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Abstract: Unmanned aerial vehicle (UAV) technology has witnessed widespread utilization in target
surveillance activities. However, cooperative multiple UAVs for the identification of multiple targets
poses a significant challenge due to the susceptibility of individual UAVs to false positive (FP) and
false negative (FN) target detections. Specifically, the primary challenge addressed in this study stems
from the weak discriminability of features in Synthetic Aperture Radar (SAR) imaging targets, leading
to a high false alarm rate in SAR target detection. Additionally, the uncontrollable false alarm rate
during electro-optical proximity detection results in an elevated false alarm rate as well. Consequently,
a cumulative error propagation problem arises when SAR and electro-optical observations of the
same target from different perspectives occur at different times. This paper delves into the target
association problem within the realm of collaborative detection involving multiple unmanned aerial
vehicles. We first propose an improved triplet loss function to effectively assess the similarity of
targets detected by multiple UAVs, mitigating false positives and negatives. Then, a consistent
discrimination algorithm is described for targets in multi-perspective scenarios using distributed
computing. We established a multi-UAV multi-target detection database to alleviate training and
validation issues for algorithms in this complex scenario. Our proposed method demonstrates a
superior correlation performance compared to state-of-the-art networks.

Keywords: unmanned aerial vehicle; multi-target recognition; multi-objective matching; target
tracking; target drones

1. Introduction

The development of deep learning technology has greatly improved the accuracy of
multi-target recognition algorithms employed in a wide variety of fields, including public
surveillance. Multi-target matching for multiple unmanned aerial vehicles (UAVs) has
important applications in military, production, multimedia and other fields. However,
surveillance algorithms in multi-target associations for multiple unmanned aerial vehicles
(UAVs) are still subject to a number of deficiencies and still challenging. There still exist
technical challenges, especially in the collaborative perception tasks between drone swarms
and external sensors such as satellites. This is because it involves the mutual coordination
of the two processes of multi-target detection and matching (as shown in Figure 1).

The process of multi-target matching for multiple UAVs can be considered a process of
association or correlation, whereby the same targets in the images captured by a surveilling
group of UAVs within a given environment are properly associated for all image data
captured by the UAVs in the group. Most research focused on the multi-target correla-
tion problem formulates the decision-making strategy of UAVs as a regional monitoring
problem, in which the applied correlation objective function usually requires UAVs to
reduce their target tracking error by covering all targets over a large monitoring area. It is
generally possible for UAVs to track all targets over a large coverage area when the number
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of UAVs is less than the number of targets [1–5]. Moreover, the guidance target function
applied in multi-target tracking usually seeks to minimize the uncertainty of the current
observation of a target, which is represented according to information entropy. However, it
is inevitable that some targets will not be observable by all UAVs at a given time [6–10].
Therefore, the possibility that some targets will not be detected by all UAVs in the area must
be considered when constructing the correlation objective function. One way to address
this possibility is to add a multiplier to the correlation objective function representing
the detection probability. In addition, the multi-target association task involving multiple
UAVs still suffers from a number of problems, including a reliable means of determining
the occurrence of FP and FN target detections and a method for improving the consistency
of multi-target association for multiple UAVs [11].
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Figure 1. From single- to multi-UAV missions.

This paper investigates the target association problem in the context of collaborative
detection involving multiple unmanned aerial vehicles (UAVs). The challenge of this
problem lies in the weak discriminability of features for Synthetic Aperture Radar (SAR)
imaging targets, leading to a high false alarm rate in SAR target detection. Compared to
optical sensors, SAR sensors have a lower imaging quality. However, due to their ability
to cover large areas, they often become a crucial means for detecting and searching for
specific targets in designated regions of interest. Simultaneously, the uncontrollable false
alarm rate during electro-optical proximity detection results in a high false alarm rate
as well. Consequently, the cumulative error propagation problem arises when SAR and
electro-optical observations of the same target from different perspectives occur at different
times. This paper proposes a neural network-based approach to address the problems of
multi-target association and tracking.

The main contributions include the following:

a. An improved triplet loss function was constructed to effectively assess the similarity
of targets detected by multiple UAVs.
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b. A consistency discrimination algorithm is proposed for targets from multiple per-
spectives based on distributed computing. On UAVs equipped with optical sensors,
the algorithm utilizes optical image features and the relative relationships between
targets to achieve consistency discrimination in scenarios with a high false alarm
rate. On UAVs equipped with SAR sensors, the algorithm employs SAR-detected
local situational information and optical image detection for consistency judgment,
effectively achieving consistency judgment from a global perspective.

c. A multi-UAV multi-target detection database is established, and an open-source core
code was developed, addressing the training and validation issues for algorithms in
this scenario.

