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Abstract: In the face of external disturbances affecting the trajectory tracking of quadrotors, a control
scheme targeted at accurate position and attitude trajectory tracking was designed. Initially, a quadro-
tor dynamic model, essential for control design, was derived. Adaptive integral backstepping control
(AIBS) was then employed within the position loop, enabling the upper boundaries of disturbances
to be estimated through adaptive estimation. Subsequently, a new adaptive backstepping fast nonsin-
gular integral terminal sliding mode control (ABFNITSM) was proposed to enable adherence to the
desired Euler angles. Rapid convergence and accurate tracking were facilitated by the incorporation
of the nonsingular terminal sliding mode and an integral component. The dead zone technique
was deployed to curtail estimation errors, while a saturation function was used to eradicate the
phenomenon of chattering. Finally, to validate the proposed control scheme, simulation experiments
were conducted in the Simulink environment, and the results were contrasted with those obtained
from traditional integral terminal sliding mode control (ITSM) and integral backstepping control
(IBS), providing evidence of the effectiveness of the proposed method.

Keywords: quadrotor UAV; trajectory-tracking control; adaptive estimation; backstepping control;
sliding mode control; dead zone technique; saturation function

1. Introduction

Recent years have seen the utilization of quadrotors in diverse domains, attributed
to their compact size, economic efficiency, and Vertical Takeoff and Landing (VTOL) capa-
bilities [1–3]. These considerable attributes coupled with their broad spectrum of appli-
cations have propelled a growing focus on quadrotors [4–7]. In practice, the inevitability
of external disturbances and measurement inaccuracies is an acknowledged fact [8–12].
The successful execution of tasks such as power line inspection [13], logistics transporta-
tion [14], and pesticide spraying [15] is contingent on the proficiency of trajectory tracking.
Consequently, enhancing the efficiency of trajectory-tracking control in the presence of
external disturbances is of paramount theoretical relevance and practical value. Such a
development ensures that quadrotors are equipped to meet flight requisites and avoid
uncontrollable crashes.

Nair et al. achieved high-performance tracking for a satellite launch rocket system with
time-varying uncertainties by designing an adaptive PID control [16]. In [17], the online
identification of aerodynamic parameters using the Kalman filter was utilized, followed
by compensation for rotor speed using an LQR strategy, resulting in improved control
performance in terms of heading and altitude. Such works generally linearize the nonlinear
dynamics of quadrotors, which leads to approximation errors and performance limitations.
In [18], a fuzzy logic system was used to assess the unmodeled dynamics of a quadrotor.
A nonlinear disturbance observer was employed to compensate for external disturbances
and assessment error. In reference [19], the authors proposed a radical basis function
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neural network (RBFNN) to fix the unknown dynamic problem. To increase convergence
speed and control precision, fractional-order backstepping control was introduced. Sliding
mode control is widely applied in practical systems, e.g., robot manipulation [20], linear
motor positioning [21], and underwater robots [22], because of its strong robustness, fast
responsivity, and low sensitivity to uncertainties and disturbances. The conventional
sliding mode (CSM) cannot guarantee the fast convergence of a control system [9,23,24].
The terminal sliding mode (TSM) was designed to deal with this situation [25]. Furthermore,
the CSM may cause chattering. In [26], a modified second-order sliding mode control was
introduced to address the chatting phenomenon. Omid Mofid et al. designed a super-
twisting terminal sliding mode control scheme considering input-delay, model uncertainty,
and wind disturbance for a fast response. In [27], the dynamic model was divided into
an inner loop and an outer loop. Nonsingular terminal sliding mode control (NTSM) was
utilized to allow convergence to the desired position and attitude in finite time. In [28],
Hamid Ghadiri et al. proposed a novel adaptive nonsingular terminal sliding mode control
(ANTSM). The input signal chattering was eliminated. Adaptive estimation was applied to
compensate for unknown disturbances. In [29], the implementation of a neural network
(NN) approximator was used to estimate model uncertainty. Adaptive algorithms were
designed to compensate for the approximation error and update the NN weight matrix.
Nonsingular fast terminal sliding mode control (NFTSMC) was used to guarantee the finite-
time convergence of the quadrotor to its desired trajectory. An NN-NFTSMC algorithm was
formulated to provide the system with robustness in the presence of model uncertainty and
external disturbances. In [30], Mo H et al. conducted a comprehensive survey of control
techniques for quadrotors. In this study, an adaptive terminal sliding mode was deemed
the most appropriate method for quadrotor tracking control.

