
Citation: Domingo, D.; Gómez, C.;

Mauro, F.; Houdas, H.; Sangüesa-

Barreda, G.; Rodríguez-Puerta, F.

Canopy Structural Changes in Black

Pine Trees Affected by Pine

Processionary Moth Using Drone-

Derived Data. Drones 2024, 8, 75.

https://doi.org/10.3390/

drones8030075

Academic Editor: Tim Whiteside

Received: 11 January 2024

Revised: 16 February 2024

Accepted: 20 February 2024

Published: 22 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Canopy Structural Changes in Black Pine Trees Affected by Pine
Processionary Moth Using Drone-Derived Data
Darío Domingo 1,2 , Cristina Gómez 1,3 , Francisco Mauro 1 , Hermine Houdas 1, Gabriel Sangüesa-Barreda 1

and Francisco Rodríguez-Puerta 1,*

1 iuFOR, EiFAB, University of Valladolid, 42004 Soria, Spain; dario.domingo@uva.es (D.D.);
cgomez@uva.es (C.G.); francisco.mauro@uva.es (F.M.); herminejosephine.houdas@uva.es (H.H.);
gabriel.sanguesa@uva.es (G.S.-B.)

2 GEOFOREST-IUCA, Department of Geography, University of Zaragoza, Pedro Cerbuna 12,
50009 Zaragoza, Spain

3 Department of Geography and Environment, School of Geoscience, University of Aberdeen,
Aberdeen AB24 3UE, Scotland, UK

* Correspondence: francisco.rodriguez.puerta@uva.es

Abstract: Pine species are a key social and economic component in Mediterranean ecosystems,
where insect defoliations can have far-reaching consequences. This study aims to quantify the
impact of pine processionary moth (PPM) on canopy structures, examining its evolution over time
at the individual tree level using high-density drone LiDAR-derived point clouds. Focusing on
33 individuals of black pine (Pinus nigra)—a species highly susceptible to PPM defoliation in the
Mediterranean environment—bitemporal LiDAR scans were conducted to capture the onset and
end of the major PPM feeding period in winter. Canopy crown delineation performed manually
was compared with LiDAR-based methods. Canopy metrics from point clouds were computed for
trees exhibiting contrasting levels of defoliation. The structural differences between non-defoliated
and defoliated trees were assessed by employing parametric statistical comparisons, including
analysis of variance along with post hoc tests. Our analysis aimed to distinguish structural changes
resulting from PPM defoliation during the winter feeding period. Outcomes revealed substantive
alterations in canopy cover, with an average reduction of 22.92% in the leaf area index for defoliated
trees, accompanied by a significant increase in the number of returns in lower tree crown branches.
Evident variations in canopy density were observed throughout the feeding period, enabling the
identification of two to three change classes using LiDAR-derived canopy density metrics. Manual
and LiDAR-based crown delineations exhibited minimal differences in computed canopy LiDAR
metrics, showcasing the potential of LiDAR delineations for broader applications. PPM infestations
induced noteworthy modifications in canopy morphology, affecting key structural parameters. Drone
LiDAR data emerged as a comprehensive tool for quantifying these transformations. This study
underscores the significance of remote sensing approaches in monitoring insect disturbances and
their impacts on forest ecosystems.

Keywords: canopy structure; drone-based remote sensing; forest ecosystem monitoring; insect
disturbances; pine processionary moth

1. Introduction

Herbivorous insects are natural catalysts for disturbance within forest ecosystems.
However, the increasing frequency and heightened virulence of outbreaks, attributed to
climate warming, have raised significant concerns in forest management [1,2]. Insect
outbreaks have impacts on forest resilience and crucial forest ecosystem services, including
carbon sequestration and timber production [3,4]. The effects of outbreaks on host trees
span a spectrum, ranging from growth decline to eventual mortality. Moreover, they
often interact with other pathogens and drought stress, leading to non-lineal responses
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and excessive mortality [5]. In the Mediterranean region, one of the major defoliating
insects affecting pines and cedars is the pine processionary moth (PPM, Thaumetopoea
pityocampa) [6]. PPM defoliations are widespread in Spanish forests, annually affecting
500,000 ha [7], reducing tree growth and subsequently its carbon storage capacity [4].

