
Citation: Bai, Z.; Pei, X.; Qiao, Z.; Wu,

G.; Bai, Y. Improved YOLOv7 Target

Detection Algorithm Based on UAV

Aerial Photography. Drones 2024, 8,

104. https://doi.org/10.3390/

drones8030104

Academic Editor: Abdessattar

Abdelkefi

Received: 1 January 2024

Revised: 12 March 2024

Accepted: 17 March 2024

Published: 19 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Improved YOLOv7 Target Detection Algorithm Based on UAV
Aerial Photography
Zhen Bai 1,2, Xinbiao Pei 1,2, Zheng Qiao 1,2, Guangxin Wu 1,2 and Yue Bai 1,2,*

1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,
Changchun 130033, China; baizhen21@mails.ucas.ac.cn (Z.B.); peixinbiao@ciomp.ac.cn (X.P.);
qiaozheng19@mails.ucas.ac.cn (Z.Q.); wuguangxin20@mails.ucas.ac.cn (G.W.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: baiy@ciomp.ac.cn

Abstract: With the rapid development of remote sensing technology, remote sensing target detection
faces many problems; for example, there is still no good solution for small targets with complex
backgrounds and simple features. In response to the above, we have added dynamic snake convo-
lution (DSC) to YOLOv7. In addition, SPPFCSPC is used instead of the original spatial pyramid
pooling structure; the original loss function was replaced with the EIoU loss function. This study was
evaluated on UAV image data (VisDrone2019), which were compared with mainstream algorithms,
and the experiments showed that this algorithm has a good average accuracy. Compared to the
original algorithm, the mAP0.5 of the present algorithm is improved by 4.3%. Experiments proved
that this algorithm outperforms other algorithms.

Keywords: UAV; object detection; YOLOv7; dynamic serpentine convolution; SPPF

1. Introduction

In recent years, the application of UAV remote sensing in various fields has become
more and more extensive. For example, UAV remote sensing has outstanding performance
in scenarios such as battlefield inspection, disaster rescue, environmental survey, electric
power overhaul, and monitoring and inspection. Through the use of drones, the efficiency
of accomplishing tasks has been greatly improved. Remote sensing images have a signif-
icant improvement in the resolution and accuracy of remote sensing images compared
to traditional satellite remote sensing and other means, but they still have not solved
the problems of having a long distance from the target, shooting a small target, serious
occlusion, and weak recognizable features. In addition, because of the limited load of the
UAV, it is difficult for the airborne edge computing platform to meet the arithmetic demand
of common deep learning algorithms, which also poses a problem for applications.

The reason for the difficulty of target detection under the UAV perspective is that
UAV images have scale changes, sparse and dense distribution, and a higher proportion
of small targets, especially the contradiction between the high computational demand
of UAV high-resolution images and the limited arithmetic power of the current stage of
low-power chips is difficult to balance. Compared with the natural images taken from
the ground viewpoint, the wide field of view from the UAV viewpoint provides richer
visualization information but also implies more complex scenes and more diverse targets,
bringing more useless noise interference to the target detection. Moreover, in the sky
view, targets in the image are often more difficult to detect due to factors such as remote
shooting, background occlusion, or the influence of lighting; therefore, it is necessary
to use high-resolution images. This greatly increases the computational overhead and
memory requirements of target detection algorithms, and the direct use of general-purpose
target detection algorithms that have not been specially designed will bring unbearable
computational overhead and memory requirements, further exacerbating the difficulty

Drones 2024, 8, 104. https://doi.org/10.3390/drones8030104 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8030104
https://doi.org/10.3390/drones8030104
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://doi.org/10.3390/drones8030104
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8030104?type=check_update&version=2


Drones 2024, 8, 104 2 of 19

of target detection. In real-world application scenarios, which are often faced with fine-
grained classification problems similar to identifying vehicle types, these similar targets
pose a huge challenge for the model to recognize the target correctly.

Traditional target detection consists of feature extraction, classifier, and region selection.
A candidate region is first searched in the image to be detected; then, features are extracted
and classified. Since the target may appear at any position in the image, and its aspect ratio
and size cannot be determined beforehand, it is necessary to set a sliding window with
different scales to traverse the image to be detected. This strategy can determine the location
of possible targets, but it has the problems of high time complexity, redundant windows,
and poor region matching, which seriously affect the speed and effect of subsequent feature
extraction. In fact, affected by the time complexity problem, and for targets with large
floating aspect ratios, it is difficult to obtain matching feature regions even if the whole
image is traversed. In the feature-extraction stage, features such as local binary patterns,
scale-invariant feature transforms, and directional gradient histograms are often used.
Because of the uncertainty of the target morphology, the diversity of lighting changes, and
the complexity of the target background, it is very difficult to make the features robust. In
summary, the effect of traditional detection methods is unstable, easily affected by a variety
of conditions, and difficult to put into practical use.