2. Related Work
2.1. Object Detection Algorithms

Object detection algorithms can be divided into single-stage and two-stage algorithms.
Single-stage object detection algorithms are mainly divided into two types: anchor based
and anchor free. Typical anchor-based algorithms include you only look once (YOLO)
and single-shot detector (SSD). YOLO divides the input image into cells, and a bounding
box prediction is performed for each cell [12–15]. Similarly, SSD predicts the confidence
and offset of a set of anchor targets of different sizes using a Feature Pyramid Network
(FPN) structure [16]. However, such anchor-based object detection algorithms require a
reasonable anchor hyperparameter, which is often not suitable. Therefore, anchor-free
object detection algorithms have been designed to avoid this issue by detecting objects
through the prediction of key points instead of bounding boxes. Representative anchor-free
models include CornerNet, CenterNet, FCOS, NanoDet, ExtremeNet, and TTFNet. In
contrast to single-stage object detection algorithms, two-stage algorithms apply a region
proposal network (RPN) for foreground–background classification [17–22]. The features
extracted from the region of interest (ROI) proposed in the RPN are passed to a classification
head to determine the class label, and to a regression head to determine the boundary box
position [16]. A representative two-stage object detection algorithm employs a region-based
convolutional neural network (R-CNN) [23]. This algorithm first selects regions that may
contain targets through a candidate region generation method [24]. Then, a CNN is used to
extract feature representations for each region. These features are input into a classifier to
determine whether the target is included in an image, and input as well into a regression
head to locate the target position accurately. Finally, the target detection results are obtained
through post-processing steps. The fast-RCNN object detection algorithm improves the
speed of the standard R-CNN algorithm by applying a CNN to extract the features of the
entire image directly, and then applying an ROI pooling layer to obtain the features corre-
sponding to the proposed region of the image [25]. However, the real-time performance is
still not ideal. In contrast, ThunderNet has achieved a two-stage object detection algorithm
with real-time performance using an efficient RPN and a small backbone network [26].
However, not all algorithms can directly adapt to multi-target recognition tasks in UAV
scenarios. Considering this, we combined existing modules suitable for UAV scenarios to
obtain a multi-target recognition model suitable for this scenario.

2.2. Data Association for Multi-Target and Multi-Camera Tracking

Multi-target and multi-camera tracking (MTMCT) technology can be mainly divided
into two categories: correlation clustering and sliding time window schemes. Correlation
clustering calculates the correlation of features between different detected targets, and
then produces clusters of these correlations for data association. For example, correlations
in target appearance and motion have been combined to improve the data association
effect. The sliding time window technique performs data association within a relatively
small range associated with a window of time, while utilizing a priori knowledge that the
probability of the continuous occurrence of targets within the time window considered is
higher [27]. First, the bounding boxes detected over the time window are connected to
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form tracklets [28,29]. Then, these tracklets are associated into target trajectories for each
individual camera using a shorter sliding window. Finally, a longer sliding window is
applied to match these target trajectories across different cameras. For UAV scenarios, SAR
data related to the target can generally be obtained. This study used SAR data and image
data to jointly address the target association task and propose a more accurate UAV target
association model [30].

3. Proposed Algorithm

The overall multi-target association scheme proposed in this paper is illustrated in
Figure 2 for two UAVs denoted as UAV 1 and UAV 2. In detail, the scheme is mainly com-
posed of five components, including image enhancement modules and target recognition
networks for the image data captured by individual UAVs, an association feature extraction
network, an algorithm for eliminating false pedestrian detections and correcting missed
pedestrian detections for the image data captured by individual UAVs, and an algorithm
facilitating the multi-target matching of multiple UAVs.
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3.1. Image Enhancement

The image enhancement module employed in the present work based on the MIRNet
model is illustrated in Figure 3. As can be seen, the main body of the module consists of
dual attention units (DAUs) composed of p multi-scale residual blocks (MRBs), where each
MRB is mainly composed of a kernel selection feature fusion module, a dual attention unit,
and a residual adjustment module. For a given image, the network first extracts its low-
level feature, which is then applied to obtain deep features through N recursive residual
groups (RRGs), where a cyclic residual group consists of two convolutional layers and P
multi-scale residual blocks (MRB). The feature is convolved once to obtain the residual
image, and the original image I is combined with R to obtain the final enhanced image. The
network structure also allows information exchange across parallel streams via selective
kernel feature fusion (SKFF), which helps to consolidate high-resolution features using
low-resolution features, and vice versa.
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3.2. Target Recognition

The overall target recognition network architecture is illustrated in Figure 4, and it is
composed of a backbone network, neck network, and head network. The backbone network
is applied for extracting features from the images. Here, ResNet-50 and Darknet-53 CNN-
based architectures are typically employed for feature extraction. The neck network resides
between the backbone network and the head network, and it is applied for extracting
features with more complex targets or strong semantic information. The head network
is mainly used to make predictions regarding the type and location of targets using the
features extracted from the backbone and neck networks.
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3.2.1. Backbone Network