In order to develop a control scheme that ensures the complete trajectory tracking
of a 6-DOF quadrotor’s position and attitude, an adaptive backstepping fast nonsingular
integral terminal sliding mode (ABFNITSM) control was designed to track the desired
attitude. The position loop is based on adaptive integral backstepping control. The main
contributions of this article can be summarized as follows:

• A new control scheme is introduced for quadrotors under subjection to external
disturbances.

• The proposed ABFNITSM control is characterized by strong robustness against non-
linearities and external disturbances, offering quicker responsivity and more precise
tracking compared to traditional control methods.

• With the implementation of adaptive estimation, the controller parameters can be up-
dated online, streamlining the tuning process. Furthermore, the dead zone technique
was employed to compensate for disturbances.

• A new, differentiable saturation function was utilized to eradicate chattering efficiently.
• The stability of the quadrotor trajectory tracking control system was verified by the

application of Lyapunov theory.

This article is organized as follows: The derivation of the quadrotor dynamic model
is introduced in Section 2. The adaptive backstepping fast nonsingular integral terminal
sliding mode for attitude control and the adaptive integral backstepping for position
control are outlined in Section 3. Meanwhile, the stability of the control system is proven
using Lyapunov theory. In Section 4, the simulation results are presented, followed by the
conclusions.

2. Dynamic Model of the Quadrotor

A quadrotor is an underactuated system. The vector P = (x, y, z)T represents trans-
lational motion, and the vector Θ = (ϕ, θ,ψ)T denotes the Euler angle. Figure 1 shows a
schematic diagram of a quadrotor.
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Figure 1. Quadrotor configuration.

This paper employs a body reference frame (BRF) B = {OB, xb, yb, zb} and an inertial
reference frame (IRF) E =

{
OE, xe, ye, ze

}
to describe the 6DOF rigid-body motion of the

quadrotor. x, y, and z represent longitudinal, lateral, and vertical translational motion,
respectively. ϕ, θ, and ψ are roll, pitch, and yaw angle, respectively.

According to the Newton–Euler principle, the system model can be written as follows:{
m

..
P = FA + FG + FD

I
.

Ω = −Ω×IΩ + τA + τG + τD
, (1)

FA is the aerodynamic force in the inertial frame.

FA = RE
B

 0
0

FT

, (2)

Fi is the thrust produced by the i-th motor. Ri describes the rotational speed of the
motor. kL represents the lift coefficient of the motor.

FT = ∑4
i=1 Fi = kL∑4

i=1 R2
i , (3)

RE
B is the matrix for the transformation from the BRF to the IRF.

RE
B =cos θcos ψ sin θsin ϕcos ψ − cos ϕsin ψ cos ϕsin θcos ψ + sin ϕsin ψ

cos θsin ψ sin θsin ϕsin ψ + cos ϕcos ψ cos ϕsin θsin ψ − sin ϕcos ψ
−sin θ sin ϕcos θ cos ϕcos θ

,
(4)

FG is the gravitational force. FD represents the force due to air resistance.

FD = kF

 .
x
.
y
.
z

, (5)
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I is the inertia matrix of the quadrotor. Based on the assumptions in Appendix A, I is
defined as follows:

I = diag
(
Ixx, Iyy, Izz

)
, (6)

[]× denotes the cross-product operator. Based on the vector Ω, it defines a skew-
symmetric matrix.

Ω× =

 0 −r q
r 0 −p
−q p 0

, (7)

τA denotes the aerodynamic torque produced by the motors. d is the distance between
the rotation axis of one motor and the center of gravity. kM is the torque coefficient of one
motor during rotation.