As technology continues to advance and mature, visual target detection plays a key
role in practical applications. In recent years, numerous related tech unicorn companies,
such as Shangtang Technology and Kuangwei Technology, have emerged in the industry.
Meanwhile, computer vision has become crucial in the field of autonomous driving, and
some tech companies, especially representative companies such as Tesla, serve as repre-
sentatives of visual perception leading the development of autonomous driving. Despite
many advances in UAV visual inspection, it still faces many challenges. Mainly because,
for one thing, aerial images are different from images of natural scenes, making it difficult
to identify targets accurately. Second, the human–machine target-detection task has high
requirements for real-time and accuracy.

To solve the above problems, this algorithm improves YOLOv7. This algorithm
was experimented on VisDrone-2019 on a public dataset, proving the algorithm has high
detection accuracy. First, the improved algorithm incorporates dynamic snake convolution
(DSC) in Backbone, which significantly improves the model-detection accuracy. Secondly,
an improved SPPF instead of the original spatial pyramid pooling structure is used. At last,
the original loss function was replaced with EIOU.

2. Related Work
2.1. Targeted Detection

Target detection, as a relevant application of computer vision, directly affects the
performance of these vision tasks and applications. Therefore, target detection techniques
have received focused attention from various industries and fields. In academia, target
detection is a key area of interest in computer vision journals, and many papers on target
detection are published yearly. According to Google Scholar, more than 15,000 papers on
target detection have been published in the past decade. In industry, many technology
companies, such as Google, Shangtang and Kuangyi, Facebook, Huawei, and Baidu, have
invested money and R&D staff in research. In the government, target detection is considered
one of the key technologies for artificial intelligence, and countries are actively competing
and developing this field.

At the very beginning, target detection algorithms generally used hand-designed fea-
tures combined with shallow classifiers, like AdaBoost [1]. At this stage, a series of classical
feature descriptors for target detection emerged, such as Haar features and histogram
of orientation gradient features. Since 2012, deep learning techniques have developed
rapidly, computational resources have improved, and large-scale datasets and evaluation
criteria have emerged and become publicly available. A series of classic research efforts
have emerged, including regional convolutional neural networks [2], SSD [3], YOLO [4],
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and DETR [5]. Compared with the traditional method of manually designing features, it
solves the tedious problem of the manual design process and can automatically learn the
features of interest. Meanwhile, deep learning-based methods integrate classifier learning
and feature extraction in a single framework. These innovations drive rapid development
and progress.

The single-stage target detection algorithm divides the image into a number of cells,
each of which determines whether it contains an object and the object’s category and
location, such as the YOLO algorithm and the SSD algorithm [3]. The two-step target
detection method divides the task into two steps. Firstly, some proposal frames that
potentially contain targets are generated in the first step, followed by the classification and
location localization of these proposal frames in the second step before finally determining
whether a target exists in the image or not. Examples are Faster R-CNN algorithms [6].
Two-stage target detection algorithms are less real-time, more accurate, and have excellent
detection performance on many datasets.

2.2. Unmanned Aerial Vehicle Target Detection

The UAV perspective brings problems to multi-target detection, such as increasing the
number of small targets, insufficient features contained in single-dimensional information,
low detection efficiency due to sparse and inhomogeneous distribution of target categories,
interference in target detection, target omission and misdetection due to scale changes,
slow inference speed, etc. This section describes the improvements proposed by scholars
for the above problems from the two perspectives.

For multi-target detection under the UAV perspective, the single-stage detectors YOLO
series and SSD are widely used due to their clear advantages. Numerous scholars have
addressed the problem of viewpoint algorithms from the UAV perspective. (1) For the
situation where there are many small targets in the sky view, Liu Res Unit_2 is added to
the Backbone network and ResNet unit in YOLO, and two ResNet units are merged in the
Resblock of Darknet, and at the same time, the probability due to the restricted sensing field
is reduced, so that the problem of small target omission due to the limited sensing field is
solved [7]. (2) Saetchnikov et al. proposed the YOLOv4 eff network, which uses four sets of
cross-stage partial for connecting the Backbone network and neck network, and uses the
Swish function as the activation function, and letter-box is set to 1 to maintain the efficiency
of use. The letter-box is set to 1 to maintain the utilization efficiency [8]. (3) In order to solve
the problem of target misdetection in UAV aerial images due to scale variations, Li et al.
proposed an SSD algorithm combining an attention mechanism with extended convolution,
using extended convolution to replace the original, and combining low-order feature maps
of small targets with higher-order feature maps [9].

