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Abstract: Given the escalating frequency and severity of global forest fires, it is imperative to develop
advanced detection and segmentation technologies to mitigate their impact. To address the challenges
of these technologies, the development of deep learning-based forest fire surveillance has significantly
accelerated. Nevertheless, the integration of graph convolutional networks (GCNs) in forest fire
detection remains relatively underexplored. In this context, we introduce a novel superpixel-based
graph convolutional network (SCGCN) for forest fire image segmentation. Our proposed method
utilizes superpixels to transform images into a graph structure, thereby reinterpreting the image
segmentation challenge as a node classification task. Additionally, we transition the spatial graph
convolution operation to a GraphSAGE graph convolution mechanism, mitigating the class imbalance
issue and enhancing the network’s versatility. We incorporate an innovative loss function to contend
with the inconsistencies in pixel dimensions within superpixel clusters. The efficacy of our technique
is validated on two different forest fire datasets, demonstrating superior performance compared to
four alternative segmentation methodologies.

Keywords: superpixel; segmentation; convolutional neural network; graph convolution network;
forest fire

1. Introduction

Forest fires, resulting from both natural and anthropogenic factors, pose a significant
threat to global biodiversity and the ecological balance [1]. Globally, an average of over
200,000 forest fires occur annually, resulting in not only substantial economic losses but also
long-term damage to ecosystems [2]. Against this backdrop, the development of efficient
fire monitoring and imaging technologies has become key to addressing this challenge. Tra-
ditional monitoring methods, such as manual surveillance from watchtowers and detection
via infrared instruments on helicopters, have played a role in early fire identification but
face issues of high costs, low efficiency, and limited coverage. Consequently, utilizing imag-
ing technology for fire surveillance and early warning not only provides real-time data on
fire behavior but also aids in disaster assessment and the formulation of response strategies.

However, in the context of forest fire monitoring and management, merely detecting
fires is often insufficient. Fire detection can quickly identify the presence of a fire, but for
disaster response and management decisions, it is crucial to accurately determine the fire’s
specific location, extent, and intensity. Fire segmentation, which precisely delineates the
fire area from non-fire areas through image analysis techniques, is a key step in achieving
this goal. It not only helps assess the actual impact range of the fire but also provides
important information on the fire’s spread trend, thereby supporting the formulation
of more effective firefighting strategies and resource allocation. Therefore, in forest fire
monitoring and management, combining fire detection with further fire segmentation
is indispensable for achieving rapid and accurate disaster response. But the processing
of forest fire images presents unique challenges. The complex backgrounds, inadequate
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contrast, visual obstructions, and irregular shapes of fires all increase the difficulty of image
segmentation [3]. These factors lead to the inefficiency of traditional image processing
methods in accurately identifying and segmenting fire areas, failing to meet the needs
for rapid response [4,5]. Therefore, exploring new technologies and methods capable of
overcoming these challenges is crucial for enhancing the accuracy and efficiency of forest
fire monitoring and imaging.

Traditional image segmentation methods typically rely on pixel-level processing, treat-
ing each pixel as an independent unit. Such coarse-grained representation can increase
computational complexity and lower algorithm efficiency when processing forest fire im-
ages. Furthermore, they fail to adequately capture the contextual information and spatial
relationships within the image, resulting in inaccuracies in the segmentation outcome [6].
In recent years, deep learning has achieved significant success in various fields, includ-
ing computer vision [7], machine translation [8,9], image recognition [10,11], and speech
recognition [12], and has been widely employed in image segmentation tasks [13]. Among
these, the graph convolutional network, a powerful deep learning model, can effectively
learn the spatial relationships and semantic information in images. Early research on graph
convolutional networks adhered to a recursive method, where vertex representation was
learned by iteratively propagating information among its neighbors until a stable state
was reached [14,15]. More recently, Liu et al. [16] introduced a novel, multifeature fusion
network that combines multiscale graph convolutional networks (GCNs) and multiscale
convolutional neural networks (CNNs) for the classification of hyperspectral imaging
system (HIS) images. They demonstrated the effectiveness of their approach in achieving
accurate classification results. Wang et al. [17] developed a similar architecture called
UNet Transformer for real-time urban scene segmentation. In this model, they employed
a lightweight ResNet18 encoder to capture global and local information. To simulate the
integration of global and local information in the decoder, they designed a sophisticated
global–local attention mechanism, which enhanced the segmentation performance of the
model. In the work by Wu et al. [18], a graph neural network (GNN) model was proposed
based on the feature similarity of multiview images. They established correlation nodes
between multiview images and library images, enabling the transformation of graph node
features into correlation features between images. Furthermore, they designed an image-
based region feature extraction method, which simplified the image preprocessing process
and better extracted important image characteristics for improved performance.