τA =

 (F4 − F2)
(F1 − F3)

kM

(
R2

1 − R2
2 + R2

3 − R2
4

)
 =

Uϕ
Uθ
Uψ

, (8)

τG stands for the torque caused by the gyroscopic effect. τD reflects the torque owing
to air friction.

τD = kT

p2

q2

r2

, (9)

A quadrotor is subject to various problems, such as inaccurate parametric (mass and
inertia) measurements, low control effectiveness, and external disturbances. These create
obstacles in control scheme design. In order to formulate the control problem, Equation (2)
is rewritten, incorporating matched and unmatched uncertainties:{

(m + ∆m)
..
P = FA + ∆FA + FG + ∆FG + FD

(I + ∆I)
.

Ω = −Ω×(I + ∆I)Ω + τA + ∆τA + τG + τD
, (10)

where ∆m ∈ R, ∆I ∈ R3×3, ∆FA ∈ R3, and ∆τA ∈ R3 represent uncertainty in terms of
mass, inertia, and control effectiveness, respectively. According to Lemma 1, the above
equation can be rewritten as{

m
..
P = FA + FG + FD + DP.

Ω = I−1(−Ω×IΩ + τA) + τD + DA
, (11)

where DP and DA are lumped uncertainties.

Lemma 1.
(A + BCD)−1 = A−1 −

(
E + A−1BCD

)−1
A−1BCDA−1, (12)

where A ∈ Rm×m, B ∈ Rm×n, C ∈ Rn×p, D ∈ Rp×m, and Eis the unit diagonal matrix.

The relationships between the angular velocity of a quadrotor in the BRF and the
angular velocity in the IRF are represented as follows:

.
ϕ
.
θ
.
ψ

 =

1 sinϕtan θ cosϕtan θ
0 cosϕ −sinϕ
0 sinϕsec θ cosϕsec θ

p
q
r

, (13)
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According to the small-angle approximation principle, the transformation matrix can
be approximated as an identity matrix. .

p
.
q
.
r

 ≈


..
ϕ
..
θ
..
ψ

, (14)

The vector X =
[
ϕ,

.
ϕ, θ,

.
θ,ψ,

.
ψ, x,

.
x, y,

.
y, z,

.
z
]
∈ R12 denotes the state variables.

The virtual position control inputs are defined as follows:Ux
Uy
Uz

 =

FTm−1(cos x1sin x3cos x5 + sin x1sin x5)
FTm−1(cos x1sin x3sin x5 − sin x1cos x5)

FTm−1cos x1cos x3 − g

, (15)

Equation (13) can be rewritten as follows:

.
x1.
x2.
x3.
x4.
x5.
x6.
x7.
x8.
x9.
x10.
x11.
x12



=



x2
a1x4x6 + a2x2

2 + b1Uϕ + dϕ
x4

a3x2x6 + a4x2
4 + b2Uθ + dθ
x6

a5x2x4 + a6x2
6 + b3Uψ + dψ
x8

a7x8 + Ux + dx
x10

a8x10 + Uy + dy
x12

a9x12 + Uz + dz



, (16)

where 

a1
a2
a3
a4
a5
a6
a7
a8
a9
b1
b2
b3



=



I−1
xx

(
Iyy − Izz

)
I−1
xx kT

I−1
yy (Izz − Ixx)

I−1
yy kT

I−1
zz

(
Ixx − Iyy

)
I−1
zz kT

m−1kF
m−1kF
m−1kF
I−1
xx d

I−1
yy d
I−1
zz



, (17)

3. Control Scheme Design

This section is dedicated to the design of a trajectory-tracking control scheme and
stability analysis. Taking parametric uncertainties and external disturbances into consider-
ation, a trajectory-tracking control strategy is formulated to ensure the quick and accurate
tracking of reference commands. To achieve this goal, a new control scheme is proposed,
integrating a terminal sliding mode, an integral element, the backstepping technique, and
the dead zone technique for attitude trajectory tracking. For the sake of chattering elimina-
tion, a new saturation function is designed. Additionally, an online adaptive estimation
technique is introduced to compensate for parametric uncertainties and external distur-
bances. Adaptive integral backstepping control is introduced in a position loop. Figure 2
illustrates the entire control flow diagram.
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ė9
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Figure 2. Control scheme for the quadrotor.

