri,n

s.t.


0 ≤ Pu ≤ Pmax

∑C
i Ei,n + EF

n ≤ Emax

∑ Bi,n ≤ Bi
vn ≤ vmax
Rmin ≤ Ri

(9)
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The complexity of the discussed problem is proved to be NP-hard (non-deterministic
polynomial-time hard) in this section, which can reveal the significance and effectiveness
of our algorithm.

NP means a problem can not be resolved in polynomial time, and all the NP problems
can reduced to the NP-hard problem. Reduction is a reversible process, which means that
the solvers of both problems can be transformed into one. Therefore, any certain problem
can be proved NP-hard if it can be reduced to other typical NP-hard problems.

According to the list of proven NPH problems, the bounded knapsack problem (BKP)
is a NPH model with a basic optimization model:

max
n

∑
i=1

vixi

s.t.
{

∑n
i=1 wixi ≤W, xi ∈ 0, 1, 2, . . . , c

(10)

xi refers to decision sequence, while wi stands for weight cost and vi represents value.
Similarly, in our problem, the decision sequence for UAV aims to maximize total throughput
with certain vi factors, and weight constraints are controlled in the communication energy
aspect. Thus, our problem can be reduced to a bounded knapsack problem, which indicates
the NPH characteristic of our model. Therefore, the joint optimization problem discussed
can only achieve an approximate solution, necessitating highly accurate algorithms.

3. Iterative Scheduling Algorithm for Throughput Optimization

To address the multi-objective optimization in the evacuation scenario, two primary
stages require deliberation, after the establishment of the communication model outlined
in the preceding section. The initial stage involves predicting unknown environmental
information, specifically the trajectories of moving ground users. Subsequently, the second
stage revolves around formulating an optimization algorithm for UAV to enhance total
communication efficiency based on these predictions.

3.1. Algorithm Architecture of ISATR

In the non-linear optimization field, the coordinate descent method differs from the gra-
dient descent method, as it searches for optimal values along all coordinates. The block coor-
dinate descent method adds the problem division stage to the traditional coordinate descent
method, which means it performs coordinate descent on several designed sub-problems.

x(k)i = arg min
xi

f (x(k)1 , . . . , x(k)i−1, xi, x(k−1)
i+1 , . . . , x(k−1)

n ). (11)

As shown in (11) and Algorithm 1, the block coordinate descent algorithm groups all
the variables into several blocks including x1, x2, . . . , xn, and then in each iteration, only
the variables in one block are optimized, while the variables in the other blocks remain
unchanged. By updating the variables in different blocks alternately, the objective function
is finally reduced.

To tackle the throughput optimization problem with high complexity, we designed the
ISATR (iterative scheduling algorithm of trajectory and resource) for this solution, inspired
by the idea of BCD. The variables are divided into three categories, which are location,
transmission power, and bandwidth allocation of UAV at all considered time slots.

The energy cost of flight consumption is calculated in Equation (12), followed by
communication cost derived in Equation (13). EC represents communication energy cost,
with normalized emission power P0 of unit space distance. EF refers to flight consumption.
Other relative variables and abbreviations are listed in Table 1.

EC =
N

∑
n

∑
i

P0∆T. (12)



Drones 2024, 8, 149 10 of 22

EF =
N

∑
n

mv2
n. (13)

Algorithm 1: Block coordinate descent algorithm

Data: Initial variables in n designed blocks X = {x0
1, x0

2,. . . ,x0
n}

Result: Optimal {x1, x2,. . . ,xn}
1 X ← X0;
2 for k = 1, 2, . . . do
3 for i = 1, 2, . . . do
4 xk

i ← xk
i , update xk

i with other blocks fixed;
5 end
6 end
7 if stopping criteria satisfied then
8 return {xk

1, xk
2, . . . , xk

n};
9 end

Table 1. Abbreviation definitions.