However, in traditional GCN models [19], each pixel is treated as a node, an approach
that could lead to information loss and increased computational complexity. To overcome
the limitations of conventional GCN models and enhance the accuracy and efficiency
of forest fire image segmentation, we propose a graph convolutional network based on
superpixels in this study. Superpixels, a technique for segmenting images, partition the
image into contiguous regions exhibiting similar texture and color characteristics. This
method not only provides precise edge information but also captures the object details
effectively [2,20]. Several commonly used superpixel segmentation algorithms include
simple linear iterative clustering (SLIC) [21], superpixels extracted via energy-driven
sampling (SEEDS) [22], and superpixel segmentation using Gaussian mixture models
(GMMSP) [23]. Researchers often utilize superpixel segmentation as a preprocessing step
for image segmentation tasks. For instance, Belizario et al. [24] employed superpixels for
pre-segmentation, derived feature matrices based on color information, and proposed an
automatic image segmentation method based on weighted recursive label propagation
(WRLP), which quantifies the similarity between superpixels by utilizing edge weights.
Xiong and Yan [25] developed a novel superpixel merging technique to address the over-
segmentation problem in single-frame video sequence images and employed support
vector machines (SVMs) for spectral-based superpixel classification. There are also studies
that combine CNNs with SLIC for image segmentation [26]. For example, digital methods
of superpixel segmentation and convolutional neural networks were used to segment trees
in a forest environment. However, CNNs are primarily designed for handling Euclidean
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space data and may encounter limitations when applied to graph-structured data [27].
This is because CNNs typically assume that data are uniformly distributed in space, an
assumption that may not hold when dealing with graph-structured data characterized by
complex spatial distributions, such as forest fires. The dynamic and uncontrolled expansion
of forest fires and their potential to damage ecosystems necessitate real-time monitoring and
grading of these events to achieve accurate forecasting and control. However, traditional
CNNs, due to their inability to handle non-uniformly distributed spatial data effectively,
may not achieve this objective when processing such graph-structured data.

To overcome the aforementioned issues, we propose an algorithm based on graph
convolutional networks (GCNs) utilizing superpixels. Initially, the algorithm utilizes
the color and spatial proximity information of superpixels to partition the image into
multiple superpixel blocks. Subsequently, each superpixel block is considered a graph
node, and edges between these nodes are constructed based on the regional color space
characteristics of the image. Then, features are extracted from each superpixel block
using a convolutional neural network. Through iterative training of the GCN, graph node
classification is performed, and node class labels are associated with the corresponding
superpixel blocks, resulting in the final segmentation outcome. The novelty of our proposed
algorithm includes the following aspects:

(1) We have developed a superpixel-based graph convolutional network model specif-
ically for forest fire image segmentation. To address the inevitable loss of boundary
information caused by resizing input images to their original sizes after passing through
the encoder, we propose a preprocessing step that converts grid-structured images into
graph-structured ones using superpixels. Specifically, our model performs node prediction
for each image converted into a superpixel graph. This preprocessing step can preserve
essential boundary information, thereby enhancing the overall performance of the segmen-
tation process.

(2) We introduced a novel forest fire image segmentation approach based on both
convolutional neural networks and graph convolutional networks. We enhance the graph
convolutional operator of the GCN by utilizing GraphSAGE’s operator. Specifically, the
CNN is employed to extract features from superpixel blocks, while the GCN is used to
predict node labels within the graph.

(3) To address the issues of class imbalance and varying pixel sizes within superpixel
blocks, we introduce a novel loss function. This function imposes varying degrees of
penalties on superpixel blocks of different classes and sizes, thereby effectively managing
imbalanced data.