The life cycle of PPM commences in summer when adult female moths, which have a
brief lifespan of approximately one night, lay up to 300 eggs on pine needles after mating [8].
These eggs then hatch into larvae, which proceed to feed on pine needles throughout the
winter. Once the fifth and last instar of the larval development stage starts concluding,
the larvae organize into processions and move from the canopy to the ground, undergo
pupation in the soil, and eventually give rise to new adult moths in the following summer.
Alternatively, some may enter a short or prolonged diapause [9]. PPM has the potential to
instigate large-scale outbreaks characterized by intense defoliation, although it rarely causes
tree mortality, underscoring the high resilience of tree host species to this endemic pest.
Nevertheless, it does curtail tree growth and reproductive capacity [4,10]. Additionally, the
caterpillar hairs can induce severe allergic reactions for humans and animals, resulting in
skin lesions or respiratory difficulties, posing a threat to public health [11]. The population
size of PPM is significantly influenced by environmental conditions, such as climatic factors,
interactions with other species, and the composition and structure of the forests [12,13]. The
performance of PPM is strongly constrained by temperature, with lethal thresholds for PPM
larvae ranging from −12 to −16 ◦C in winter [14,15] and for PPM eggs between 36 and
42 ◦C in summer [16,17]. Warmer winters are expanding PPM outbreaks northward and to
higher elevations [15], while adverse effects have also been observed due to the increasing
severity of heat events [18–20]. Precipitation levels influence the lignin content of pine
needles, leading, in cases of water stress, to lower nutritional properties that adversely affect
PPM populations [10,21]. Furthermore, there is consensus on the high vulnerability of Pinus
nigra [22] over other species within the same genus. Forest composition, generally measured
by species richness, reduces PPM abundance particularly when non-host tree species are
present [23–25]. PPM performance also depends on forest structure, increasing its incidence
in structurally simple pine forests such as monospecific plantations [13]. Less consensus
has been found on the effects of forest age [12]. Tree location at the landscape scale matters,
causing forest edges and isolated trees to be more vulnerable to PPM defoliation [26].
Consequently, given the anticipated rise in temperatures and the frequency of extreme
events, which may result in unpredictable PPM development, it is paramount to develop
cost-effective tools for monitoring the spatiotemporal effects on conifer forests that serve as
base information for forest composition and structure management.

Practically, the monitoring of PPM traditionally relies on visual assessments by forestry
technicians or photo interpreters gauging the degree of infestation in the field [8]. In Spain,
for instance, about 70% of regions employ PPM monitoring programs, predominantly based
on in situ surveys. These programs are supplemented by additional assessments on specific
plots by the International Co-operative Programme on Assessment and Monitoring of Air
Pollution Effects on Forests (ICP Forest). While in situ surveys are valuable, their associated
costs, resource demands and, at times, temporal intervals may constrain effective forest
management actions. The integration of remote sensing, leveraging the rapid advancements
in platforms and sensors, provides quantitative insights that not only complements in situ
surveys but also enhances the spatiotemporal frequency of observations.

Remote sensing has gained significant attention for analyzing insect disturbances and
monitoring their dynamics across three key species groups: bark beetles and broadleaved
and coniferous defoliators [27]. Notably, time series data acquired by the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) have been employed to monitor PPM defoliations
in homogeneous managed stands of Pinus pinaster at southwest France [28] with correla-
tions up to 0.9 when using the enhanced vegetation index. Likewise, Landsat data have
been utilized to significantly differentiate up to three defoliation levels in northeastern [29]
and southeastern [30] Spain, with the moisture stress index (MSI), normalized difference
infrared index (NDII), and normalized burn ratio (NBR) being the most suitable spectral
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indices for this purpose. The increased availability of drone derived data has introduced
novel spatial scales for analyzing PPM defoliation at the individual tree level. RGB ortho-
mosaics showed a 79% accuracy in discriminating between defoliated and non-defoliated
trees in two study sites dominated by Pinus sylvestris, Pinus halepensis, and Pinus nigra at
northeast Spain (Solsona) [8]. Multispectral drone information was used to determine three
defoliation classes with 82% accuracy in a mixed forest dominated by Quercus ilex and
Pinus sylvestris at northeast Spain (Solsona) [31,32]. Additionally, Otsu et al. [33] calibrated
Landsat 8 with drone multispectral imagery to detect PPM defoliations. While much of
the literature concentrates on PPM detection and the quantification of its infestation levels,
García et al. [34] explored the use of drone-derived RGB data in conjunction with artificial
intelligence models to detect PPM nests. Despite previous studies having predominantly
focused on the analysis of PPM defoliations and their effects based on two-dimensional
data, there has been limited attention given to the three-dimensional changes in forest
cover due to PPM disturbances. This is crucial to better understand the links between
coverage change and tree growth reduction. This scarcity may be attributed to the lack of
high-density 3D multitemporal flights, such as those derived from LiDAR sensors carried
out by drones. This information presents innovative perspectives for addressing questions
such as what are the effects of insect defoliation on crown morphology and forest structure?
What are the volume changes (e.g., crown volume) caused by an insect outbreak? These
inquiries contribute to the monitoring of forest ecosystems, providing pertinent information
for effective forest management actions.

In this study, our primary objective is to assess the efficacy of high-density drone
LiDAR-derived point clouds in quantifying the impact of PPM on canopy structure and
its development over time at individual tree level scale. In particular, this study attempts
to (i) investigate the existence of structural differences between non-defoliated and PPM-
defoliated trees, (ii) evaluate the potential of drone-derived LiDAR data to discern structural
changes attributable to PPM defoliation over time (i.e., along a feeding winter period),
and (iii) analyze the disparities between manual tree crown detection and automatized
LiDAR-derived crowns concerning structural metrics associated with PPM defoliations.
To achieve these objectives, our focus is on a black pine (Pinus nigra subsp. salzmannii)
forest, as it represents a highly susceptible species to PPM defoliations in the Mediterranean
environment.