3.1. Position-Tracking Control Design

The adaptive integral backstepping (AIBS) control exhibits good robustness. It com-
bines the characteristics of integral backstepping control and adaptive estimation to facili-
tate precise tracking and stable control. The basic idea of the backstepping method is to
gradually introduce virtual control variables and recursively design control laws to guide
the tracking errors from an initial state to zero. An adaptive law is used to compensate
for modeling errors, external disturbances, and measurement noise. The design process of
AIBS is depicted in Figure 3.
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x10 − ẋ9d
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AIBS control design step 1:

The position-tracking error is defined as follows: e7
e9
e11

 =

 x7 − x7d
x9 − x9d

x11 − x11d

, (18)

where x7d, x9d, and x11d denote the desired trajectory. The time derivative of Equation (18) is .
e7.
e9.
e11

 =

 .
x7 −

.
x7d.

x9 −
.
x9d.

x11 −
.
x11d

 =

 x8 −
.
x7d

x10 −
.
x9d

x12 −
.
x11d

, (19)
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The Lyapunov function is defined as follows for a stable system:lx1
ly1
lz1

 =
1
2

 e2
7 + k7Γ2

7
e2

9 + k9Γ2
9

e2
11 + k11Γ2

11

, (20)

where
Γ∗ =

∫
e∗dτ(∗ ∈ 7, 9, 11), (21)

The time derivative of Equation (20) is
.
lx1.
ly1.
lz1

 =

 e7
.
e7 + k7Γ7

.
Γ7

e9
.
e9 + k9Γ9

.
Γ9

e11
.
e11 + k11Γ11

.
Γ11

 =

 e7
(
x8 −

.
x7d

)
+ k7Γ7

.
Γ7

e9
(
x10 −

.
x9d

)
+ k9Γ9

.
Γ9

e11
(
x12 −

.
x11d

)
+ k11Γ11

.
Γ11

, (22)

The system virtual control input is selected as follows: x8d
x10d
x12d

 =

 −ξ7e7 +
.
x7d − k7Γ7

−ξ9e9 +
.
x9d − k9Γ9

−ξ11e11 +
.
x11d − k11Γ11

, (23)

where ξ7, ξ9, and ξ11 are positive constants to be designed.
Substituting (23) into (22) yields

.
lx1.
ly1.
lz1

 =

 −ξ7e2
7

−ξ9e2
9

−ξ11e2
11

 ≤ 0, (24)

AIBS control design step 2:

The second tracking error is given by the following expression: e8
e10
e12

 =

 x8 − x8d
x10 − x10d
x12 − x12d

, (25)

The Lyapunov function can be defined as follows:lx2
ly2
lz2

 =
1
2

 e2
7 + k7Γ2

7 + e2
8

e2
9 + k9Γ2

9 + e2
8

e2
11 + k11Γ2

11 + e2
12

, (26)

The time derivative of Equation (26) is
.
lx2.
ly2.
lz2

 =

 e7
.
e7 + k7Γ7

.
Γ7 + e8

.
e8

e9
.
e9 + k9Γ9

.
Γ9 + e10

.
e10

e11
.
e11 + k11Γ11

.
Γ11 + e12

.
e12

, (27)

Substituting (19), (23), and (25) into (27) yields
.
lx2.
ly2.
lz2

 =

 −ξ7e2
7 + e8

(
e7 +

.
e8
)

−ξ9e2
9 + e10

(
e9 +

.
e10

)
−ξ11e2

11 + e12
(
e11 +

.
e12

)
, (28)
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To ensure the stability of the position-tracking control system, we need to satisfy the
following condition:  e7 +