Two-stage target detection algorithms are different from single-stage ones. The direct
migration of the algorithm from the conventional perspective to the UAV aerial video is
less effective and needs to be optimized according to the target characteristics of the UAV
aerial video. The main improvements are summarized as follows: (1) Avola proposed a
multi-stream structure for multi-scale image experiments in order to cope with the sky
environment with many small targets. Using structure as the Backbone of the Fast R-CNN
network, an MS-Faster R-CNN target detector was designed to consistently and stably
detect targets in the UAV video sequence. Stadler used a Cascade R-CNN network as the
target detector, halved the size of the default anchor frame to account for smaller targets,
and doubled the number of predicted targets [10]. (2) To address the problem of insufficient
single-dimensional information inclusion features, Azimi et al. used a Siamese network
to extract visual features and work with graph convolutional neural networks and LSTM
to incorporate the appearance, graphical, and temporal of targets [11]. (3) Coping with
the slowness brought about by the dispersion of targets in the sky environment, Yang
added the clustering idea to target detection and proposed the ClusDet network, which
firstly generates target cluster regions using the clustering network CPNet, estimates the
target proportion in these regions using the Sca-leNet network and then feeds the clustered
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regions into the DetecNet network to perform target detection, which reduces the detection
computation. Finally, the clustered areas are fed into the DetecNet network for target
detection [12].

3. Principles and Improvements
3.1. YOLOv7

YOLOv7 belongs to the single-stage target detection algorithm, which is one of the
most advanced algorithms and exceeds the previous YOLO algorithms. The YOLOv7
network comprises four main components: Input, Backbone, Neck, and Head. Four parts
are constructed [13].

The Backbone consists of Conv2D_BN_SiLu(CBS), a high-efficiency layer aggregation
network (ELAN), a maximum-pooling layer (MP), and SPPCSPC. The convolution part
comprises Conv2D, batch normalization (BN), and Selu, which combines Sigmoid and
linear rectification functions to extract image features of different sizes. The maximum-
pooling layer (MP) is divided into two branches. The left branch is downsampled through
maximum pooling first and then undergoes a convolutional part to reduce the number of
channels; the right branch passes through a 1 × 1 convolutional part, then immediately
connects with a 3 × 3 convolutional part for downsampling, and the left and right branches
are stacked to enhance target-specific extraction. The high-efficiency layer aggregation
network (ELAN) uses a stack of four branches, each with a different number of convolution
parts (Conv2D_BN_SiLu), which corresponds to a denser residual structure, making it
easier to optimize and mitigate the problem of gradient explosion that is inherent in neural
nets that increase in network depth.

The Neck part uses the path-aggregation network (PA-Net) structure to extract three feature
layers, middle, middle-lower, and bottom, with different network depths on the Backbone and
performs a number of convolutional, maximal up-sampling, maximal down-sampling, and
high-efficiency layer aggregation network operations on them to achieve the enhancement of
feature information.

The Head part performs a RepConv operation on each of the three reinforced feature
layers obtained from the Neck part, which is used to introduce a special residual structure
to achieve the effect that the network prediction performance does not decrease but the
network complexity decreases, which in turn is then passed into YoloHead to complete the
prediction of the categories and the anchoring of the target bounding box. Figure 1 below
shows the overall network structure of YOLOv7.

3.2. Improvement
3.2.1. Dynamic Snake Convolution

UAV remote sensing contexts are characterized by the presence of many elongated
and convoluted tubular strong structures, thin and weak local structures, and fickle and
complicated global patterns. The commonly used standard convolution kernel aims to
extract some of the features, such as local features. On top of that, deformable convolution
enriches its application by adapting to the geometric deformation of different objects.
Nonetheless, focusing on slender and curvy tubular structures is difficult because of the
previous challenges. Therefore, we incorporate the new framework, DSCNet, which
includes a tubular-aware dynamic snake convolution kernel and a multi-angle feature
integration scheme, and not only that but also a topological continuity constrained loss
function, and in the following, we discuss the derivation of the formulas for dynamic snake
convolution [14].