The rest of this paper is organized as follows. In Section 2, the forest fire dataset and the
methods and modules used in the experiments are introduced. The forest fire segmentation
model presented in this paper is also elaborated upon in this section. Section 3 presents the
experimental results of each part of the improvements. Section 4 describes the discussion
and analysis of the model, as well as the outlook for future work. A summary of the entire
work is presented in Section 5.

2. Materials and Methods

This section provides an overview of the datasets utilized in this study, outlines the
annotation process employed to generate ground truth labels, and introduces the forest fire
image segmentation model along with a detailed explanation of its architecture.

2.1. Dataset

UAV photography provides a comprehensive understanding of the structure of forest
terrain and enables the accurate identification of fire locations. Two datasets were selected
as data sources to make the experiment more convincing:
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(1) FLAME dataset

The Fire Luminosity Airborne-based Machine learning Evaluation (FLAME) dataset is
an aerial photography-based forest fire image that was made public by scholars at Northern
Arizona University and others in 2020. The FLAME dataset is formed by UAV photography,
thus forming a large image perspective with small fire points, which is conducive to the
study of forest fire image segmentation.

(2) Chongli dataset

This dataset was acquired from Chongli (40◦47′–41◦17′ N, 114◦17′–115◦34′ E), Hebei
Province, China. The forest fire was captured using a Longitude M300 RTK UAV equipped
with an H20T gimbal camera. From the video footage, a total of 200 frames were sampled,
resulting in 200 forest fire images.

Figures 1 and 2 provide representative samples of these forest fire images.

Figure 1. Frame samples of the normal spectrum palette.

Figure 2. Frame samples of thermal images of Fusion, WhiteHot, and GreenHot palettes from top
row to the bottom row.

2.2. Method

The SCGCN framework proposed is illustrated in Figure 3. The process begins with
the input image undergoing SLIC processing, which generates multiple superpixel blocks
that serve as nodes in the graph structure. Afterwards, a CNN is employed for feature
extraction, extracting features from each superpixel block and generating a feature matrix
for each node. The graph structure, represented as a sparse weighted graph, is then
constructed by determining the weights of each superpixel block and establishing spatial
adjacency relationships. The resulting data, including the adjacency matrix and node
feature matrix, serve as inputs for the graph convolutional neural network (GCN). The
nodes representing the superpixel blocks are trained to obtain their respective categories,
and the image segmentation results are achieved by establishing correspondence between
the category labels and the corresponding superpixel blocks.
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Figure 3. Overview of the proposed SCGCN framework.

2.2.1. Graph Construction

Prior to constructing the graph, it is essential to preprocess the image using superpixel
segmentation. According to the SLIC proposed by [21], which is an unsupervised image
segmentation method using k-means for local clustering of image pixels [28,29], superpixels
offer a highly effective method that partitions the image into blocks of similar characteristics,
including position, color, and texture. This approach facilitates the extraction of edge
information from objects within the image.

After performing superpixel segmentation, it is necessary to construct a graph based
on the superpixel nodes to facilitate training and learning processes. We define the graph
structure as an undirected, weighted, sparse G(V, E), where V denotes graph nodes and E
stands for edges. Firstly, the image is partitioned into superpixel blocks Si (i = 1, . . . , v)
based on the SLIC algorithm, where v represents the number of superpixels. Then, we take
the centroid of each superpixel as a graph node Vi (i = 1, . . . , v), that is,

V = [V1, V2, . . . , Vi] = [
1

N1

N1

∑
j=1

x1
j ,

1
N2

N2

∑
j=1

x2
j , . . . ,

1
Ni

Ni

∑
j=1

xi
j] (1)

where xi
j represents the jth pixel in Si and Ni is the number of pixels in Si. And for each

superpixel block Si, we calculate the distance between its neighboring superpixel blocks
and only construct edges between the nodes with the smallest distance. The steps are
as follows:

(1) Find the Euclidean distance between the node Sj adjacent to Si, which are the
points adjacent to the superpixel block.

(2) Calculate the weight W between Si and Sj.

Wij =
√
(rj − ri)2 + (gj − gi)2 + (bj − bi)2 (2)

(3) Construct the edge E with the smallest weight, where r,g,b represent the color
values of each pixel in the three channels of color space, respectively.