2. Materials and Methods
2.1. Study Area and Field Data Collection

This study was conducted at the Cañón del Rio Lobos Natural Park (10,202 ha), located
in the western region of Soria province (Figure 1). The selected area comprises a forest
stand dominated by Pinus nigra subsp. salzmannii, a pine species highly vulnerable to
PPM attacks [13]. The stand is complemented by Juniperus thurifera trees and shrub strata
dominated by Cistus laurifolius and Juniperus communis. The topography of the stand is
generally flat, with elevations ranging from 1138 to 1168 m above sea level. The mean
annual temperature in this region is 9.2 ◦C, and the annual rainfall reaches 670 mm. The
predominant lithology consists of upper Cretaceous conglomerates and loams.

Field data were gathered from 33 trees through visual assessment conducted at the
individual tree level. This assessment was carried out by two experts simultaneously
employing binoculars for enhanced precision. Each pine tree was assigned a defoliation
value, expressed as a percentage ranging from 0%, indicating no defoliation, to 100%,
signifying complete defoliation, in 5% intervals. Field campaigns were executed in close
proximity to the acquisition flight dates, specifically during the third week of December
2022 and the first week of May 2023 (Figure 2). This timing ensured that there were no
alterations in defoliation levels, aligning roughly with the commencement and conclusion
of the major feeding period in winter.
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Figure 2. Methodological flowchart.

Table 1 shows a summary of the defoliation attributes obtained from the 33 field
measured trees. The defoliation values increased, on average, to 10.43% along the analyzed
feeding period, while the increase in nests was lower, with an average change in roughly
two nests. Nine trees showed defoliation levels below 15% in both of our field campaigns,
being designated as non-defoliated.
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Table 1. Average observed tree defoliation (n = 33), values in parenthesis represent the observed
range (minimum–maximum).

Field Campaign % Defoliation Number of Nests

First (December 2022) 10.00 (0–35) 5.8 (0–21)
Second (May 2023) 20.43 (0–45) 7.5 (0–21)

2.2. Drone LiDAR Data Acquisition and Preprocessing

The drone LiDAR point clouds were acquired through two flights conducted in the
first week of January 2023 and the fourth week of March 2023, capturing the onset and
conclusion of the PPM feeding period. The data collection utilized a DJI Matrice 300
RTK drone equipped with a DJI Zenmuse L1 LiDAR sensor (Table 2). The L1, a discrete
return sensor operating at a wavelength of 905 nm has dimensions of 152 × 110 × 169 mm
and weights of 0.930 kg. It incorporates an inertial measurement unit (IMU) for precise
control of flight parameters. The sensor employed an average pulse repetition frequency
of 160 KHz, capturing up to three returns per pulse, with an average RMSE in z values of
0.05 m. The Matrice 300, weighing 6.3 kg without payload, was equipped with a global
navigation satellite system (GNSS) and real-time kinematic (RTK) capabilities to ensure
accurate positioning during flight operations. Point cloud acquisition was planned prior
to flight and managed in real time using the Pilot 2 software version 7.1 installed in the
DJI Matrice 300 controller. The flight altitude above ground was set to 50 m, providing a
nominal point density of at least 500 points m−2 for both acquisitions.

Table 2. Summary of the LiDAR flight characteristics for each acquisition.

Acquisition Parameters Onset PPM Feeding Period Conclusion PPM Feeding Period

Date (day-month-year) 10 January 2023 24 April 2023
Flight height 50 50
Side Overlap (%) 80 80
Point density 2021.49 points × m−2 1120.05 points × m−2

Pulse density 1603.78 pulses × m−2 870.76 pulses × m−2

Area (ha) 10.43 13.35
Data size (GB) 2.13 1.41

The preprocessing of drone LiDAR point clouds was conducted using DJI Terra propri-
etary software version 3.6.6. All acquired returns were retained within an effective distance
from point cloud up to 250 m. The resulting point clouds were generated in the WGS 84
Universal Transverse Mercator (UTM) zone 30 N (EPSG:32630) incorporating EGM2008
height geoid correction. To enhance data quality, noise was filtered, and duplicates were
removed from the point clouds. Subsequently, the point clouds were classified into ground
and non-ground (vegetation) categories using a refined version of the triangulated irregular
network (TIN) from Axelsson [35] implemented in LAStools [36]. A digital elevation model
(DEM) with a 0.10 m grid resolution was then generated using the weighted linear least
squares interpolation-based method [37].

2.3. Individual Tree Crown Delineation

The delineation of tree crown was executed employing two distinct methodologies:
manual delineation and LiDAR-based delineation.