First, given the standard convolutional coordinates K, the center coordinates are given.
Then, it is expressed as:

K = {(x − 1, y − 1), (x − 1, y), · · · , (x + 1, y + 1)} (1)
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In order to allow it to keep focusing on the geometrically complex features of the
target, the deformation offset ∆ is added. Assuming that the above model is completely free
to learn offsets, the offsets tend to be unconstrained and especially ripe to deviate from the
target when dealing with elongated structures. Therefore, an iterative strategy is adopted
to sequentially make predictions about the next position of the target to be dealt with, thus
ensuring the continuity of dealing with the target and not having relatively large offsets.

Figure 1. YOLOv7 network structure diagram.

Second, the convolution kernel is linearized not only in the x-axis but also in the
y-axis. The selection of each position in the convolution kernel K has a superposition effect.
Starting from the starting position Ki, the positions of the meshes far from the center often
depend on the position of the previous mesh Ki+1, adding an offset ∆ = {δ|δ ∈ [−1, 1]}
with respect to K Thus, the offsets accumulate Σ and are used so that the convolution kernel
does not violate the linear morphological structure.

As shown in Figure 2, the change in the x-axis direction is

Ki±c = {(xi+c ,yi+c) = (xi+c,yi+∑i+c
i ∆y),

(xi−c ,yi−c) = (xi−c,yi+∑i
i−c ∆y),

(2)

The change in the y-axis direction is

Kj±c = {
(xj+c ,yj+c) = (xj+∑

j+c
j ∆x,yj+c),

(xj−c ,yj−c) = (xj+∑
j
j−c ∆x,yj−c),

(3)
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Because offsets are essentially small numbers, but coordinates tend to be integers,
bilinear interpolation is used as follows:

K = ∑K/ B(K/, K)·K/ (4)

In the above equation, K denotes the decimal positions of the convolution kernel on the
coordinate axis, and then all positions in the integer space, and B is a bilinear interpolation
kernel and can thus be expressed as a product of one-dimensional convolution kernels:

B(K, K′) = b(Kx, K′
x) · b(Ky, K′

y) (5)

Unlike deformable convolution in Figure 3, deformable convolution gives the network
complete freedom to learn geometric variations, thus leading to perceptual area roaming,
especially on fine tubular structures [15].

Figure 2. Schematic diagram of the dynamic serpentine convolution kernel coordinates computation
and optional receptive fields.

Figure 3. Feeling fields for standard convolution, variability convolution, and dynamic
serpentine convolution.

DSConv focuses on the curvilinear properties of pipe shapes and specifically en-
hances the perception of pipe morphology through qualification-assisted adaptive learning.
Cross-viewpoint attribute fusion techniques are adopted when faced with the challenge of
unstable holomorphology. The program formulates a diverse morphological core model
through DSConv, interrogates the structural attributes of the target in multiple dimensions,
and aggregates key elements to achieve effective attribute integration. The increase in
feature aggregation may cause the network processing to rise and trigger data redundancy,
so the hierarchical and arbitrary exclusion method is implemented in the attribute integra-
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tion training phase to reduce the network operation load and avoid model over-matching.
A topological coherence loss function (TCLoss) based on persistent homotopy (PH) is
proposed to address the problem of pipeline structural cuts tending to be disconnected. PH
tracks the formation to dissipation of topological features and refines important topological
details in cluttered data.

3.2.2. Improvement of SPPCSPC

PANET uses SPPCSPC in the bottom layer for the Backbone part, which consists of
spatial pyramid pooling (SPP) and cross-stage partial (CSP) pyramid junctions, which are
divided into 1 × 1, 5 × 5, 9 × 9, and 13 × 13-sized convolutional kernels for the Maxpool
operation for distinguishing different targets, increasing the receptive field, and extracting
important feature information, the performance of which is due to the SPPF module
proposed via yolov5, but has a greater impact on the speed of network inference [16].
So, this study refers to the idea of SPPF simplifying its design, which greatly improves
the inference efficiency with little impact on detection accuracy. Therefore, in Figure 4,
this study refers to the network model of SPPF to make the following improvements to
SPPCSPC: three convolution kernels of 5 × 5, 9 × 9, and 13 × 13 sizes are made to perform
serial Maxpool operations to simplify the structure of the model and collect the target data
at each scale [17].

Figure 4. Improved SPP network.