Figure 4 illustrates the steps involved in constructing a graph structure using the SLIC
algorithm. Initially, we perform superpixel segmentation with the simple linear iterative
clustering (SLIC) algorithm to obtain a series of superpixel blocks. The SLIC algorithm
segments by optimizing the similarity between each pixel within a superpixel and the
center of the superpixel, effectively reducing the complexity of the image while preserving
boundary details. Subsequently, we consider the centroid of each superpixel block as a
node in the graph. The calculation of the centroid takes into account the positions of all
pixels within the block, thus representing the geometric center of the superpixel block,
which provides an accurate reference point for subsequent graph construction. Equation (2)
is employed to calculate the adjacency matrix, representing the connections between nodes
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in the graph, for constructing the graph structure. In this matrix, the value of each element
indicates the strength of the relationship between corresponding node pairs, such as the
weight of an edge or the presence or absence of a connection. Utilizing the efficiency of the
SLIC algorithm and the expressive power of the adjacency matrix, we are able to effectively
capture key features of the image and perform information extraction and analysis at a
higher level.

S1

S2

S3

S4

S5

V1

V2

V4

V3

V5

      1    2    3    4    5

1    0    1    1    0    0

2    1    0    1    1    0

3    1    1    0    1    1

4    0    1    1    0    1

5    0    0    1    1    0

V1

V2

V5

.

.

.

SLIC

Input Image

Superpixles Unweighted Graph

Adjacency maskSuperpixel centroids

Figure 4. Similarity graph construction of image superpixel area.

2.2.2. Node Classification with GCN

The current definition of graph convolution can be divided into two categories:
spectral-based graph convolution and spatial domain-based graph convolution. Spectral-
based graph convolution, which maps nodes to the frequency domain space using Fourier
transform, realizes convolution on the time domain by performing multiplication in the
frequency domain. The features are subsequently mapped back to the time domain space.
Spatial domain-based graph convolution, which is similar to our classic CNN, has at its
core the aggregation of the information of neighboring nodes [30].

In general, graph convolution includes three steps. First, each node passes feature
information to neighboring nodes to extract node feature information; the second step
merges local structure and feature information; and the final step collects the previous
information for nonlinear transformation to enhance the model capability. The structural
architecture of the graph convolutional neural network is shown in Figure 5.
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Figure 5. The structure of GCN.

To improve the generalization of the model to new nodes and to learn more spatial
scales, we attempt to replace the GCN model’s graph convolution operator with the Graph-
SAGE convolution operator, which samples subgraphs and aggregates node information.
Compared with other node classifications based on individual graphs, our method con-
structs a set of batch images for multiple images, and based on this, different target nodes
are selected while ensuring inductivity. Furthermore, the number of sampled neighbor
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nodes in each network layer is fixed and does not include all of them. As a result, the
model’s generality is increased while the partial edges between nodes are reduced. The
constructed GCN structure consists of two convolutional layers activated by the ReLU
function, which are computed as follows:

Hl+1 = σ(∗G · H(l)) (3)

where σ represents the Relu activation function, H(l) is the input matrix of the graph
convolution layer, H0 = F, F is the node feature matrix, and ∗G is the graph convolution
operator. This differs from the traditional GCN in that the method of graph convolution
in the convolution layer of the computational neural network has changed. Thus, the
propagation between each layer is shown as follows. And because of the shortage and
randomness of the samples collected by the traditional GraphSAGE model, we address
the insufficient sampling points of image boundaries and the feature errors caused by
sampling with put-back in the traditional GraphSAGE algorithm by sampling the kth-
order neighbor nodes of the target node v for each iteration and sampling the target node
according to k = 1, . . . , K in order to reach the aggregation process according to k = K, . . . , 1
for the aggregation.

hk
v = σ

(
W · MEAN

({
hk−1

v

}⋃{
hk−1

u , ∀uϵN(v)
}))

(4)

hk
v =

hk
v∥∥hk
v
∥∥

2
, ∀vϵV(Normalization o f f eatures) (5)

W is the trainable weight matrix or parameter matrix, N : v = 2V is the neighborhood
function, and hk

v is the feature vector of node v in layer k. This graph convolution operator
connects the previous layer of the node hk−1

v with the aggregated neighborhood vector
hk

N(v) [31]. Finally, there is a softmax layer which is used to convert deep object features
into the final classification output.