The present work applied the new CSP-Darknet-53 architecture as a backbone network
for feature extraction [31]. The standard CONV-BN-SiLU network unit is composed of a con-
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volution (CONV) operation with convolution kernel sizes that were mostly 3 × 3 and 1 × 1,
the batch normalization (BN) process, and a sigmoid weighted linear unit (SiLU) activation
function. The CONV operation can reduce the number of model parameters and improve
the training speed to some extent. The BN process can avoid overfitting the network model
during training, prevent gradient explosion and gradient disappearance, and accelerate
the convergence speed. The SiLU function is computed as SiLU(x) = x·sigmoid(x). Unlike
the linear rectifier unit (ReLU) function and other commonly used activation functions, the
SiLU function is not monotonically increasing. For x ≈ −1.28, the global minimum value of
SiLU(x) is about −0.28. The most positive feature of the SiLU activation function is that it is
self-stable. The global minimum obtained during the training process under a zero-gradient
condition acts as a flexible limit in the obtained network weights, and thereby inhibits the
learning of a large number of weights. As can be seen in Figure 4, the CONV-BN-SiLU units
are used in conjunction with efficient layer aggregation networks (ELANs) and maximum
pooling (MP) layers, and the outputs are submitted to the neck network.

3.2.2. Neck Network

While the sizes of input images have no effect on the parameters of the convolution
layers, they do affect the parameters of the fully connected layers because these layers
must be connected to all pixels in an input image. Therefore, the fixed length constraint
was applied to the fully connected layers. Then, a spatial pyramid pooling (SPP) network,
CSPnet, and a Conv-BN-LeakyReLU (SPPCSPC) structure were connected to the pyramid
pooling layer of the backbone network. In this way, the network can accept input images of
arbitrary sizes and generate a fixed-size output. The upsampling method applied in the
neck network was nearest neighbor interpolation.

The present work applied an improved SPP network, denoted as the SPP fast (SPPF)
network, which serializes the input through multiple 5 × 5 MP layers, where the calculation
results obtained from two 5 × 5 MP layers in series are equivalent to those obtained from a
single 9 × 9 MP layer. Similarly, the calculation results obtained from three 5 × 5 MP layers
in series are equivalent to those obtained from a single 13 × 13 MP layer. Accordingly,
the SPPF network involves fewer parameters, and can therefore provide greatly improved
training and prediction speeds. The feature information is output to the head network after
being remapped by the ELAN-Higher (ELAN-H) modules, which are an extension of the
ELAN module with enhanced network learning capabilities.

3.2.3. Head Network

As can be seen, the outputs of the neck network are input into the RepVGG (REP)
block, which is a VGG convolutional architecture applied in the head network. After
passing through CONV operations, the head network outputs predictions based on the
features extracted from the backbone and neck networks. Some recognition results are
illustrated in Figure 2 as well.

3.3. Association Feature Extraction

The input images processed by the image enhancement module are also input into the
association feature extraction network composed of a CNN architecture, which included
standard components, such as a deep neural network for convolution calculation, MP
downsampling layers, and BN processes. The loss functions applied during network
training included triple loss, center loss, and category (instance) loss functions. However,
the number of categories considered during testing is usually different from that considered
during training because the feature vectors obtained prior to the last fully connected
layer are used for prediction, and equivalent instances are determined by comparing the
similarity of the corresponding feature vectors obtained for different images.
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3.4. Matching Based on Individual UAVs

The different perspectives of different UAVs ensure that the number of actual targets
detected by the different UAVs traversing a given area can also be different. Therefore,
the present work matched the boundary boxes between the different frames of a target
detected by a single UAV over time in accordance with the IoU evaluation metric. These
matching results are then combined with geographical relationships to associate the target
matched by an individual UAV over time with a global target. This local process for each
individual UAV is summarized in Algorithm 1, and it is described in detail as follows.

We first build a global array Mi to store all information Nt
i for a given target retained by

the i-th UAV during its traversal of the monitoring area, which includes the geographical
location of the target, its prediction category, category confidence, frame coordinates,
number of consecutive frames, and the number of times the target is matched over some
number of consecutive frames (i.e., the number of matches). The first frame in a set of
consecutive frames is denoted as frame 1, and the number of matches for this target is
initially set as 0. In addition, the information pertaining to a given target detected by the
i-th UAV in each frame t(t = 1, 2, 3, . . .) is stored in another array Nt

i . When t = 1, Mi = N1
i .

For t > 1, each frame is evaluated on whether the target border information stored in Nt
i is

the same as that in Mi based on the IoU calculated as follows:

IoU =
A ∩ B
A ∪ B

, (1)

where A and B respectively correspond to the collection of border coordinates of the targets
in Nt

i and Mi. IoU stands for Intersection over Union. It is a key metric for assessing the
reliability of object detection. A refers to the ground truth box, and B refers to the predicted
box. The IoU value ranges from 0 to 1, where a higher IoU indicates greater reliability in
object detection.

Target matching is based on the value of a threshold α according to the condition
of IoU > α, where α was set herein as 0.6. Under a matching condition, the information
of a given target in Mi is updated by taking the target in Mi with the largest calculated
IoU value, adding 1 to the number of matches for the target, and then comparing the
category confidence of the target in Mi with the category confidence of the target in Nt

i .
If the category confidence of the target in Nt

i is greater, the category, category confidence,
border coordinates, and geographic location information of the target in Mi is updated.
Otherwise, the information pertaining to this target in Mi is not updated. In contrast, under
a condition of not matching when the IoU ≤ α, the target information in Nt

i is added to Mi
as an element.