Variable Definition

m Mass of UAV
un UAV location at nth time slot
an Flight direction of UAV at nth time slot
vn Flight velocity of UAV at nth time slot

vmax Maximum flight speed of UAV
ei,n ith user’s location at nth time slot
Pu,n Transmission power of UAV at nth time slot
Pmax Upper bound of transmission power
Bi,n Bandwidth allocated to ith user at nth time slot
Bi Total bandwidth for A2G communication at time slot i

EC
i,n UAV communication power consumption with ith user at nth time slot

EF
n UAV flight energy consumption in nth time slot

Emax Upper bound of total energy consumption
Ri Throughput for communication with user i
R Total throughput of A2G communication

The simulation process terminates when the last moving ground user has left the
evacuation exit. Details of the iterative algorithm are clarified in Equation (14), followed by
its pseudo-code Algorithm 2, with complexity also discussed.

max
UBP

N

∑
n

K

∑
i

Ri,n

s.t.


0 ≤ Pu ≤ Pmax

∑C
i Ei,n + EF

n ≤ Emax

∑ Bi,n ≤ Bi
vn ≤ vmax
Rmin ≤ Ri

(14)

The complexity of ISATR is also derived. For the block of UAV trajectory planning,
the time complexity is O(NK), where N represents the number of time steps and K denotes
the number of users. In each time step, the algorithm iterates over each user to calculate
the distance between the UAV and each user. This involves a loop nested within the time
step loop, resulting in a time complexity proportional to the product of N and K. Moreover,
constant-time calculations are performed to determine the signal-to-interference-plus-noise
ratio (SINR) and to update the total throughput. Therefore, the time complexity of this
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Algorithm 2: ISATR (Iterative Scheduling Algorithm of Trajectory and Resource)

Data: Initial variables in designed blocks X = {x0
U , x0

B,x0
P}

Result: Optimal sets {U, B, P}
1 x0

U ← {un}, u0 = [0, L/2], un = un−1 + [v0 · cosa0, v0 · sina0];
2 xB ← {Bi}, Bi = B/K;
3 xP ← {P0};
4 for t = 1, 2, . . . do
5 for k = 1, 2, . . . , K do
6 for i = 1, 2, . . . , N do
7 xB ← xt−1

B , xP ← xt−1
P ;

8 update xt
U(i, k) with other blocks fixed;

9 xU ← xt−1
U , xP ← xt−1

P ;
10 update xt

B(i, k) with other blocks fixed;
11 xU ← xt−1

U , xB ← xt−1
B ;

12 update xt
P(i, k) with other blocks fixed;

13 end
14 end
15 end
16 if stopping criteria satisfied then
17 return {xT

U , xT
B , xT

P};
18 end

block is O(NK). Similar to the UAV positions optimization, the time complexity of the other
two blocks is also O(NK).

Therefore, the complexity of our method can be derived as O(NK), in which K repre-
sents user number, and N represents time slots, which can be regarded as O(n2).

3.2. UAV Trajectory Subtask Optimization

The first sub-optimization problem block focuses on UAV path planning, with full
knowledge of external information acquired in the previous iteration round, including
resource allocation and environmental states. The sum of Ri stands for the objective
function, namely the total throughput of the A2G communication links.

Objevtive = ∑ Ri

= ∑ B ∗ log2(1 + SINR)

= ∑ B ∗ log2(1 +
Pug(ui, ej)

σ2 ).

(15)

As the UAV location changes, the parameters of the A2G communication channel
model and the distance between UAV base station and ground users also change, which can
be determined by UAV position and known environmental information. Environmental
parameters also depend on the UAV’s location, thus influencing the SINR value of commu-
nication links. Therefore, when fixing the other two sub-optimization blocks, the objective
function can be regarded as a function of the UAV’s position vector.

To design the location optimization block, constraints of acceleration and energy
limitation are considered, which are performed as unequal constraints.
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max
un ,vn

K

∑
i

Ri

s.t.


∑N

n ∑i EC
i,n + ∑n EF

n ≤ Emax

0 ≤ un ≤ [xmax, ymax]
−π ≤ an ≤ π
vn ≤ vmax

(16)

Decision variables un and vn represent sets of the two-dimensional location and speed
of UAV base station at all time slots, while K and N represent the total number of moving
ground users and communication time slots. ∆T is the interval of each time slot and
P0 counts for typical transmission power of UAV; therefore, ∑N

n ∑i EC
i,n represents energy

consumption of communication, while ∑N
n EF

n is flight energy consumption. un stands for
location of UAV at time slot n, and an indicates the direction of UAV.