3.2.3. Improvement of IOU LoSS

The original YOLOv7 used CIOU as the coordinate loss regression function [18]. The
original loss function combines three geometric elements: overlap region, centroid interval,
and aspect ratio in Figure 5. The loss function is defined as such between the predicted and
actual frames.

LCIOU = 1 − IOU +
p2(b, bgt)

c2 + αv (6)

where b and bgt denote the centers of B and Bgt, respectively, p(·) =
∣∣∣∣b − bst

∣∣∣∣
2 denotes the

Euclidean distance, and c is the minimum enclosing diagonal length that covers both boxes.

v = 4
π2 (arctan w8t

hgt − arctan w
h )

2
and α = v

(1−IOU)+v measure the difference in aspect ratios.

Figure 5. Loss function.
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Compared with the earlier loss function, the CIOU loss is significantly enhanced
in terms of convergence efficiency and recognition accuracy. However, it remains to be
further clarified to define and optimize the last term, which, on the one hand, reduces the
convergence speed of CIOU. (1) v reflects only the difference in aspect ratio, not the real
relationship between w and wgt or h and hgt; that is, with all the bounding boxes with the
nature of

{
(w = kwgt, h = khgt)

∣∣kR+
}

and v = 0, it is impossible. (2) In the ∂v
∂w = − h

w
∂v
∂h

form, ∂v
∂v is the opposite of ∂v

∂h . If one of w or h increases, the other decreases, which is
inconsistent with common sense. (3) Because v reveals aspect ratio dissimilarity, the loss or
gain will optimize similarity in a non-ideal way.

So, we propose that the EIOU loss follows [19].

LEIOU = LIOU + Ldis + LasP

= 1 − IOU + p2(b,bgt)

(wc)2+(hc)2 +
p2(w,wgt)

(wc)2 + p2(h,hgt)

(hc)2

(7)

Here, hw and hc represent the width and height of the minimum enclosing box covering
the two boxes. That is, the sub-damage function has three sections: IOU and LIOU , spacing
loss Ldis, and facing loss Lasp. As a result, the original old damage characteristics are
maintained, while the function directly reduces the height–width difference between the
target and the anchor, facilitating more rapid convergence and more accurate localization.
The overall improved network structure is shown below in Figure 6.

Figure 6. Improved YOLOv7 overall network.

4. Analysis of Experimental Results
4.1. Datasets

In order to test the algorithm’s performance, the group conducted tests on the Vis-
drone2019 dataset. The AISKYEYE team of Tianjin University summarized the dataset,
containing 288 videos, 261,908 frames, and 10,209 images. The data were obtained from
various drone photography sources, covering a wide range of scenarios, including 14 cities
in China with long distances, different environments in urban and rural areas, and various
objects (e.g., pedestrians, vehicles, etc.) with varying densities.

VisDrone2019 contains 6471 training images, 548 validation images, and 1610 test
images, covering a wide range of traffic scenarios, such as highways, intersections, and
T-intersections, as well as a wide range of climatic backgrounds, from day and night to
hazy and rainy days. The set can be used to validate the UAV ground-based small target
detection performance. All methods within the experiment are trained in the training set
and evaluated in the validation set.
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4.2. Experimental Steps

Table 1 displays the experimental hardware setup: an Intel(R) Core(TM) i9-113500FCPU
@ 3.50 GHz, with model training on a GeForce GTX 3090 featuring 24 GB of video RAM and
40 GB of system RAM. The experiment ran on a Windows operating system, utilized Python
3.8.6 for programming, and was built on the Pytorch 1.11.0 framework, incorporating CUDA
11.6 for enhanced processing.

Table 1. Experimental parameter configuration.

Configuration Name Type

CPU Intel(R) Core(TM) i9-113500F

Hardware GPU NVIDIA GeForce GTX3090

Memory 40GB

CUDA 11.6

Software Python 3.8.6

Pytorch 1.11.0

Learning Rate 0.01

Image Size 640 × 640

Hyperparameters Workers 8

Batch Size 16

Maximum Training Epochs 300

The experiment leveraged the Adam optimizer for model training to refine and update
the network’s weights. The optimizer was configured with specific settings: a 16-bit size,
a learning rate of 0.01, a momentum of 0.937, a weight decay of 0.0005, and a training
duration extended to 300 epochs to ensure comprehensive training of the network.