In the manual delineation approach, the initial step involved recording the coordi-
nates of individual trees through a sub-metric GPS receiver (Trimble Geo 7X, Trimble
Geospatial, Dubai, United Arab Emirates). Subsequently, a simultaneous RGB orthomo-
saic was captured on 24 April 2023 utilizing a Mavic 3 Multispectral (M3M) drone (see
Table A1 Appendix A for flight acquisition parameters) that integrates a RTK module
ensuring centimetric x, y, and z positions. The orthomosaic was employed to manually
digitalize the crowns for the selected 33 trees. The manual delineation did not entail the
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use of LiDAR point cloud. This process was accomplished using QGIS software version
3.30.3 (QGIS Development Team, 2023).

The LiDAR-based delineation automatizes the identification of treetops and crown
boundaries. Our individual tree detection (ITD) process utilized the ForestTools package
in R [38]. This methodology involved a double-loop algorithm that iteratively adjusted
two critical parameters, namely intercept (ranging from 0.5 to 1.0 in 0.1 increments) and
slope (ranging from 0 to 0.4 in 0.05 increments) of the vwf [39] and mcws [40] functions,
respectively. These parameters significantly influence the variable window filter and
marker-controlled watershed segmentation, essential for treetop detection and subsequent
crown delineation. Systematically varying intercept and slope allowed us to generate
a series of potential tree and crown delineations. Each iteration produced vector files
representing treetops and crown polygons, which were then visually inspected against
RGB imagery derived from drone data to identify the most accurate representation of the
forest canopy (Figure A3 Appendix A). This visual assessment facilitated an empirical
determination of the optimal parameter settings, ensuring the highest fidelity in repre-
senting individual trees and their crowns. Subsequently, we employed the QGIS delete
holes function with a surface up to 5 cm2 to ensure that no voids were present within the
LiDAR-delimited crowns.

The manual and LiDAR-based crown delineations, once selected, formed the basis
for an extensive metric analysis. This analysis delved into various canopy characteristics,
shedding light on the extent of PPM caterpillar infestation.

2.4. LiDAR Metric Computation for Individual Trees

The computation of LiDAR metrics involved the analysis of four datasets, encom-
passing two crown delineations (manual and LiDAR-based) and two flights (pre and post
feeding period). Point clouds were clipped to match the spatial extent of individual tree
crowns. Return heights were normalized by subtracting the DEM created at 0.10 m (see
Section 2.2). Subsequently, a full suite of statistical metrics commonly used for forestry pur-
poses was derived [41–43]. Statistics pertaining to height distribution (CHM) and variability
(CHVM), canopy density (CHD), structural diversity indices (SDI) [44,45], and metrics
based on the voxelizing point cloud [43] were computed (see Table A2 Appendix A for a
detailed list of computed metrics). A threshold value of 2 m height was applied to remove
ground and understory laser hits before generating the ALS-derived variables according to
Nilsson [46] and Næsset and Økland [47]. The metric computation was performed using
lidR package [48–50], lidRmetrics [43], lasR [42], and FUSION [37].

Canopy structural differences between the flights were determined by subtracting
the post PPM feeding period flight (April) from the onset of the major feeding period
flight (January). This approach enabled us to characterize the changes attributable to PPM
infestation for subsequent analysis (see Section 2.5).

2.5. Analysis of Morphological Differences at Tree Level Scale

The analysis of morphological differences was conducted on a threefold basis in
alignment with our objectives. To investigate whether structural disparities existed between
trees with differences in defoliation, we categorized the trees into two classes. Following the
approach by Cardil et al. [31], pines with defoliation levels below 15%, as measured in both
of our field campaigns, were designated as non-defoliated (n: 11 trees), while those with
higher values were classified as defoliated (n: 22 trees). We conducted the Shapiro–Wilk test
to check that the population had a normal distribution and the Breusch–Pagan homogeneity
test to ensure that classes had similar variance. Logarithmic and square root transformations
were explored in cases where statistical hypothesis could not be fulfilled. Subsequently,
an analysis of variance (ANOVA) test was employed to determine whether significant
statistical differences existed in their structural properties between non-defoliated and
defoliated trees.
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Our second objective aimed to assess the potential of drone-derived LiDAR data
in discerning structural changes resulting from PPM defoliation over time. Initially, we
established two classes, distinguishing between no change (n: 23 trees) and change in
defoliation (n: 10 trees). The breakpoint between these classes was set at a 10% change, a
commonly used threshold in field observations. Additionally, we introduced three classes
(no change, small change, and great change in defoliation) using a k-means clustering
analysis. K-means is a classic method known for its adaptability to new datasets, simplicity
in implementation, and scalability to large datasets. The breakpoints defined by K-means
algorithm was set at 5%, 15%, and >15% change for no change (n: 12 trees), small change (n:
13 trees), and great change (n: 6 trees) in defoliation classes, respectively. Consistent with
the previous analysis (Aim 1), we conducted normality and homogeneity tests, followed by
an ANOVA test, to investigate whether LiDAR-derived structural metrics could effectively
detect changes in PPM defoliation.