This process is conducted for each target in Mi. If the number of matches Nmatch is
greater than or equal to three in five consecutive frames, then the target is considered to be
a real target, and its information is retained in Mi. This process results in the collection of
N real targets in Mi. For each real target, we calculate the vector between this target and
the remaining n targets in Mi as the relative position relationship, and a total of n relative
position relationships are obtained.

These relative position relationship results are compared with the corresponding
points in the SAR data obtained for the area traversed by the UAVs. More specifically, we
calculate the cosine similarity between these relative position relationships and the relative
position relationships corresponding to the points in the SAR data. The cosine similarity
Scos between two vectors a and b is calculated as follows:

Scos =
a·b

∥a∥∥b∥ (2)

We take the n targets with the largest cosine similarity and divide it by the number
of remaining targets not including the target to be queried (i.e., n), which represents the
cosine similarity between the current target and the target to be matched. Finally, the
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cosine similarity of all targets is obtained, and these values are employed to determine the
occurrence of FP target detections.

To this end, if the cosine similarity of the relative position relationship between a target
to be matched in the UAV image data and the corresponding target in the SAR data is less
than a threshold value β, which was set as 0.8 in the present work, the target observed
in the SAR data is considered a false detection. Otherwise, we find the target in the SAR
data with the largest cosine similarity, take it as the final matching result of the target to
be associated in the UAV data, and write its number and category into the final result of
UAV target association (for example, A_2 is the second instance of object category A in
the detection). If the number of matches is less than three in five consecutive frames, the
target is considered a false target, and its pertinent information is removed from Mi. If the
number of matches is less than three but the number of consecutive frames of the target is
less than five, we increment the consecutive frames by 1, and then use the same threshold
and similarity calculation method in this new frame to determine whether the current
target is retained.

Applying the above process to the targets detected by each UAV ensures that all
legitimate target information is retained, and illegitimate information is avoided to the
greatest extent possible.

Algorithm 1 Multi-target matching process for individual UAVs that eliminates false pedestrian
detections and corrects missed pedestrian detections

1: Input: multi-target recognition images, and features extracted from the target recognition
network and corresponding SAR data
2: Apply input to define a global array Mi with all pertinent multi-target information
3: While not the last video frame captured by the i-th UAV
4: Define array Nt

i with information pertaining to a given target detected by the i-th UAV in each
frame t (t = 1, 2, 3, . . .)
5: Calculate the IoU value of the target border information stored in Nt

i and the target border
information stored in Mi separately according to Equation (1)
6: If IoU > α

7: Take the largest calculated IoU value corresponding to the target in Mi
8: Increment Nmatch for the corresponding target in Mi by 1
9: If the confidence of the target classification in Mi is less than or equal to the corresponding
confidence in Nt

i
10: Update the target information in Mi with the information in Nt

i
11: Else if IoU ≤ α

12: Add target information in Nt
i to Mi as an element

13: For each target in Mi
14: If Nmatch ≥ 3 in 5 consecutive frames
15: Set this target as the subject of query
16: Calculate the relative position relationships between this target and the remain-ing n
targets in Mi
17: Compare these relative positions with the corresponding relative positions of the points in
the SAR data based on the Scos defined in Equation (2)
18: If Scos < β

19: The target in SAR data is a false detection
20: Else
21: Find the target in the SAR data with the largest Scos and use it as the final matching
result of the target to be associated with the UAV image data
22: Else
23: Remove the target from Mi

3.5. Matching Based on Multiple UAVs

The different perspectives of UAVs ensure that the targets detected by different UAVs
are subject to relative position relationships in space. These relative position relationships
were employed in the present work to associate the targets detected by different UAVs with
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a single global target based on the features extracted from the association feature network
and corresponding SAR data.

In terms of the system illustrated in Figure 2, the present discussion assumes that the
monitoring system includes only UAV 1 and UAV 2, where the total number of targets
detected by UAV 1 is n1, and the total number of targets detected by UAV 2 is n2. The pro-
posed multi-target association algorithm for multiple UAVs is summarized in Algorithm 2.
In detail, the possible values of n1 and n2 have some logical bearing on the target association
process, which can be defined according to the following four conditions:

(1) When n1 + n1 ≤ 1, the relative position relationships cannot be matched because no
relative position relationships can be obtained, and UAV target data cannot be associated
with the targets in the SAR data.

(2) When n1 = 1 and n2 ≥ 1, we first calculate the correlation similarity S between
the apparent features of all targets detected by UAV 1 and UAV 2. If S > α for the pair of
targets detected by UAV 1 and UAV 2 with the largest value of S, the targets are assumed
to match, and the category of the target is set according to the category with the greatest
confidence among the two detection results. Then, the relative position relationships of
the targets detected by UAV 2 are compared with the corresponding relative position
relationships in the SAR data according to the following method, where it is assumed that
n2 = 2 as an example.