Algorithm 1 gives the pseudo-code of the proposed method and describes it in detail.

Algorithm 1: Training SCGCN for Image Segmentation
ine Input: the forest fire image dataset D.
1. Segment images from D by SLIC.
2. Use CNN to extract features F =

{
f⃗1, f⃗2, . . . , f⃗v

}
.

3. Construct graph nodes V. Regions segmented by SLIC are used as graph nodes
V = {v1, v2, . . . , vn}.

4. Construct graph edges E. Take the first order adjacency relationship of a graph
node with the smallest weight as the edge of the graph.

5. Classify the graph nodes when the GCN trainning ends.
6. Assign the class of each node to the superpixel of this node.
Output: the semantic segmentation.

2.2.3. Loss Function

In this paper, we use a new loss function that aims to solve the problems arising from
the use of superpixels to generate graph structures and the use of GCN for graph node
classification [32,33]. The first is that, when utilizing SLIC for superpixel segmentation,
the number of pixel points included in each superpixel block is variable. Therefore, the
information of the pixel points carried by each superpixel block is not equal. Secondly,
there exists an imbalance in the classes of nodes in the graph, where samples from certain
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classes (e.g., small target fire spots vs. background) may be overlooked, leading to a loss in
performance. Given the aforementioned issues, the cross-entropy (CE) loss is defined as

Li = −biqilog
exp(pi,qi )

∑J
j=1 exp(pi,j)

(6)

where p is the ground truth, q is the target, b is a weight value that balances the instability
of the classification, J is the number of class, and b is defined as

bi =
N − ni

N
(7)

where N is the total number of pixel points and n is the number of pixel points in each class.
After calculating the loss of CE for each graph node to achieve class equilibrium, we apply
the weights of the superpixels to the loss

SLi = Si · Li (8)

where SLi is the superpixel loss in each node i. Si is the superpixel weight in each node i,
which is calculated as follows:

Si = − 1 + ϵ

log yi + ϵ
(9)

where yi is the normalized number of pixels in the superpixel generated in each node i. ϵ is
set at 10−5 to avoid zero division error. Finally, loss is calculated by the following equation.

SL =
1
N
([L1, . . . , LN ]

T [S1, . . . , SN ]) (10)

2.2.4. Evaluation Metrics

We introduced accuracy (Acc), F1-score [34], and MIoU to assess the segmentation
results quantitatively. The fraction of properly assigned pixels among all ground truth
pixels is represented by the recall, whereas the proportion of correctly predicted pixels is
represented by precision. The F1-score is a weighted harmonic of precision and recall. A
higher F1 score indicates better performance of the algorithm.

F1 =
2 × precision × recall

percision + recall
(11)

The accuracy ( Acc) and intersection ( IOU) are given by the following two equa-
tions, respectively.

Acc =
TP + TN

TP + TN + FP + FN
(12)

IOU =
TP

TP + FN + FP
(13)

TP represents the number of images labeled as fire and classified as fire, FP indicates
the number of images labeled as fire and classified as no fire, FN denotes the number of
images labeled as no fire but classified as fire, and TN stands for the number of images
labeled as no fire and classified as no fire.

Each class’s intersection-over-union ( IoU) is utilized as an assessment measure. IoU,
also known as Jaccard’s index, is a statistic that indicates sample similarity and diversity.
IoU, which measures the spatial overlap between the predicted results and the ground truth
in image segmentation, is the ratio of the intersection of pixel-wise classification results
and ground truth. In order to measure the model fairly, we utilize the mean value of IoUs,
which is indicated as

mIoU =
1
N

N

∑
i=1

Pi ∩ Gi
Pi ∪ Gi

(14)
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where Pi and Gi refer to the predicted result and corresponding ground truth label for the
i-th image, respectively.

2.2.5. Implementation Details

In this experiment, superpixel blocks of each image are generated using SLIC. Because
the shape of the superpixels is irregular, we extract all of the superpixels from each image
to save them as images individually. GCN is applied to segment forest fire images. The
GCN model uses the edges around the nodes to train node characteristics; the process is
the same as standard semantic segmentation except a graph network is used in place of the
encoder–decoder structure.