Finally, to examine the dissimilarity between manual tree crown detection and automa-
tized LiDAR-based crown delineation concerning derived structural metrics, we employed
an ANOVA test. Subsequent to this, a Tukey post hoc test was applied to metrics that
exhibited significant differences in earlier analyses (Aims 1 and 2).

3. Results
3.1. Structural Differences between Non-Defoliated and Defoliated Trees

The impact of PPM infestation is reflected in reduced tree crown density as observed
in the canopy cover LiDAR-derived metrics derived for both manually and automatically
delineated. For both crown delineation methods, statistically significant differences, with
95% of probability, were identified for five LiDAR-derived metrics (Table 3). Notably, a
direct correlation was observed between the degree of defoliation and the decline in values
for leaf area index proxy and mean leaf area density proxy (hereinafter leaf area index
and mean leaf area density), experiencing a significant average reduction of up to 22.92%
and 22.88%, respectively (Figure 3, Figure A1 of Appendix A). The diminished presence
of crown needles resulting from PPM feeding leads to increased LiDAR pulse penetration
and a higher number of returns in lower tree crown branches. Consequently, statistically
significant differences were noted in three LiDAR-derived metrics associated with the
presence of lower tree crown branches or higher penetration of first returns. For example,
there was an average increase of 7.45% in the ratio between the number of returns above
2 m and total number of first returns in defoliated trees. Additionally, the percentage of
returns in the lower 10% or 20% of the maximum elevation increased by 1.33% and 3.10%,
respectively, in non-healthy trees.

Table 3. Summary of the LiDAR metrics with statistically significant differences between defoliated
and non-defoliated trees for manual and LiDAR based crown delineation. Values in parenthesis
indicate the absolute differences between non-defoliated and defoliated trees.

LiDAR Metric Manual Delimitation
ANOVA (p Value)

LiDAR Based Crown
ANOVA (p Value) Transformation

Leaf area index 0.02 (2.71) 0.03 (2.44) None
Mean leaf area density 0.02 (0.24) 0.03 (0.22) None
% all returns above 2 m respect to total first returns 0.02 (7.46) 0.01 (8.22) None
% returns in lower 10% of maximum elevation (W1) 0.03 (1.33) 0.04 (1.24) Logarithmic
% returns in lower 20% of maximum elevation (W2) 0.02 (3.11) 0.04 (3.29) Logarithmic
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manual crown delineation. LAI refers to leaf area index; Mean LAD stands for mean leaf area density;
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3.2. Structural Changes over the PPM Feeding Period

PPM induces notable modifications in canopy structure during the major feeding
period in winter. Canopy LiDAR-derived metrics reveal statistically significant differences,
with a confidence level of 95%, particularly when PPM defoliation change exceeds 10%
compared to trees with no change in defoliation (Table 4). For both crown delineation
methods, in tree crowns with no change in defoliation, there is an increase in both leaf
area index and mean leaf area density matching with the increase in primary production
measured through normalized difference vegetation index [51], with absolute values of
0.70 and 0.07, respectively. Conversely, these LiDAR metrics exhibit significant decreases in
tree crowns with a defoliation change exceeding 10%, registering reductions of up to −0.67
and −0.05 in absolute values, respectively (Figure 4, Figure A2 of Appendix A).

Table 4. Summary of the LiDAR metrics with statistically significant differences between changes in
defoliation (two or three defined classes) along the PPM feeding period.

Classes of Infestation
Change LiDAR Metric Manual Delineation

ANOVA (p Value)
LiDAR Delineation
ANOVA (p Value) Transformation

2 classes (no change vs.
change)

Leaf area index 0.03 0.03 None
Mean leaf area density 0.03 0.02 None

3 (no change, small change,
great change)

D9 0.05 Not significant None
% returns in lower 10% of
maximum elevation (W1) 0.02 0.03 Logarithmic
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Figure 4. Boxplots of LiDAR metrics for two classes: no change vs. change in defoliation trees (class 0
vs. class 1), and three classes: no change, small change, and great change in defoliation (class 1, 2, and
3). LiDAR metrics were extracted based on manual crown delineation. LAI refers to leaf area index;
Mean LAD stands for mean leaf area density; D9 is the percentage of the 9th vertical layers derived
by dividing the height between the 95th percentile of the height distribution and the 2 m threshold.

Statistically significant differences were observed in two LiDAR-derived metrics across
three classes of defoliation change defined using k-means (i.e., no change, small change, and
great change in defoliation) during the feeding period (Table 4). The D9 metric, associated
with the percentage of points in the upper vertical layer, demonstrated an average increase
of 3% when no change in defoliation was detected, remaining relatively stable in the
presence of a small change in defoliation. However, D9 exhibited an average decrease of
2% when substantial changes in defoliation occurred (Figure 4, Figure A2 of Appendix A).
Moreover, the percentage of returns in the lower 10% of the maximum elevation exhibited
an increase with defoliation, showcasing a change of 3.5% between no change and great
change in defoliation classes. However, the pattern appeared less distinct for the small
change class, demonstrating values similar to the no change class with a marginal difference
of 0.3%.