We set the single target obtained by UAV 1 as the target to be queried and set its
geographical location as (x1, y1). Similarly, we set the geographical locations of the two
targets obtained by UAV 2 as (x2, y2) and (x3, y3). The relative position relationships
can therefore be expressed as (x2−x1, y2−y1) and (x3−x1, y3−y1). The cosine similarity
between these two relative positions and the relative position corresponding to the point of
the SAR data is calculated, and it is denoted herein as S. We take the two targets with the
largest cosine similarity and divide it by the number of remaining targets except the target
to be queried (assumed to be 2 here), that is, the cosine similarity of the target corresponding
to the target to be matched, and finally obtain the cosine similarity of the target. A false
detection condition is again assessed by comparing the cosine similarity of the relative
position relationship between the UAV target to be matched and the corresponding SAR
target data with the threshold β. If the cosine similarity is less than or equal to β, the target
in the SAR data is assumed to be a false detection. Otherwise, the matching is deemed
successful, and the target in the SAR data with the largest cosine similarity is taken as the
final matching result with the target to be associated in the UAV data. The corresponding
number and position in the SAR data and the category obtained from the matching between
the UAV and the UAV are written into the final UAV target association result.

(3) When n1 > 1 and n2 = 1, the condition is similar to that of the second case. Again, S
is calculated for all targets detected by UAV 1 and UAV 2. If S > α for the pair of targets
detected by UAV 1 and UAV 2 with the largest value of S, the targets are assumed to match,
and the category of the target is set according to the category with the greatest confidence
among the two detection results. However, under this condition, we set the single target
obtained by UAV 2 as the target to be queried when establishing the relative position
relationships and applying the cosine similarity to determine the matching condition, as
discussed for condition (2) above.

(4) When n1 > 1 and n2 > 1, we first calculate the association similarity between
the apparent features of all targets detected by UAV 1 and UAV 2, which yields a cor-
relation similarity matrix An1,n2 of dimensions n1×n2. If the largest element in An1,n2

(i.e., Ai,j = max{Ai,*}) is greater than a threshold γ (set as 0.8 herein), the two targets are
assumed to match, and the category of the target is set according to the category with the
greatest confidence among the two detection results.

However, a condition of Ai,j ≤ γ requires additional processing. First, if Ai,j < δ

(set as 0.5 herein), the matching of the two targets is assumed to have failed, and the
coordinate points are discarded. Otherwise, if δ ≥ Ai,j < γ, additional verification is
needed in combination with the relative position relationships between the UAV targets,
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where a single target obtained by either UAV 1 or UAV 2 is selected as the target to be
queried depending on whether n1 ≥ n2 (select the UAV 1 target) or n1 <n2 (select the
UAV 2 target). We then calculate the cosine similarity between the relative position vector
obtained between the selected target and the other targets of the two UAVs, and two targets
are assumed to match when the largest cosine similarity is greater than a threshold ε (set as
0.9 herein).

Algorithm 2 Multi-target association algorithm for multiple UAVs

0: Input: multi-target association features obtained from the association feature extraction
network and corresponding SAR data
1: Set n1 = number of targets detected by UAV 1
2: Set n2 = number of targets detected by UAV 2
3: If n1 ≤ 1 and n2 ≤ 1
4: No positional relationship matching possible
5: If n1= 1 and n2 > 1
6: Set S = maximum{Scos between the apparent features of all targets detected by UAV 1 and
UAV 2}
7: If S > α, matching successful
8: Set the target category according to the category with the greatest confidence among the
two detection results
9: Match the relative positions of UAV 2 targets with the corresponding targets in the SAR
data one by one
10: Else
11: No action taken
12: If n1 > 1 and n2 = 1
13: S = maximum{Scos between the apparent features of all targets detected by UAV 1 and
UAV 2}
14: If S > α, matching successful
15: Set the target category according to the category with the greatest confidence among the
two detection results
16: Match the relative positions of UAV 1 targets with the corresponding targets in the SAR
data one by one
17: Else
18: No action taken
19: If n1 > 1 and n2 > 1
20: Set An1,n2 = Scos between the apparent features of all targets detected by UAV 1 and UAV 2
21: Ai,j = max

{
Ai,∗

}
22: If Ai,j > γ

23: Set the target category according to the category with the greatest confidence among the
two detection results
24: If Ai,j < δ, matching has failed
25: Discard all target information
26: If δ < Ai,j < γ

27: Verification based on the value of Scos calculated for the relative position vector obtained
between the selected target and the other targets of the two UAVs
28: If max{Scos } > ε

29: Two targets are matched. Set the target category according to the category with the
greatest confidence among the two detection results

4. Experiments
4.1. Training the Model

During the training phase, the model’s loss functions include Box Loss, Objectness
Loss, and Classification Loss. The curves depicting the changes in training loss and
evaluation metrics during the training process are shown in Figure 5. It can be observed
that with an increase in the number of training iterations, various losses on the training set
exhibit a decreasing trend, gradually converging. The precision and recall on the validation
set show upward trends with the number of training iterations, ultimately reaching stability.
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4.2. Datasets