This research adopts the Adam optimizer to refine our model, blending the strengths
of Momentum and RMSprop algorithms for effective weight adjustment. The essence
of Adam, or adaptive moment estimation, lies in its ability to calculate both the mean
(first-order moment) and the gradients’ uncentered variance (second-order moment). It
then dynamically tailors the learning rate for each parameter based on these calculations.
This approach enables Adam to adjust its step size based on the parameter update history,
thus offering faster convergence and enhancing both the training’s efficiency and stability,
in contrast to conventional stochastic gradient descent (SGD) methods.

4.3. Evaluation Indicators

The model employs precision (P, recall (R), average precision (AP), and mean average
precision (mAP) as metrics to assess its performance. AP serves as the metric for evaluating
the accuracy of detecting individual categories, while mAP is calculated by summing the
AP values across all categories and dividing by the total number of categories. In the study,
mAP0.5 is the mAP with a threshold of 0.5, where IoU measures the overlap ratio between
the predicted and actual bounding boxes.

P = TP/(TP + FP) (8)

R = TP/(TP + FN) (9)

AP =
∫ 1

0
P(R)dR (10)

mAP =
1
N

∫ 1

0
P(R)dR (11)



Drones 2024, 8, 104 10 of 19

In the model’s performance evaluation context, TP is the number of positive samples
correctly identified as positive by the model. FP represents the count of negative samples
incorrectly classified as positive. Meanwhile, FN denotes the number of positive samples
that were mistakenly categorized as negative. These metrics are crucial for calculating
precision, recall, and other related performance indicators.

4.4. Ablation Experiments

To demonstrate the efficacy of the introduced components, this study performed
ablation tests on the VisDrone2019 dataset using the YOLOv7 as the foundational algorithm.
These experiments focused on measuring mean average precision (mAP), parameter counts,
and frames per second (FPS) to gauge performance enhancements. The outcomes of these
tests are summarized in Table 2 below.

Table 2. Ablation experiment of improved point.

Method P% R% Parameters/M mAP%

YOLOv7 59.7 50.6 35.51 50.47
YOLOv7_dscnet 62.3 53.1 51.83 53.07
YOLOv7_SPPF 60.8 51.8 30.01 51.37
YOLOv7_EIOU 60.3 51.2 35.51 50.90

YOLOv7_dscnet_SPPF 62.8 53.5 46.82 53.45
YOLOv7_dscnet_EIOU 62.5 53.4 51.83 53.28
YOLOv7_SPPF_EIOU 61.3 52.3 30.01 52.01

Ours 64.1 54.9 46.82 54.7

Seven sets of ablation experiments were performed under equivalent conditions, as
detailed below in Table 2:

• The first set of experiments for the baseline model, i.e., the YOLOv7 algorithmic model,
is used as a reference, which has a mAP value of 50.47% on the Visdrone2019 dataset;

• The second group is to replace the ELAN of the benchmark model with the improved
ELAN_DSC; the number of parameters increases by 16.32M, but the mAP is improved
by 3.4%, the accuracy is improved by 2.6%, and the recall is improved by 3.5% com-
pared with the benchmark model, and the main reasons for the model’s enhancement
include the following: The target as a fine structure accounts for a very small percent-
age of the overall image, with a limited pixel composition, and it is easily affected by
the complex background. The main reasons for the model improvement are: the target
is a small proportion of the overall image, the pixel composition is limited, and it is eas-
ily interfered with by the complex background, which makes it difficult for the model
to accurately identify the subtle changes of the target, but the addition of the dynamic
serpentine convolution to ELAN can effectively focus on the slender and curved target,
thus improving the detection performance. Since dynamic serpentine convolution
has better segmentation performance and increased complexity compared to normal
convolution, the number of parameters in the improved module rises compared to the
original model;

• The third group is replaced by the improved SPPF module, which improves 1.3% over
the baseline model, improves 1.1% accuracy, improves 1.2% recall, and reduces the
parameters. mAP, P, and R improvements and parameter reductions are analyzed
as follows: the improved SPPF module performs Maxpool operations on convolu-
tional kernels of different sizes to differentiate between different targets, increase the
receptive field, and extract more important feature information; therefore, mAP, P, and
R are improved; the improved module performs serial operations on convolutional
kernels of different sizes and therefore reduces the model complexity, so the number
of parameters decreases. The improved SPPF module uses different sizes of convolu-
tional kernels for the Maxpool operation to distinguish different targets, increase the
receptive field, and extract more important feature information, so the mAP, P, and
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R are improved; the improved module operates the different sizes of convolutional
kernels in a serial manner, so the complexity of the model is reduced, and the number
of parameters decreases;