3.3. Similarity between Manual and Automatized Tree Derived Crown Metrics for PPM
Monitoring

The impact of crown delineation methodology on subsequent LiDAR metric extraction
and PPM monitoring is outlined in Table 5. ANOVA comparison of extracted values
between manual and LiDAR-based crown delineation did not reveal significant differences
for any of the LiDAR-derived metrics identified in previous analyses (i.e., differences
between non-defoliated and defoliated trees; structural changes over the PPM period of
feeding) using ANOVA. As illustrated in Figure 5, an example of manual and LiDAR-based
delineation is presented for the leaf area index metric. Although the absolute values of
LiDAR metrics may not be identical for both delineations, minimal differences are observed,
averaging 0.53 (4.26%) for the leaf area index and 0.05 (5.24%) for mean leaf area density.
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Table 5. Comparison of LiDAR-derived metrics for manual and LiDAR based crown delineation.

Analysis LiDAR Metric
Manual vs. LiDAR

Delineation ANOVA
(p Value)

Manual vs. LiDAR
Delineation Tukey (MSD)

Non-defoliated vs. defoliated

Leaf area index 0.48 0.06
Mean leaf area density 0.46 0.13
% all returns above 2 m
respect to total first returns 0.14 4.14

W1 0.51 1.13
W2 0.46 2.32

Changes in defoliation. No
change vs. change

Leaf area index 0.81 0.82
Mean leaf area density 0.76 0.07

Changes in defoliation. No
change, small, great change

D9 0.93 0.02 *
W1 0.96 0.95

Signif. Codes: 0.01 ‘*’
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Figure 5. Comparison of leaf area index (LAI) for two delineation types: manual (left map) and
LiDAR based (right map) extracted using the 24 April 2023 LiDAR flight. The numbers inside crown
delineations indicate LAI derived LiDAR drone absolute values.

The post hoc Tukey test results align closely with those obtained from the ANOVA
analysis. However, statistically significant differences were identified between manual and
LiDAR delineation specifically in the case of the D9 metric. This outcome is consistent
with the earlier analysis, where the D9 metric did not provide meaningful distinctions for
determining three classes of defoliation change using the automatized crowns (see Table 4).

4. Discussion

The impact of PPM in pine forests manifests in noteworthy alterations to tree crown
density. The reduction in pine needles alters plant dynamics and nutrient cycling, resulting
in diminished radial tree growth and volume [52,53]. PPM-induced defoliations lead to
substantial reductions in leaf area index and mean leaf area density, reaching up to 23%
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when comparing non-defoliated to defoliated trees. The concurrent decrease in upper
canopy density enhances LiDAR pulse penetration, yielding a notably higher percentage of
returns in lower tree canopy branches. Moreover, our study unveils evident morphological
transformations throughout the winter feeding period, showing statistically significant
differences in two to three classes of defoliation change using drone LiDAR-derived canopy
density metrics. These results hold for LiDAR-based crown delineation and provide
comparable information to manual delineations. Such findings offer essential insights
into the development of dynamic replicas or digital twins, facilitating enhanced forest
ecosystem monitoring and informed decision-making by forest managers.

The assessment of defoliation through drone LiDAR point clouds enables the discrimi-
nation of non-defoliated and defoliated trees at the individual level. Statistically significant
differences were identified for defoliation levels below or above 15%, consistent with
previous assessments that employed drone multispectral images and determined a 20%
defoliation threshold as optimal for recognizing defoliated trees [8]. Both LAI and mean
leaf area density LiDAR metrics exhibited significant reductions in the upper canopy due
to PPM infestation, aligning with findings from Solberg [54]. Solberg utilized LAI derived
from high-density airborne laser scanning (ALS) data to estimate defoliations caused by
Neodiprion sertifer and compared the results to forest cutting practices. PPM infestation
prompted increased pulse penetration to lower canopy strata, resulting in significant mod-
ifications to canopy morphology resembling changes induced by low–medium–severity
forest fires [55]. Interestingly, two metrics related to the cumulative proportion of returns
in lower percentages of maximum elevation (W1 and W2) proved more effective than fixed
height strata thresholds (e.g., returns between 3 and 4 m) in capturing the defoliation-
induced changes in tree structure. The utilization of LiDAR drone technology opens new
avenues for analyzing defoliations at the individual tree scale, expanding the range of avail-
able drone tools [31,32]. This underscores LiDAR’s capacity to provide a three-dimensional
perspective on canopy structure changes.