Few public datasets are available specifically for the multi-target association task
involving multiple UAVs with vehicle targets. Therefore, we constructed an appropriate
dataset for this task and made it public at http://103.30.41.98/ (accessed on 31 January
2024) The dataset displays results of target imaging by UAVs from various flight altitudes
and perspectives. The spaceborne Synthetic Aperture Radar (SAR) images along with the
corresponding object detection results are shown in Figure 6. The dataset is composed
of 400 multi-target images in the training dataset and 200 multi-target images in the
testing dataset. Each image in the dataset includes three to five targets. The images
were modeled and rendered using the Blender 3D modeling tool to ensure that their
characteristics are similar to what would be obtained under actual working conditions.
We manually added FP and FN target detections to the training and testing datasets to
facilitate a quantitative analysis of the target matching performance. An example of these
conditions is illustrated in Figure 7. Here, four cases are considered with different FP and
FN target detection rates for UAV 1 and UAV 2, which are presented in Table 1. The false
positive detection rate in the table is based on a manually set random detection box, which
can be generated via large-scale random generation employing large-range fluctuations
in detection box parameters and small-scale random generation employing small-range
fluctuations in detection box parameters according to the parameters listed in Table 2, where
the settings of the fluctuation ranges are defined in Table 3. Modifications were made in
the saved document in the target detection section to obtain the random detection box. The
corresponding SAR data are also publicly available at https://github.com/TimeToLive404
/sarsata.git (accessed on 31 January 2024).
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Table 1. Cases of false positive (FP) and false negative (FN) detection rates considered.

Case UAV 1 UAV 2

FP Rate FN Rate FP Rate FN Rate

1 24.00 0.00 25.17 0.00
2 24.00 16.67 25.17 16.67
3 33.50 0.00 31.33 0.00
4 33.50 16.67 31.33 16.67

http://103.30.41.98/
https://github.com/TimeToLive404/sarsata.git
https://github.com/TimeToLive404/sarsata.git
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Figure 7. Illustrations of associated target data: (a) original multi-objective image data; (b) correct
multi-target recognition data; (c) incorrect multi-target recognition data with a single FN detection;
(d) incorrect multi-target recognition data with a single FP detection. (The suqre means the target has
been detected).

Table 2. Random distribution of false positive detection frames in the four cases.

Case UAV 1 UAV 2

Large-Range
Random

Small-Range
Random

Large-Range
Random

Small-Range
Random

1 30.54 69.46 33.77 66.23
2 30.54 69.46 33.77 16.67
3 50.24 49.76 30.54 49.76
4 50.24 49.76 50.24 49.76

Table 3. Random fluctuation range of false positive detection frames.

Category Abscissa Fluctuation
of Center Point

Longitudinal
Coordinate
Fluctuation of
Center Point

Width
Fluctuation

Height
Fluctuation

Large fluctuation 0–4 10–300 10–100 5–40 5–40
Small fluctuation 3 20–23 100–105 35–40 35–40

Considering the process of target recognition by UAVs at different altitudes and
perspectives, variations in sensor errors for target detection and localization are observed,
with both large- and small-scale distributions. We separately established models for the
distribution of target errors, incorporating factors such as target type, the pixel center
position of the target in the image, and the length and width of the target in the image
pixels. By constructing this model for sensor-based target detection and localization, we
can accurately describe the high-dynamic mapping relationship between UAV clusters
and targets.

4.3. Experimental Conditions

All experiments were conducted on a GeForce RTX 3090 graphic card using C++ and
python. The association performance of the proposed algorithm was compared with those
obtained using currently available advanced MobileNetV3 and ShuffleNetV2 network
based on the accuracy rate calculated as P = TP

TP+FP and the recall rate calculated as
R = TP

TP+FN , where TP is the true positive rate defining the proportion of correctly identified
targets [32,33]. We applied the mean average precision (mAP) based on the calculated
P and R values, and rank-1, rank-5, and rank-10 as accuracy evaluation metrics. The
hyperparameters of the three experimental models were set as follows: using cross entropy
loss, the Adam optimizer, a learning rate of 3.5 × 10−4, a weight attenuation of 5.0 × 10−4,
and 100 training epochs.
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4.4. Experimental Results

A display of heatmaps for target features can illustrate that the feature extractor obtains
different points of interest under different perspectives. After visualizing the features of a
cluster of aircraft from multiple angles (Table 4), this paper can demonstrate this viewpoint.