• The fourth group replaces the loss function with EIOU, the mAP improves by 0.43%,
the accuracy improves by 0.5%, the recall improves by 0.6%, and the number of
parameters is unchanged because of the unaltered network model and, therefore,
unchanged compared to the baseline model. Analysis of the reasons for improving
the detection performance: the loss function directly minimizes the difference in the
height and width between the target box and the anchor box, which results in faster
convergence and a better localization effect;

• From the second to the seventh set of ablation experiments, the introduction of DSCNet
provided the key improvement, with a 3.4% improvement in mAP in Figure 7.

Figure 7. Comparison curve of mAP between the benchmark algorithm and the improved algorithm
during the training process.

The following figure visualizes the change and improvement in mAP during the
training process of the final improved algorithm and the benchmark model. It can be
clearly seen that the original algorithm’s mAP increases rapidly in the first 50 rounds and
increases slowly from the 50th round until it reaches the final training mAP value around
150 rounds, and after that, it reaches convergence. In comparison, the improved algorithm
has a rapid increase in the mAP in the first 30 rounds and a slow increase from the 30th
round to around 90 rounds, and after that, reaches convergence. It can be clearly seen
that the improved algorithm converges faster, and the mAP increases by 4.33% over the
benchmark algorithm.

4.5. Comparative Experiments

Various UAV aerial image target detection algorithms, such as YOLOv4, YOLOv3-
LITE, YOLOv5s, Faster RCNN, DMNet, etc., are selected to be compared and analyzed
with the improved algorithm of this study on the Visdrone2019 test set. In Table 3, it can
be seen that the comparison of this algorithm with others, with 33.0% improvement in
mAP compared to Faster RCNN, 11.6% compared to YOLOv4, 24.4% compared to DMNet,
and 23.6% compared to YOLOv5s. This algorithm not only improves significantly in mAP
compared to mainstream target detection algorithms but is also significantly higher than
other algorithms in AP; for example, car detection accuracy reaches 82.4%, van detection
accuracy reaches 58.6%, and truck detection accuracy reaches 51.7. Due to other target
detection algorithms, the experiments illustrate the effectiveness and practicality of this
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algorithm for detecting weak and small targets in aerial images of UAVs. The experiment
illustrates the effectiveness and practicality of this algorithm for detecting weak targets in
UAV aerial images.

Table 3. Comparative experiments with different detection algorithms.

Method
AP%

mAP
Pedestrian Person Bicycle Car Van Truck Tricycle A-T Bus Motor

Faster RCNN 21.4 15.6 6.7 51.7 29.5 19.0 13.1 7.7 31.4 20.7 21.7
YOLOv4 25.0 13.1 8.6 64.3 22.4 22.7 11.4 8.1 44.3 22.1 43.1
CDNet 35.6 19.2 13.8 55.8 42.1 38.2 33.0 25.4 49.5 29.3 34.2
DMNet 28.5 20.4 15.9 56.8 37.9 30.1 22.6 14.0 47.1 29.2 30.3

RetinaNet 13.0 7.9 1.4 45.5 19.9 11.5 6.3 4.2 17.8 11.8 13.9
Cascade R-CNN 22.2 14.8 7.6 54.6 31.5 21.6 14.8 8.6 34.9 21.4 23.2

CenterNet 22.6 20.6 14.6 59.7 24.0 21.3 20.1 17.4 37.9 23.7 26.2
YOLOv3-LITE 34.5 23.4 7.9 70.8 31.3 21.9 15.3 6.2 40.9 32.7 28.5

MSC-CenterNet 33.7 15.2 12.1 55.2 40.5 34.1 29.2 21.6 42.2 27.5 31.1
DBAI-Det 36.7 12.8 14.7 47.4 38.0 41.4 23.4 16.9 31.9 16.6 28.0
YOLOv5s 35.8 30.5 10.1 65 31.5 29.5 20.6 11.1 41.0 35.4 31.1
YOLOv7 53.3 46.5 26.1 77.3 53.4 46.5 39.8 19.9 59.7 55.8 50.47

Ours 57.6 51.1 29.3 82.4 58.6 51.7 44.4 24.6 64.7 60.4 54.7

Additionally, in order to reflect the advancement of this algorithm and to compare it with
the current technical level of the YOLO V7 algorithm in the field of UAV, YOLOv7-UAV [20],
PDWT-YOLO [21], and improved YOLOv7 algorithms are selected to compare with this
algorithm [22]. It can be seen from Table 4 that this thesis shows that the YOLOv7-UAV
algorithm is superior to this algorithm in terms of the parameters, but this algorithm in terms
of this index is superior to the PDWT-YOLO and improved YOLOv7 algorithm. In addition,
this algorithm is superior to the above algorithms in terms of the mAP metric, which can
reach 54.7% in the VisDrone2019 dataset.