PPM defoliation instigates morphological transformations throughout the winter, dis-
tinctly discernible through multitemporal LiDAR drone-derived metrics. LAI and mean
leaf area density exhibited significant differences, particularly in determining defoliation
changes exceeding 10%, a common threshold applied in field measurements. The percent-
age of returns in the upper canopy layer (D9) proved valuable in detecting up to three
levels of defoliation change, although caution is warranted due to potential ambiguities
between no-change and small-change detections [8]. Prior research has often relied on
multitemporal datasets from middle-resolution (e.g., Landsat) and low spatial resolution
(e.g., MODIS) multispectral sensors for monitoring PPM outbreaks. Spectral changes ob-
served throughout the PPM cycle enable the detection and characterization of infestation
levels [28–30], typically categorizing them into two to three levels, mirroring those deter-
mined with drone LiDAR. While three-dimensional datasets are progressively becoming
available, those derived from ALS remain relatively scarce [41]. Drone LiDAR has opened
new opportunities for tailored multitemporal flights, augmenting spatiotemporal monitor-
ing frequencies and facilitating fine change detections of PPM defoliations, akin to field
measurements (i.e., 10% change).

Automated tree-crown delineation from 3D drone LiDAR-derived point clouds yields
comparable information to manual delineation in monitoring PPM defoliation. Though our
focus does not center on identifying the optimal automatic crown delineation algorithm,
we have observed that commonly employed methods such as tree top [39] and tree crown
watershed segmentation [40], deliver accurate LiDAR derived metrics. LAI, the mean leaf
area density, the percentage of all returns above 2 m concerning the total first returns, and
metrics W1 and W2 exhibit no significant differences compared to manual delineations.
However, there are notable distinctions in the upper canopy layer density (D9) metric
between manual and automatic delineations, necessitating further investigation across
more representative spatial scales. Despite additional examinations using alternative
automatic delineation methodologies and encompassing a broader range of forest stand
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densities are warranted, automatic LiDAR delineation appears promising for monitoring
PPM defoliation outbreaks over larger areas.

The present study underscores the utility of LiDAR drone data in delineating morpho-
logical changes in tree crowns resulting from PPM defoliations within a Mediterranean
forest environment dominated by Pinus nigra, a highly PPM palatable species. Periodic in
situ defoliation sampling at tree level and the capturing of multitemporal LiDAR flights are
costly and labor intensive. This study shows that LiDAR metrics are sensitive to changes
in crown morphology caused by PPM defoliations. The sample size of our study may
have potentially overlooked further LiDAR metrics sensitive to PPM-induced changes in
crown morphology. Despite this sample size, those LiDAR metrics that showed statistical
differences in ANOVA analyses and fulfilled the normality and equal variance hypothesis,
also showed significant differences in non-parametric tests (no shown), which indicates that
these variables are in fact sensitive to PPM defoliations. Future research should also focus
on the monitoring of wider areas (in situ and with remote sensing data) to develop statisti-
cal models to further scale the results to larger areas. Such analysis cannot be undertaken
with the present dataset due to limitations in our sample size. However, our results provide
useful insights for modeling efforts in larger areas, presenting a set of LiDAR metrics to pri-
oritize when developing predictive models. As high-density 3D LiDAR drone point clouds
continue to represent a novel source of information, future research endeavors should pri-
oritize their integration with multispectral drone-derived datasets, high-resolution satellite
imagery or intensity-derived LiDAR metrics to characterize PPM defoliations at broader
scales. Our study quasi covers a major feeding period in winter, but some specific trees
presented defoliation levels during the end of December, and further research should
focus on the complete PPM cycle period. Considering the effectiveness of specific LiDAR
metrics for PPM monitoring, the utilization of photogrammetric point clouds may prove
advantageous due to the increased affordability of RGB or multispectral sensors. Over-
all, future endeavors should focus on multi-scale and multi-sensor approaches, from in
situ measurements up to satellite datasets, to enable near-real time monitoring and early
warming detection for better forest management.

5. Conclusions

This study highlights the efficacy of high-density drone LiDAR 3D point clouds in
elucidating the impact of PPM on the canopy morphology of Mediterranean Pinus nigra
forests. Our findings underscore a significant reduction in both leaf area index and mean
leaf area density, reaching up to 23% compared to healthy tree crowns. Defoliations
occurring in the upper canopy layers increase pulse penetration, resulting in a significantly
higher percentage of returns in lower tree canopy layers and inducing modifications to tree
crown shape. Drone LiDAR datasets facilitate defoliation monitoring throughout the winter
feeding period, discriminating changes in defoliation levels of up to 10%, aligning with
visually acquired field measurements. Furthermore, our results suggest the practicality
of automatic tree-crown LiDAR-based delineation for defoliation monitoring over larger
areas. Overall, this study represents an initial exploration into the utility of high-density
drone LiDAR data for ad hoc monitoring of PPM defoliations, providing valuable support
for forest management initiatives.
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Appendix A

Table A1. Summary Mavic 3 Multispectral (M3M) 24-04-2023 flight used for manual tree crown
delineation.

Characteristics Acquisition

Date (day-month-year) 24 April 2023
Side Overlap (%) 80
Front Overlap (%) 80
Flight Height (m) 90
RGB Resolution (cm) 2.89
Number of Images 155
Flight Time (min) 8.28
Area (ha) 11.80

Table A2. Summary of the drone LiDAR computed metrics, including the abbreviations, classes, and
macro-classes defined.