Table 4. Visualizing the features of a cluster of aircraft from multiple angles (The color represents
the confidence level in the image where the target is located, and the darker the color, the higher the
detection probability).
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Table 4. Cont.
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The performance metric results obtained by the three models considered for the testing

dataset are listed in Table 5. As can be seen, the proposed algorithm exhibited a substantially
improved matching performance over the two existing networks considered. Specifically,
the mAP value obtained by the proposed algorithm was 57% and 96% greater than those
obtained by the MobileNetV3 and ShuffleNetV2 networks, respectively. Moreover, the
rank-1 accuracy obtained by the proposed algorithm was 3.5 times greater than those
obtained by the existing networks, while the rank-5 and rank-10 accuracy values of the
proposed network were 1.5 to 2 times greater than those obtained by the existing networks.
Overall, the FP and FN rates obtained by the proposed algorithm were 16.67% and 0%,
respectively. In fact, it is difficult to filter out the manually added recognition noise of which
the position and size parameters fluctuate in a small range. In practice, this situation occurs
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only when the accuracy of the target recognition algorithm itself is not high. Therefore,
we can conclude that the algorithm proposed herein effectively solves the multi-target
association task for multiple UAVs. Finally, we note that the computation times required by
all three algorithms were of the same order of magnitude, commensurate with the real-time
computational performance. Accordingly, the algorithm proposed in this paper also offers
a good real-time target association performance.

Table 5. Comparison of test results.

Model mAP Rank-1 Rank-5 Rank-10

Proposed 0.384 0.609 0.74 0.87
MobileNetV3 0.245 0.174 0.348 0.566
ShuffleNetV2 0.196 0.174 0.304 0.435

5. Conclusions

This paper addressed the issues associated with the high rate of FP and FN target
detections obtained during the multi-target association of image data captured by multiple
UAVs by proposing a high-performance multi-target matching algorithm. Two different
networks and corresponding algorithms were established for (1) extracting the features
of targets observed in the image data of individual UAVs over time and for (2) extracting
features pertaining to associations between the targets extracted by multiple UAVs in
space. The first process reduces the occurrence of FP and FN target detections, which
greatly facilitates the subsequent association process. The proposed algorithm was demon-
strated to provide a substantially improved association performance for vehicle targets
compared with those obtained by the existing MobileNetV3 and ShuffleNetV2 networks in
conjunction with a specially developed publicly available dataset comprising three to five
targets in 400 multi-target images and 200 multi-target images in the training and testing
datasets, respectively. The high association performance and computational performance
of the proposed algorithm demonstrate its effectiveness and practicability for coordinating
multiple UAVs in the identification of multiple targets.

Author Contributions: Data curation, H.Z.; Formal Analysis, H.Z.; Writing—Original Draft, H.Z.;
Conceptualization, J.Z.; Resources, J.Z.; Investigation, H.Z., J.Z., and C.S.; Supervision, J.Z. and H.Z.;
Project Administration, C.S.; Writing—Review and Editing, H.Z. and C.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: 3rd Party Data Restrictions apply to the availability of these data. Data
were obtained from Northwestern Polytechnical University and are available from the authors with
the permission of Northwestern Polytechnical University.

Acknowledgments: We would like to thank the School of Software, Northwestern Polytechnical Uni-
versity and Science and Technology on Complex System Control and Intelligent Agent Cooperation
Laboratory. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Grocholsky, B.; Keller, J.; Kumar, V.; Pappas, G. Cooperative air and ground surveillance. IEEE Robot. Autom. Mag. 2006, 13, 16–25.

[CrossRef]
2. Sinha, A.; Kirubarajan, T.; Bar-Shalom, Y. Autonomous surveillance by multiple cooperative UAVs. Signal Data Process. Small

Targets 2005, 2005, 616–627.
3. Capitan, J.; Merino, L.; Ollero, A. Cooperative decision-making under uncertainties for multi-target surveillance with multiples

UAVs. J. Intell. Robot. Syst. 2016, 84, 371–386. [CrossRef]
4. Oh, H.; Kim, S.; Shin, H.; Tsourdos, A. Coordinated standoff tracking of moving target groups using multiple UAVs. IEEE Trans.

Aerosp. Electron. Syst. 2015, 51, 1501–1514. [CrossRef]

https://doi.org/10.1109/MRA.2006.1678135
https://doi.org/10.1007/s10846-015-0269-0
https://doi.org/10.1109/TAES.2015.140044


Drones 2024, 8, 83 16 of 17

5. Ragi, S.; Chong, E.K.P. Decentralized guidance control of UAVs with explicit optimization of communication. J. Intell. Robot Syst.
2014, 73, 811–822. [CrossRef]

6. Jilkov, V.P.; Rong Li, X.; DelBalzo, D. Best combination of multiple objectives for UAV search & track path optimization.
In Proceedings of the 2007 10th International Conference on Information Fusion, Québec, QC, Canada, 9–12 July 2007; pp. 1–8.

7. Pitre, R.R.; Li, X.R.; Delbalzo, R. UAV route planning for joint search and track missions—An information-value approach. IEEE
Trans. Aerosp. Electron. Syst. 2012, 48, 2551–2565. [CrossRef]

8. Ousingsawat, J.; Campbell, M.E. Optimal cooperative reconnaissance using multiple vehicles. J. Guid. Control. Dyn. 2007, 30,
122–132. [CrossRef]

9. Hoffmann, G.; Waslander, S.; Tomlin, C. Distributed cooperative search using information-theoretic costs for particle filters, with
quadrotor applications. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO,
USA, 21–24 August 2006; p. 6576.