.
e8

e9 +
.
e10

e11 +
.
e12

 =

 −ξ̂8e8
−ξ̂10e10
−ξ̂12e12

, (29)

where ξ̂8, ξ̂10, and ξ̂12 are the estimation of ξ8, ξ10, and ξ12, respectively.
Based on (29), the corresponding position control law can be derived as follows:

Ux
Uy
Uz

 =


..
x7d +

(
ξ2

7 − 1 − k7

)
e7 −

(
ξ7 + ξ̂8

)
e8 − a7x8 + ξ7k7Γ7 − dx

..
x9d +

(
ξ2

9 − 1 − k9

)
e9 −

(
ξ9 + ξ̂10

)
e10 − a8x10 + ξ9k9Γ9 − dy

..
x11d +

(
ξ2

11 − 1 − k11

)
e11 −

(
ξ11 + ξ̂12

)
e12 − a9x12 + ξ11k11Γ11 − dz

, (30)

Proof of stability of position-tracking control:

To prove the stability of the system and determine the parametric values of ξ̂8, ξ̂10,
and ξ̂12, ξ̂8 is taken as an illustration. The Lyapunov function is formulated as follows:

LPx =
1
2

(
e2

7 + k7Γ2
7 + e2

8 +
1
α8

∼
e

2
ξ8

)
, (31)

where α8 is positive constant, and
∼
eξ8 is the estimation error.

The time derivative of Equation (31) is

.
LPx = −ξ7e2

7 − ξ8e2
8 +

∼
eξ8

(
e2

8 −
1
α8

.
ξ̂8

)
, (32)

If the third term on the right-hand side of (32) is set to 0, it can be deduced that

.
ξ̂8 = α8e2

8, (33)

Then, .
LPx = −ξ7e2

7 − ξ8e2
8 ≤ 0, (34)

Therefore, the subsystem is stable.
For the purpose of establishing a complete proof, the Lyapunov function is defined

as follows:

LP =
1
2

(
e2

7 + k7Γ2
7 + e2

8 +
1
α8

∼
e

2
ξ8

+ e2
9 + k9Γ2

9 + e2
10 +

1
α10

∼
e

2
ξ10

+ e2
11 + k11Γ2

11 + e2
12 +

1
α12

∼
e

2
ξ12

)
, (35)

The time derivative of (36) is

.
LP = −ξ7e2

7 − ξ8e2
8 − ξ9e2

9 − ξ10e2
10 − ξ11e2

11 − ξ12e2
12 ≤ 0, (36)

where ξ7, ξ8, ξ9, ξ10, ξ11, and ξ12 are positive constants.
The stability proof of the position-tracking system is now complete.

Adaptive laws:


.
ξ̂8.
ξ̂10.
ξ̂12

 =

 α8e2
8

α10e2
10

α12e2
12

, (37)

where α8, α10, and α12 are the positive constants being designed.
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Based on (15), thrust and the desired attitude angle can be calculated as follows:
FT = m

√
U2

x + U2
y + (Uz + g)2

θd = tan−1
(

cosψdUx+sinψdUy
Uz+g

)
ψd = tan−1

(
cos θd

sinψdUx−cosψdUy
Uz+g

) , (38)

3.2. Attitude-Tracking Control Design

The previously proposed AIBS control has been effective in position tracking, ensuring
the stability of the position subsystem. In this section, a robust adaptive backstepping fast
nonsingular integral terminal sliding mode control (ABFNITSM) is proposed for attitude
tracking. The design process of ABFNITSM is presented in Figure 4. A new saturation
function is designed to eliminate chattering. The main objective of this control is to ensure
system stability and achieve fast convergence of the Euler angle to the desired trajectory.
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s1 + ẋ1d − ξ1e1
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The saturation function is designed as follows:

sat(x) =
ex − 1
ex + 1

, (39)

ABFNITSM control design step 1:

The attitude-tracking error is defined as follows:e1
e3
e5

 =

x1 − x1d
x3 − x3d
x5 − x5d

, (40)

where x1d, x3d, and x5d are the desired trajectory. The time derivative of Equation (40) is .
e1.
e3.
e5

 =

 .
x1 −

.
x1d.

x3 −
.
x3d.

x5 −
.
x5d

 =

x2 −
.
x1d

x4 −
.
x3d

x6 −
.
x5d

, (41)
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The Lyapunov function is defined as follows:lϕ1
lθ1
lψ1

 =
1
2

e2
1

e2
3

e2
5

, (42)

The time derivative of the (42) is
.
lϕ1.
lθ1.
lψ1

 =

e1
.
e1

e3
.
e3

e5
.
e5

 =

e1
(
x2 −

.
x1d

)
e3
(
x4 −

.
x3d

)
e5
(
x6 −

.
x5d

)
, (43)

The system virtual control input is selected as follows:x2d
x4d
x6d

 =

s1 +
.
x1d − ξ1e1

s3 +
.
x3d − ξ3e3

s5 +
.
x5d − ξ5e5

, (44)

ABFNITSM control design step 2:

The sliding mode function is chosen as follows:

s1
s3
s5

 =


.
e1 +

∫ t
0

[
δϕ1|e1|ηϕ1sat(e1) + δϕ2

∣∣ .
e1
∣∣ηϕ2sat

( .
e1
)]

dτ
.
e3 +

∫ t
0

[
δθ1|e3|ηθ1sat(e3) + δθ2

∣∣ .
e3
∣∣ηθ2 sat

( .
e3
)]

dτ
.
e5 +

∫ t
0

[
δψ1|e5|ηψ1sat(e5) + δψ2

∣∣ .
e5
∣∣ηψ2sat

( .
e5
)]

dτ

, (45)

where δ∗i(∗ = ϕ, θ,ψ; i = 1, 2) are positive constants to be designed.
With the sliding function sk designed to be differentiable and the system being de-

signed to exhibit Hurwitz stability for sk = 0(k = 1, 3, 5), the aforementioned controller
parameters must satisfy the following condition:



ηϕ1
ηϕ2
ηθ1
ηθ2
ηψ1
ηψ2

 =



exp
[
−(|e1|+ 0.25)1.4 − (|e1|+ 0.2)0.7

]
+ 0.5

2ηϕ1
(
1 + ηϕ1

)−1

exp
[
−(|e3|+ 0.25)1.4 − (|e3|+ 0.2)0.7

]
+ 0.5

2ηθ1(1 + ηθ1)
−1

exp
[
−(|e5|+ 0.25)1.4 − (|e5|+ 0.2)0.7

]
+ 0.5

2ηψ1
(
1 + ηψ1

)−1


, (46)

The time derivative of Equation (45) is .
s1.
s3.
s5

 =

 ..
e1 + δϕ1|e1|ηϕ1sat(e1) + δϕ2

∣∣ .
e1
∣∣ηϕ2sat

( .
e1
)

..
e3 + δθ1|e3|ηθ1sat(e3) + δθ2

∣∣ .
e3
∣∣ηθ2sat

( .
e3
)

..
e5 + δψ1|e5|ηψ1sat(e5) + δψ2

∣∣ .
e5
∣∣ηψ2sat

( .
e5
)
, (47)

To ensure system stability, the following Lyapunov function is defined as follows:lϕ2
lθ2
lψ2

 =
1
2

e2
1 + s2

1
e2

3 + s2
3

e2
5 + s2

5

, (48)
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The time derivative of Equation (48) is
.
lϕ2.
lθ2.
lψ2

 =

e1
.
e1 + s1

.
s1

e3
.
e3 + s3

.
s3

e5
.
e5 + s5

.
s5

, (49)

Substituting (44) into (49) yields
.
lϕ2.
lθ2.
lψ2

 =

−ξ1e2
1 + s1

( .
s1 + e1

)
−ξ3e2

3 + s3
( .
s3 + e3

)
−ξ5e2

5 + s5
( .
s5 + e5

)
, (50)