For our model, GraphSAGE is used as the convolution filter. GraphSAGE consists of
two graph convolution layers, an initial learning rate of 0.001, a batch size of four images,
an Adam optimizer with an attenuation of 0.0001, two GCN layers, and 300 simulated
training sessions. All experiments were performed on the Pytorch framework on NVIDIA
GeForce RTX 3090 GPU.

In this paper, we use the CNN for deep feature extraction of superpixel blocks. Because
of the irregular shape of the superpixel blocks, it is difficult to extract their features directly,
so we extract the superpixel blocks of each image separately, set their size to 48*48, and set
the blank area pixel value to 0.

We use our CNN to extract the features of superpixels. The CNN network consists of
five convolutional layers, three pooling layers, and one fully connected layer, where the
fully connected layer converts the feature matrix into a one-dimensional feature vector.
In the deep network, the image input size is 48*48, the normalization layer (BN) and
rectified linear unit (ReLU) activation function are used to improve the efficiency, and the
maximum pooling layer is added after layers 1, 2, and 5 of the network to reduce the data
dimensionality and improve the robustness of feature extraction. A 5*5 convolutional filter
is used in layer 1, layer 2, and layer 3, a 3*3 convolution filter is used in layer 4, and a 2*2
convolution filter is used in layer 5. Finally, a 50-dimensional pixel feature is obtained as
the feature of the superpixel block through a fully connected layer.

3. Experimental Results

In this section, we will introduce the experimental results, and analysis will follow.

3.1. Results of FLAME Dataset

To observe the segmentation effect of the dataset used in this paper under differ-
ent models, we compared four existing methods with our SCGCN model, including
Deeplabv3+ [35], Unet++ [36], HRnet [37], and PSPnet [38]. It is worth noting that, to
ensure comparability of predictions, we maintained identical experimental configurations
for training all models and ensured consistency in other parameters.

To validate our model, SCGCN was compared with three state-of-the-art deep learning
methods: Deeplabv3+ [35], Unet++ [36], HRnet [37], and PSPnet [38]. The experimental
results obtained from this dataset are shown in Table 1, where the F1 score was chosen as
the evaluation metric in order to directly reflect the segmentation effect. The experimental
results show that our method not only outperforms other algorithms in terms of F1 scores
but also performs best in terms of MIoU and Acc.

Table 1. Comparison results between different segmentation models.

Method MIoU (%) Acc (%) F1 (%)

PSPnet [38] 34.65 47.56 74.32
Deeplabv3+ [35] 69.40 81.85 82.02

Unet++ [36] 79.52 86.68 90.60
HRnet [37] 77.71 85.70 88.28

SCGCN (ours) 79.87 87.53 91.69
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To facilitate a visual comparison of the segmentation performance between our model
and the four other models, we have carefully chosen four images from the test dataset
to illustrate the prediction results, as depicted in Figure 6. Upon examining the figure, it
becomes evident that Unet++ [36] and our SCGCN model exhibit superior segmentation
effects, accurately delineating the shape of forest fires. In contrast, PSPnet [38] displays
the poorest performance, only approximating the shape of the forest fires. Furthermore,
our model demonstrates better segmentation recognition for small target fire points, as
indicated by the blue boxes in the figure. However, recognition errors remain significant
for heavily obscured fires.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 6. Results from testing images. (a) Original images, (b) ground truth, (c) DeepLabv3+,
(d) Unet++, (e) HRnet, (f) PSPnet, (g) SCGCN.

3.2. Results of Chongli Dataset

We conducted experiments on the Chongli dataset to evaluate the performance of
our technique, comparing it with existing segmentation models such as Deeplabv3+ [35],
Unet++ [36], HRnet [37], and PSPnet [38]. Several representative images from the test
dataset were selected, and the corresponding prediction results are presented in Figure 7.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 7. Results from testing images. (a) Original images, (b) ground truth, (c) PSPnet, (d) HRnet,
(e) Deeplabv3+, (f) Unet++, (g) SCGCN.