Table 4. Comparison of this algorithm with the latest improved algorithm based on YOLOv7.

Method mAP% Parameters/M

YOLOv7-UAV 52.21 3.07
PDWT-YOLO 41.2 24.2

Improved YOLOv7 45.30 26.77
Ours 54.7 16.82

4.6. Analysis of Detection Effects

The aerial images of UAVs in different complex scenes in the VisDrone2019 test set
are selected for detection, and the detection effect is shown in Figure 8. It can be seen that
this study’s algorithm can attenuate the interference of trees and buildings in the complex
background of the image and correctly segment and localize the target for the same small
target in the complex background scene. It shows that this study’s algorithm has better
detection performance in actual scenes, such as lighting conditions, different backgrounds,
and target distribution. Also, the confidence threshold is set to 0.25, below which the image
confidence is not displayed.

To evaluate the detection performance on UAV aerial images, images under different
scenes of very small targets, dark scenes, target occlusion, and complex backgrounds were
randomly selected from the Visdrone2019 test challenge set and compared with the former
algorithm in Figures 9–16.
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Figure 8. Cont.
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Figure 8. Effect of the improved algorithm in different scenarios.

Figure 9. Small targets (baseline algorithm).
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Figure 10. Small targets (improved algorithm).

Figure 11. Complex background (baseline algorithm).

Figure 12. Complex background (improved algorithm).
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Figure 13. Target occlusion (baseline algorithm).

Figure 14. Target occlusion (improved algorithm).

Figure 15. Dark background (baseline algorithm).
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Figure 16. Dark background (improved algorithm).

5. Conclusions

In this study, the problem of the difficult detection of small targets in complex back-
grounds, which exists in UAV ground target detection, is successfully solved by introducing
dynamic snake convolution (DSC), improved SPPCSPC based on the YOLOv7 model, and
employing the EIoU loss function. After experiments, the improved algorithm in this study
shows excellent detection effects in different aerial photography scenes and achieves opti-
mal detection results in all nine categories, proving its strong practicality and effectiveness.
Considering the similarity in processing requirements between satellite image analysis
and UAV aerial images, especially in target detection, background complexity processing,
and small target recognition, we believe it also applies to satellite image analysis. Satellite
images are commonly used in the fields of geographic information systems (GIS), environ-
mental monitoring, urban planning, and disaster management, where accurate detection
and classification of small targets are also crucial. Although the resolution and scale of
satellite images may differ from that of UAV images, the improved algorithm proposed
in this study can still play an important role in satellite image processing by adjusting the
algorithm’s parameters appropriately or making slight modifications.

6. Future Work

Future research directions can be centered on the following core areas:

(1) Application migration and algorithm generalization: Exploring the migration of the
improved algorithms developed in this study, such as dynamic serpentine convolu-
tion (DSC), improved spatial pyramid pooling structure (SPPFCSPC), and EIoU loss
functions, to other models, for instance, YOLOv8, or SSD. Investigate how these im-
provements can be adapted to the characteristics of different algorithmic frameworks
and how the parameters can be adjusted during the migration process to maintain or
improve the accuracy and efficiency of target detection;

(2) Cross-domain application exploration: In addition to UAV image processing, explore
the potential of the improved algorithms to be applied in other domains, such as
satellite image analysis and traffic monitoring. In particular, study the performance of
the algorithms in processing image data of different resolutions and scales and how
to adapt the algorithms to the specific needs of these new fields;

(3) Real-time processing and edge computing: considering that UAV and satellite image
analysis often requires real-time processing, future research could focus on opti-
mizing the lightweighting and acceleration of models to adapt to edge computing
platforms. Investigate how to deploy deep learning models to devices with lim-
ited hardware resources while maintaining efficient computational performance and
accurate detection results;
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(4) Multimodal data fusion: In UAV and satellite image analysis, multiple types of data
(e.g., optical images, infrared images, radar data, etc.) are often involved. Future
research can explore how to effectively fuse these different modalities of data.
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