Designed to ensure system stability, the second term on the right-hand side of Equation (50)
is expected to be equal to zero.  .

s1 + e1.
s3 + e3.
s5 + e5

 = 0, (51)

Neglecting the uncertainty term (i.e., DA = 0) and substituting (47) into (51), the
equivalent control input is calculated as follows:Uϕ0

Uθ0
Uψ0

 =
b−1

1

( ..
x1d − a1x4x6 − a2x2

2 − dϕ − δϕ1|e1|ηϕ1 sat(e1)− δϕ2
∣∣ .
e1
∣∣ηϕ2sat

( .
e1
)
− e1

)
b−1

2

( ..
x3d − a2x2x6 − a4x2

4 − dθ − δθ1|e3|ηθ1sat(e3)− δθ2
∣∣ .
e3
∣∣ηθ2sat

( .
e3
)
− e3

)
b−1

3

( ..
x5d − a3x2x4 − a6x2

6 − dψ − δψ1|e5|ηψ1sat(e5)− δψ2
∣∣ .
e5
∣∣ηψ2sat

( .
e5
)
− e5

)
,

(52)

Then, the reaching law is selected as follows:Uϕ1
Uθ1
Uψ1

 =

−

b−1
1

(
ρϕ1s1 + ρϕ2|s1|σϕsat(s1) +

(
Q̂ϕ1 + Q̂ϕ2|x1|+ Q̂ϕ3|x2|

)
sat(s1)

)
b−1

2
(
ρθ1s3 + ρθ2|s3|σθsat(s3) +

(
Q̂θ1 + Q̂θ2|x3|+ Q̂θ3|x4|

)
sat(s3)

)
b−1

3
(
ρψ1s5 + ρψ2|s5|σψsat(s5) +

(
Q̂ψ1 + Q̂ψ2|x5|+ Q̂ψ3|x6|

)
sat(s5)

)
,

(53)

where ρ∗i and σ∗ are controller parameters that need to be designed and are greater than
zero. Q̂∗j is the estimation of the parameters related to uncertainties, which is updated by
the following adaptive estimation algorithm (∗ ∈ {ϕ, θ,ψ}, i ∈ {1, 2}, j ∈ {1, 2, 3}):
Adaptive estimation algorithm:

.
Q̂ϕ1.
Q̂ϕ2.
Q̂ϕ3.
Q̂θ1.
Q̂θ2.
Q̂θ3.
Q̂ψ1.

Q̂ψ2.
Q̂ψ3



=



∆ϕ1|s1|
∆ϕ2|s1||x1|
∆ϕ3|s1||x2|

∆θ1|s3|
∆θ2|s3||x3|

∆θ3|s3||x4|
∆ψ1|s5|

∆ψ2|s5||x5|
∆ψ3|s5||x6|


, (54)
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where ∆∗i denotes positive constants that need to be confirmed. During the Lyapunov
proof process, adaptive algorithm representations are derived. Q∗1 is connected with
uncertain time-invariant disturbances, such as a shift in the center of gravity. Q∗2 per-
tains to torques resulting from the coupling of attitudes and mechanical stiffness. Lastly,
Q∗3 is linked to unmodeled gyroscopic torque generated by the quadrotor’s four motors
(∗ ∈ {ϕ, θ,ψ}, i ∈ {1, 2, 3}).
Dead zone technique:

In practical applications, the sliding variables s1, s3, and s5 often encounter chattering
due to measurement noise, leading to an overestimation of Q. To alleviate this issue, the
dead-zone technique is used to adjust the adaptive law.

.
Q̂ϕ1 =

{
∆ϕ1|s1|, |s1| ≤ δ

0, |s1| > δ
.

Q̂ϕ2 =

{
∆ϕ2|s1||x1|, |s1| ≤ δ

0, |s1| > δ
.

Q̂ϕ3 =

{
∆ϕ3|s1||x2|, |s1| ≤ δ

0, |s1| > δ
.

Q̂θ1 =

{
∆θ1|s3|, |s3| ≤ δ

0, |s3| > δ
.