3.3. Transmission Power Subtask Optimization

When the location and bandwidth sub-optimization blocks are fixed, the sup-optimization
problem of UAV transmission power consumption can be built by the same format. As
transmission power multiplying Pug term, it can influence the objective function:

Objevtive = ∑ Ri

= ∑ B ∗ log2(1 +
Pug(ui, ej)

σ2 )

= ∑ B ∗ log2(1 +
PuG(dj)

(k0dij)n(pLoSϕLoS + pNLoSϕNLOS)
· 1

σ2 ).

(17)

At every time slot, the objective function Ri corresponding to ground user i can be
calculated based on transmission power, effective communication bandwidth distributed
to user i, and current UAV location. In the power optimization block, the initial bandwidth
allocation and UAV moving strategy and fixed as follows, which are simply compliant with
velocity and bandwidth constraints:

Bi = B/K.
un = un−1 + [v0 · cosa0, v0 · sina0].

(18)

When other environmental conditions are static, communication efficiency can grow
with transmission power. Thus, to optimize UAV transmission power Pu,n at time slot n,
necessary constraints need to be specified. Relative constraints focus on the upper range of
transmission power and total energy consumption, and the sub-optimization problem is
shown as follows:

max
Pu,n

N

∑
n

K

∑
i

Ri,n

s.t.
{

0 ≤ Pu,n ≤ Pmax

∑N
n Pu,n∆T + EF

n ≤ Emax

(19)

Single decision variable Pu,n denotes the transmission power of UAV at time slot n,
while the upper bound is set as Pmax. Energy constraints are consistent with that in the
location optimization block discussed above, limiting transmission power from selecting
the maximum at all times.
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3.4. Communication Bandwidth Allocation Subtask Optimization

The third sub-optimization block pertains to the allocation of bandwidth, which
encompasses a decision variable dimension of significant magnitude.

Objevtive = ∑ Ri
= ∑ Bi ∗ log2(1 + SINR).

(20)

To ensure optimal communication efficiency for all users, it is imperative to guarantee
that the allocated bandwidth does not fall below the minimal threshold required for the
successful transmission of communication data, resulting in constraint on Ri. An equal
constraint is also given in this sub-block, as the sum of allocated bandwidths needs to be
no more than B, but with no waste.

max
Bi

N

∑
n

K

∑
i

Ri,n

s.t.
{

Rmin ≤ Ri

∑K
i Bi = B.

(21)

Decision variable Bi refers to bandwidth resource allocated to user i at a certain time
slot. After these three sub-optimization tasks iterate and eventually converge, a multi-stage
planning scheme can be proposed as follows, with sets of decision variables including
U, B, and P, regarding UAV location, bandwidth allocation, and power control strategy,
respectively. After all, our designed multi-subtask algorithm is established, with three
sub-block problem consisting the total optimization function.

max
UBP

N

∑
n

K

∑
i

Ri,n

s.t.


0 ≤ Pu ≤ Pmax

∑C
i Ei,n + EF

n ≤ Emax

∑ Bi,n ≤ Bi
vn ≤ vmax
Rmin ≤ Ri

(22)

4. Numerical Results and Analysis

In this section, we validate the efficiency and robustness of the proposed optimization
method under different UAV heights and environments. The optimized planned trajectory
and time sequence of communication resources are also demonstrated, under our assump-
tions introduced in the model establishment, and trajectory prediction of moving ground
users. Figure 5 demonstrates path planning for several scenarios.

To train UAV planning, the trajectory of moving ground users needs specification at
first. With the CA model mentioned above, we have obtained the predicted data of ground
users’ location along the time sequence successfully.