Macro-Classes Classes ALS Computed Metrics Abbreviations

Canopy height
metrics (CHM)

Lower height variables

Minimum elevation Elev. minimum
01th percentile of the return heights P01
05th percentile of the return heights P05
10th percentile of the return heights P10
20th percentile of the return heights P20
25th percentile of the return heights P25
L moment 1 elevation Elev. L1
L moment 2 elevation Elev. L2

Mean height variables

Mean elevation Elev. Mean
Mode elevation Elev. Mode
30th percentile of the return heights P30
40th percentile of the return heights P40
50th percentile of the return heights P50
60th percentile of the return heights P60
70th percentile of the return heights P70
L moment 3 elevation Elev. L3
Elevation quadratic mean Elev. SQRT mean SQ
Elevation cubic mean Elev. CUR mean CUBE

Higher height variables

75th percentile of the return heights P75
80th percentile of the return heights P80
90th percentile of the return heights P90
95th percentile of the return heights P95
99th percentile of the return heights P99
Maximum elevation Elev. maximum
L moment 4 elevation Elev. L4
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Table A2. Cont.

Macro-Classes Classes ALS Computed Metrics Abbreviations

Canopy height
variability metrics
(CHVM)

Variability

Standard deviation of point heights distribution Elev. SD
Variance of point heights distribution Elev. Variance
Coefficient of variation of point heights distribution Elev. CV
Skewness of point heights distribution Elev. Skewness
kurtosis of point heights distribution Elev. Kurtosis
Interquartile distance of point heights distribution Elev. IQ
Average Absolute Deviation of point heights distribution Elev. AAD
Mean absolute deviation from the mean Desviation.mean
Mean absolute deviation from the median Desviation.median

Variability L moment

L moment coefficient of variation of point heights
distribution Elev. LCV

L moment skewness of point heights distribution Elev. Lskewness
L moment kurtosis of point heights distribution Elev. Lkurtosis

Canopy density
metrics (CDM)

% first, % all returns, % by
height thresholds, % equally
vertical layers, gap space, leaf
area, canopy relief ratio

percentage of first returns above 2.00 % first ret. above 2.00
percentage of all returns above 2.00 % all ret. above 2.00
percentage of first returns above the mean % first ret. above mean
percentage of first returns above the mode % first ret. above mode
percentage of all returns above the mean % all ret. above mean
percentage of all returns above the mode % all ret. above mode
percentage of all returns every 1m (between 2 and 30 m) e.g., % all ret. 10 to 11
Percentage of all returns in 10 equally distributed vertical
layers derived by dividing the height between the 95th
percentile of the height distribution and the 2 m
threshold

D0, D1, : : : ,D9

Canopy density metrics as defined by Woods et al. [48] %
returns in 10 equally distributed layers respect to
maximum elevation

W1, W2, : : : ,W9

Open gap space Open gap space
Closed gap space Closed gap space
Euphotic Euphotic
Oligophotic Oligophotic
Leaf area index LAI
Mean leaf area density Mean leaf area density
Maximum leaf area density Max. leaf area density
Minimum leaf area density Min. leaf area density
Coefficient of variation leaf area density CV. leaf area density
Canopy relief ratio CRR

All returns Total returns-1

All returns above 2.00 divided by the total first
returns × 100

(All ret. above 2.00)/(total
first ret.) × 100

All returns above mean divided by the total first
returns × 100

(All ret. above mean)/(total
first ret.) × 100

All returns above mode divided by the total first
returns × 100

(All ret. above mode)/(total
first ret.) × 100

Structural diversity indices (SDI)
Shannon diversity index Shannon
Vertical complexity index VC
Rumple index Rumple

Voxel metrics

Total number of filled voxels V.n
Standard deviation of voxel elevation V.sd
Coefficient of variation of voxel elevation V.cv
Ratio between filled voxels and total number of voxels V. ratio filled
Vertical rumple based on voxels V. rumple
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Figure A1. Boxplots of LiDAR metrics for non-defoliated vs. defoliated trees (class 0 vs. class 1)
for LiDAR based crown delineation. LAI refers to leaf area index; Mean LAD stands for mean
leaf area density; % all ret. above 2 m/total first ret. refers to the percentage of all returns above
2 m respect to total first returns; W1 and W2 are the % returns in lower 10 or 20% of maximum
elevation, respectively.
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Figure A2. Boxplots of LiDAR metrics for two classes: no change vs. change in defoliation trees
(class 0 vs. class 1), and three classes: no change, small change, and great change in defoliation
(class 1, 2, 3). LiDAR metrics were extracted based on LiDAR based crown delineation. LAI refers to
leaf area index; Mean LAD stands for mean leaf area density; D9 is the percentage of the 9th vertical
layers derived by dividing the height between the 95th percentile of the height distribution and the
2 m threshold.
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