By observing Figure 7, it becomes evident that PSPnet [38] only approximates the
shape of the fire and lacks accurate segmentation. Conversely, Unet++ [36], HRnet [37],
Deeplabv3+ [35], and our SCGCN can segment the fire more accurately, but Deeplabv3+ [35]
has the phenomenon of under-segmentation, and while Unet++ [36] achieves a better
segmentation effect, the model’s fire shape lacks detail compared to our SCGCN model, as
shown by the red boxes in the figure.

Table 2 demonstrates the segmentation results of Deeplabv3+ [35], Unet++ [36], HR-
net [37], PSPnet [38], and SCGCN on the Chongli dataset. SCGCN clearly attained the
best performance outcomes. Using the F1 score as an example, SCGCN scored at 97.56%,
which is higher than PSPNet (79.12%), Deeplabv3+ (91.72%), HRnet (92.31%), and Unet++
(96.09%), demonstrating that our model is suitable for forest fire segmentation.

Table 2. Comparison results between different segmentation models.

Method MIoU (%) Acc (%) F1 (%)

PSPnet [38] 56.0 65.71 79.12
Deeplabv3+ [35] 83.65 90.48 91.72

Unet++ [36] 91.50 95.04 96.09
HRnet [37] 88.54 93.65 92.31

SCGCN (ours) 92.34 96.69 97.56
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3.3. Superpixel Number

Superpixels are built from a succession of hyperpixel blocks made up of pixel points
that are next to each other and share characteristics such as color, brightness, texture,
and others [39]. These superpixel blocks mainly preserve relevant information for image
segmentation and generally do not damage object boundary information in the image.
The resolution of the segmentation result is determined by the size of the superpixels. If
the superpixel is too big, the segmentation result will lose a significant amount of edge
information. On the contrary, superpixels that are too small will introduce more noise in
the result and increase the computational burden of data segmentation [40]. With different
numbers of superpixels, the features extracted by the nodes are different, and the image
features contained in the whole picture are also different. In general, for image data, the
greater the number of superpixels and the greater the number of nodes, the richer the
information contained in the graph and the closer the features of the graph are to the
features of the original image. Figures 8 and 9 depict the effect of superpixelation on the
FLAME and Chongli datasets, where the number of superpixels from top to bottom is 50,
100, and 150, respectively. The visual characteristics are equally identical to those of the
superpixelated picture with 150 superpixels.

Figure 8. The segmentation by SLIC of FLAME dataset. (a) Examples of the original images. (b,c) The
superpixel representation for FLAME dataset; K is the number of superpixels (nodes in our graphs).

Figure 10 illustrates the F1 score variation with different numbers of superpixels on
both the FLAME dataset and the Chongli dataset. The horizontal coordinate is the number
of superpixels contained in a single test plot, the FLAME dataset ranges from 1000 to 2600,
and the size of the superpixels decreases as the number increases. From the figure, we can
observe that the overall accuracy shows an increasing trend from 1000 to 2000 and reaches
a maximum value at 2000. Therefore, each image of our FLAME dataset was segmented
into about 2000 superpixels. Since the image of the Chongli dataset was 1920*1080, the
number of pixels in a superpixel ranged between 100 and 1000. The overall trend is up from
100 to 800, and the highest value is at 800. Therefore, each image of our Chongli dataset
was segmented into about 800 superpixels. We also observed that the model performance
tends to stabilize after surpassing a certain number of superpixels. This indicates a point
of diminishing returns, where additional superpixels no longer contribute significantly to
performance improvement. Our current hypothesis is that the complexity introduced by
an excess of superpixels may not necessarily translate into better feature representation for
the model. Additionally, the increase in computational costs and memory requirements
with more superpixels may not be feasible for practical applications. While there may
theoretically exist a possibility of achieving another peak in performance with further
increases in the number of superpixels, our observations and current understanding of the
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model suggest that the likelihood of achieving significant improvements is minimal. The
model appears to be approaching an asymptote of performance, indicating that our choice
is nearing an optimal balance between superpixel resolution and model capability.

Figure 9. The segmentation by SLIC of Chongli dataset. (a) Examples of the original images. (b,c) The
superpixel representation for Chongli dataset; K is the number of superpixels (nodes in our graphs).

(a) (b)

Figure 10. Performance comparisons of different superpixel numbers when evaluating with FLAME
and Chongli datasets. (a) FLAME dataset; (b) Chongli dataset.