10. Hoffmann, G.M.; Tomlin, C.J. Mobile sensor network control using mutual information methods and particle filters. IEEE Trans.
Autom. Control 2010, 55, 32–47. [CrossRef]

11. Sinha, A.; Kirubarajan, T.; Bar-Shalom, Y. Autonomous ground target tracking by multiple cooperative UAVs. In Proceedings of
the 2005 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2005; pp. 1–9.

12. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

13. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

14. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [CrossRef]
15. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot MultiBox detector. In Computer

Vision—ECCV 2016; Springer: Cham, Switzerland, 2016; pp. 21–37.
16. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings

of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 936–944.

17. Law, H.; Deng, J. CornerNet: Detecting objects as paired keypoints. Int. J. Comput. Vis. 2020, 128, 642–656. [CrossRef]
18. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. [CrossRef]
19. Tian, Z.; Shen, C.; Chen, H.; He, T. FCOS: Fully convolutional one-stage object detection. In Proceedings of the 2019 IEEE/CVF

International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9626–9635.
20. Liu, F.; Li, Y. NanoDet ship detection method based on visual saliency in SAR remote sensing images. J. Radars 2021, 10, 885–894.

[CrossRef]
21. Zhou, X.; Zhuo, J.; Krähenbühl, P. Bottom-up object detection by grouping extreme and center points. In Proceedings of the

2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 850–859.

22. Liu, Z.; Zheng, T.; Xu, G.; Yang, Z.; Liu, H.; Cai, D. Training-time-friendly network for real-time object detection. In Proceedings of
the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11685–11692. [CrossRef]

23. Arani, E.; Gowda, S.; Mukherjee, R.; Magdy, O.; Kathiresan, S.; Zonooz, B. A comprehensive study of real-time object detection
networks across multiple domains: A survey. arXiv 2023, arXiv:2208.10895. [CrossRef]

24. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

25. Wang, X.; Shrivastava, A.; Gupta, A. A-fast-RCNN: Hard positive generation via adversary for object detection. In Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 2606–2615.

26. Qin, Z.; Li, Z.; Zhang, Z.; Bao, Y.; Yu, G.; Peng, Y.; Sun, J. ThunderNet: Towards real-time generic object detection on mobile
devices. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea,
27 October–2 November 2019; pp. 6717–6726.

27. Ristani, E.; Tomasi, C. Features for Multi-target Multi-camera Tracking and Re-identification. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6036–6046.

28. Ristani, E.; Solera, F.; Zou, R.; Cucchiara, R.; Tomasi, C. Performance measures and a data set for multi-target, multi-camera
tracking. In Computer Vision—ECCV 2016 Workshops; Springer: Cham, Switzerland, 2016; pp. 17–35.

29. Tesfaye, Y.T.; Zemene, E.; Prati, A.; Pelillo, M.; Shah, M. Multi-target tracking in multiple non-overlapping cameras using
fast-constrained dominant sets. Int. J. Comput. Vis. 2019, 127, 1303–1320. [CrossRef]

30. Hou, Y.; Zheng, L.; Wang, Z.; Wang, S. Locality aware appearance metric for multi-target multi-camera tracking. arXiv 2019,
arXiv:1911.12037. [CrossRef]

31. Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
[CrossRef]

https://doi.org/10.1007/s10846-013-9904-9
https://doi.org/10.1109/TAES.2012.6237608
https://doi.org/10.2514/1.19147
https://doi.org/10.1109/TAC.2009.2034206
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1007/s11263-019-01204-1
https://doi.org/10.48550/arXiv.1904.07850
https://doi.org/10.12000/JR21105
https://doi.org/10.1609/aaai.v34i07.6838
https://doi.org/10.48550/arXiv.2208.10895
https://doi.org/10.1007/s11263-019-01180-6
https://doi.org/10.48550/arXiv.1911.12037
https://doi.org/10.48550/arXiv.2004.10934


Drones 2024, 8, 83 17 of 17

32. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.-C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for
MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of
Korea, 27 October–2 November 2019; pp. 1314–1324.

33. Ma, N.; Zhang, X.; Zheng, H.-T.; Sun, J. ShuffleNet v2: Practical guidelines for efficient CNN architecture design. In Computer
Vision—ECCV 2018; Springer: Cham, Switzerland, 2018; pp. 122–138.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Related Work 
	Object Detection Algorithms 
	Data Association for Multi-Target and Multi-Camera Tracking 

	Proposed Algorithm 
	Image Enhancement 
	Target Recognition 
	Backbone Network 
	Neck Network 
	Head Network 

	Association Feature Extraction 
	Matching Based on Individual UAVs 
	Matching Based on Multiple UAVs 

	Experiments 
	Training the Model 
	Datasets 
	Experimental Conditions 
	Experimental Results 

	Conclusions 
	References