For a simple demonstration and test, the number of ground users is set as 10, and the
range of earthquake-stricken area is rectangular with length = 100 m and width = 50 m,
with several obstacles scattered in, resembling residential buildings. The typical speed of
a moving user in adequate wide space is 5 m/s, with evacuation time discretized into a
time series with an interval of 1 s. All the residents have already left architecture at the
first second, with random locations in the valid areas. As time passes, all users move in
the shortest path directed to escape. In this simulation, the evacuation is completed in 80 s,
thus we obtain the predicted trajectory of moving ground users. The software interface of
the simulation is shown in Figure 6.
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Figure 5. Trajectory of ground users predicted by CA model. The moving trajectories of considered
users are depicted using scatter plots in different colors, showing that they effectively avoided
obstacles and found the shortest possible paths to the exit, in different tested scenarios. (a) Predicted
trajectory of moving users with 2 obstacles of different sizes. (b) The predicted trajectory of moving
users with 6 scattered obstacles. (c) Predicted trajectory of moving users with 1 centered obstacle.
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Figure 6. Software Illustration of ground users’ moving trajectory simulation. As time passes, the
number of evacuation people updates and provides a real-time demonstration of user evacuation
movement based on CA simulation.

As the simulated results demonstrate, the trajectory of users can be predicated and the
data can be applied to train ISATR later. We have generated different user trajectories to
evaluate the adaptability of our proposed method, with scenarios varied in user distribution,
obstacles, and exits.

4.1. Evaluation of UAV Trajectory planning

Based on the environmental information and user trajectories determined above,
trajectory planning for the UAV base station has been achieved through the iterative
optimization algorithm for trajectory sub-block problem, with parameters in the other two
sub-block problems fixed.

As shown in Figure 7, the proposed trajectory planning method achieves the fastest con-
vergence. Compared to several path planning methods including A* and genetic algorithm
(GA), our optimized path planning strategy performs best in the discussed environment.

Visualization of the planned UAV trajectory is given in Figure 8, with trajectories of
10 moving users also displayed.

In each sub-graph, we release the aerial base station from different initial points and
test the algorithm with different user distributions, finding that it maintains stability and
moves synchronously with the trajectories of users toward the exit. In Figure 8a,b, there are
two different-sized obstacle buildings in the environment, with the exit located at the center-
right of the map. The UAVs are released from different initial positions, demonstrating
their adaptability to different initial release positions. In Figure 8c,d, the exit is set at
the bottom-right corner of the map. The scenarios with six dispersed obstacles and one
central obstacle in the map are tested, thus validating the effectiveness of the algorithm in
different scenarios.

Meanwhile, the number of inflection points on the convergence curve matches the
number of users specified in the simulation, lending reasonable support to the optimiza-
tion’s correctness. Therefore, the effectiveness and robustness of the proposed trajectory
planning algorithm are validated.
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Figure 7. Throughput optimized with UAV trajectory in different methods. It can be found
that our ISATR opt method outperforms the traditional A* algorithm and the algorithm with fixed
UAV trajectory.
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Figure 8. Trajectory planning illustration. Different initial positions for UAV trajectory optimization
via ISATR are tested to verify the effectiveness and robustness of our algorithm. It can be seen that
the trajectory of UAV is always consistent with users. (a) ISATR opted path 1. (b) ISATR opted path 2.
(c) ISATR opted path 3. (d) ISATR opted path 4.
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4.2. Evaluation of Resource Allocation

Besides path planning of the UAV base station, communication resource allocation
also matters. Transmission power and bandwidth allocation for all ground users at different
time slots are derived via our designed optimization algorithm.

It can be seen in Figures 9 and 10 that as time passes, the bandwidth allocation varies
as the power of the UAV increases because the number of users in the valid area decreases.
It is worth noting that there are 10 significant changes in P of the UAV base station, which
is equal to the number of moving ground users, making it consistent with the logic of
algorithm optimization.