3.4. Ablation Experiment

GCN, as an advanced image segmentation model, has achieved good results in the
classification and recognition of forest fires. However, there is still room for improvement
in its performance. In this article, we improved the GCN model and conducted a series of
ablation experiments to verify the effectiveness and rationality of our model. Table 3 shows
the ablation studies on the FLAME dataset. Specifically, we compared the original GCN
with the traditional loss function model after combining superpixels. From Table 3, we
observed that when we replaced the convolution operator in GCN with the GraphSAGE
convolution operator, the MIoU value of the model increased by 0.98%. When we replaced
the loss function with the SL new loss function proposed in this paper, the MIoU value
of the model increased by 3.36%, and our model achieved the best overall effect. Table 4
shows the ablation studies on the Chongli dataset. When compared in the same way, when
we replaced the convolution operator in GCN with the GraphSAGE convolution operator,
the MIoU value of the model increased by 3.14%. When we replaced the loss function with
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the new SL loss function proposed in this paper, the MIoU value of the model increased by
4.69%. Overall, our model also achieved the best performance.

Table 3. Ablation study on FLAME dataset.

Method MIoU (%) Acc (%) F1 (%)

GCN + SLIC + CE 76.51 83.46 86.23
GraphSAGE + SLIC + CE 77.49 86.23 89.61

GraphSAGE + SLIC + SL (ours) 79.87 87.53 91.69

Table 4. Ablation study on Chongli dataset.

Method MIoU (%) Acc (%) F1 (%)

GCN + SLIC + CE 87.65 91.26 93.58
GraphSAGE + SLIC + CE 90.79 95.87 95.70

GraphSAGE + SLIC + SL (ours) 92.34 96.69 97.56

4. Discussion

Forest fires are dynamic objects with shapes that constantly change and textures that
are difficult to accurately depict [41]. Traditional methods have advantages in forest fire
recognition in terms of speed and accuracy. For instance, Zheng et al. [42] proposed an
improved dynamic convolutional neural network (DCNN) model based on a traditional
DCNN model that can accurately identify forest fires. However, in complex situations,
such as capturing small fires from the perspective of a drone, traditional methods often
face challenges. Small target fires and irregular fire shapes make it difficult for traditional
methods to accurately segment fires, and edge processing is not detailed enough.

Cao et al. [43] proposed a segmentation detection algorithm called YOLO-SF. This algo-
rithm combines instance segmentation technology with the YOLOv7-Tiny object detection
algorithm, achieving high accuracy in detecting and segmenting large target fire images.
However, this method has certain limitations in handling small target fires and capturing
boundaries accurately. Therefore, based on these issues, this study proposes a new method,
namely the SCGCN model, based on superpixels and graph convolutional networks, for
forest fire image segmentation. The SCGCN model fully utilizes the information of graph
structure and employs the SLIC method as a preprocessing technique to enhance the seg-
mentation of forest fire edges. Additionally, we replace the graph convolution operator in
the GCN with GraphSAGE to integrate additional spatial scale information and enhance
the model’s generalization capabilities for new nodes. Compared to traditional methods,
our approach performs better at segmenting small target fires and capturing boundaries.

The experimental results demonstrate that using the SCGCN model for forest fire
image segmentation has significant advantages and potential value in practical applications.
This finding provides new methods and tools for forest fire monitoring and management.
Future research can further explore how to optimize the model to adapt to different types
of forest fires and environmental conditions.

5. Conclusions

We propose a novel approach, the superpixel-based graph convolutional network
(SCGCN), to tackle the challenge of forest fire segmentation. Our contributions are as
follows: (1) Utilizing the SLIC algorithm, we preprocess the image to convert it into
a graph structure, enhancing segmentation efficiency and accurately capturing forest
fire edges. (2) We introduce a new loss function to tackle the challenges posed by class
and superpixel size imbalances. (3) We replace the graph convolution operator with the
GraphSAGE operator, enabling the extraction of more subgraphs from smaller classes
and improving model generalization by mitigating biased edges. The effectiveness of
the SCGCN model has been validated on two datasets. Future research will focus on the
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model’s ability to identify objects in satellite remote sensing images, as well as integrating
satellite multimodal data, such as data from different sensors or multispectral images, to
support forest fire segmentation.
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