Frequency Spectrum Allocation
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Figure 9. Bandwidth allocation illustration. Bandwidth allocation scheduling is influenced by
the positions of UAV and users, as well as the power of UAV, also adhering to the minimum
throughput constraint.
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Figure 10. Power control illustration. UAV transmission power control is influenced by the positions
of UAV and users, as well as the current bandwidth allocation, also adhering to the minimum
throughput constraint.
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4.3. Evaluation of Trajectory and Resource Joint Optimization

With UAV location, bandwidth allocation, and transmission power all optimized,
total throughput in the communication system has an obvious increase, as illustrated in
Figure 11.
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Figure 11. Throughput optimized with different decision variables. (a) Throughput with U (UAV
location) optimized. (b) Throughput with B (bandwidth allocation) optimized. (c) Throughput with
P (power of UAV) optimized. (d) Throughput with U, B, and P optimized.

The optimization of the three components, U, B, and P, can be seen to have all con-
tributed to the improvement in throughput, with the combined optimization demonstrating
better performance compared to the contrast algorithms. Among them, the optimization of
B presents a step-like pattern, attributed to the consideration of the issue where ground
users leaving the valid area are not involved in allocation in this algorithm. It can be
observed that the number of steps is consistent with the total number of users.

Moreover, we select the average total throughput observed over the time sequence
of simulation as the evaluation metric and compare our method with several alternative
strategies, experimenting with various sets of environmental information. At different
heights, the UAV adjusts the routing plan and resource allocation strategy according to the
optimization functions, maintaining a stable optimization effect, as shown in Figure 12.

In Figure 13, the throughput optimization achieved by various methods is depicted,
highlighting the superior performance of our ISATR method compared to the others. The
compared methods include A*, GA, and fixed algorithm, in which “fixed” refers to the
non-optimized case.
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Figure 12. Average total throughput illustration in typical environments. (a) Throughput optimized
at different heights. (b) Throughput optimized in different environments. Compared to the non-
optimized value, the ISATR method has an increase of 42%.
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Figure 13. Throughput optimization with different methods. Throughput with location, bandwidth
allocation, and power control optimized via different algorithms, including the proposed opt method
(ISATR), GA method, A* method, and fixed case. ISATR outperforms the others.
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5. Discussion

In the above sections, we have introduced an iterative algorithm ISATR to tackle the
joint optimization problem of UAV-assisted communication, involving trajectory planning,
power control, and bandwidth allocation. This proposed algorithm is dedicated to pro-
viding the pre-planning scheme of a UAV as a temporary base station in an emergency
scenario. It can serve as a necessary baseline in case of emergencies, benefiting from its
high accuracy.

Therefore, it is necessary to combine ISATR with other real-time algorithms, such
as deep reinforcement learning (DRL), for practical implications. The main difference
between ISATR and DRL is that their application scenarios are complementary. The former
is applied to pre-planning which requires high accuracy, while the latter is applied to
dynamic planning that requires real-time response. DRL-based UAV planning algorithm
will be studied in future work to provide a dynamic response.

Physical limitations of UAVs are also essential in UAV-assisted systems. One notable
drawback lies in the current weight and complexity of UAV systems, which can pose
challenges in rapid deployment, particularly in emergency scenarios where swift action
is imperative. To address these limitations, future research could focus on advancing
lightweight UAV designs and streamlined deployment mechanisms. Integration of ad-
vanced materials and miniaturized components could significantly reduce the weight and
size of UAVs, facilitating quick and agile deployment even in constrained environments.

6. Conclusions

This paper discusses a UAV-assisted communication scenario in an earthquake-
stricken cellular cell. As the ground base station is devastated and blocked, a UAV is
dispatched as a temporary aerial base station. An ISATR (iterative scheduling algorithm
of trajectory and resource) is constructed to solve optimization questions to enhance the
UAV’s communication efficiency. A trajectory prediction model is derived via cellular
automata and provides location data of ground users in evacuation for the UAV’s decision.
Path planning and resource allocation including bandwidth distribution and transmission
power control are involved in the decision space, and the total throughput of A2G channels
is considered as the objective function in optimization. With our designed multi-stage
subtask iteration optimization algorithm, the total throughput is enhanced. Compared to
the traditional optimization method GA and path planning method A*, our method has
an advantage in higher optimization performance. Finally, we have an enhancement of
approximately 40% total throughput tested in several typical environments, compared to
non-optimized cases, which indicates that the proposed method can serve as an effective
algorithm for pre-planning emergency UAV scheduling tasks.
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