Q̂θ2 =

{
∆θ2|s3||x3|, |s3| ≤ δ

x, |s3| > δ
.

Q̂θ3 =

{
∆θ3|s3||x4|, |s3| ≤ δ

0, |s3| > δ
.

Q̂ψ1 =

{
∆ψ1|s5|, |s5| ≤ δ

0, |s5| > δ
.

Q̂ψ2 =

{
∆ψ2|s5||x5|, |s5| ≤ δ

0, |s5| > δ
.

Q̂ψ3 =

{
∆ψ3|s5||x6|, |s5| ≤ δ

0, |s5| > δ

, (55)

Here, δ > 0 represents the threshold for the deviation caused by influencing factors (such
as sensor noise, uncertainty in estimation, and inertia delay of the motor). In this article, δ is set
to 0.3.

Adding the equivalent input and the convergence control input together yields the
total control input: Uϕ

Uθ
Uψ

 =

Uϕ0 + Uϕ1
Uθ0 + Uθ1
Uψ0 + Uψ1

, (56)

Proof of the stability of attitude-tracking control:

The Lyapunov function is defined as follows:

lϕ
lθ
lψ

 =
1
2


e2

1 + s2
1 + ∑3

l=1
1

∆ϕl

∼
Q

2

ϕl

e2
3 + s2

3 + ∑3
m=1

1
∆θm

∼
Q

2

θm

e2
5 + s2

5 + ∑3
n=1

1
∆ψn

∼
Q

2

ψn

, (57)

∼
Q represents the estimation error. The time derivative of Equation (57) is given

as follows:
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.
lϕ.
lθ.
lψ

 =


e1

.
e1 + s1

.
s1 + ∑3

l=1
1

∆ϕl

∼
Qϕl

.
∼
Qϕl

e3
.
e3 + s3

.
s3 + ∑3

m=1
1

∆θm

∼
Qθm

.
∼
Qθm

e5
.
e5 + s5

.
s5 + ∑3

n=1
1

∆ψn

∼
Qψn

.
∼
Qψn

, (58)

Substituting (44), (47), and (56) into (58) produces
.
lϕ.
lθ.
lψ

 =

−ξ1e2
1 − ρϕ1s2

1 − ρϕ2|s1|σϕ+1 − Φϕ|s1|
−ξ3e2

3 − ρθ1s2
3 − ρθ2|s3|σθ+1 − Φθ|s3|

−ξ5e2
5 − ρψ1s2

5 − ρψ2|s5|σψ+1 − Φψ|s5|

 ≤ 0, (59)

where Φϕ
Φθ
Φψ

 =

Qϕ1 + Qϕ2|x1|+ Qϕ3|x2|
Qθ1 + Qθ2|x3|+ Qθ3|x4|

Qψ1 + Qψ2|x5|+ Qψ3|x6|

, (60)

Based on the provided information and equations, the stability of the system has
been proven.

4. Results

This section presents the simulation results to validate the performance of the proposed
control scheme. During the simulation tests, the initial position and attitude were set
to [0, 0, 0]T m and [0, 0, 0]T rad, respectively. The static parameters and control system
parameters are listed in Tables 1 and 2 respectively.

Table 1. Static parameters of the quadrotor.

Parameter Value Meaning

m 0.56 kg the mass of the quadrotor
g 9.8 m/s2 gravitational acceleration
d 0.3 m distance between the center of gravity and the rotation axis of one motor
Ixx 3.5 × 10−3kg·m2 moment of inertia about x-axis
Iyy 3.5 × 10−3kg·m2 moment of inertia about x-axis
Izz 7.0 × 10−3kg·m2 moment of inertia about x-axis
kL 4.2 × 10−3 force coefficient during one motor rotation
kM 3.8 × 10−2 torque coefficient during one motor rotation
kF 5.6 × 10−4 drag coefficient due to air resistance
kT 5.6 × 10−4 drag torque coefficient due to air resistance

Table 2. Control system parameters.

Parameter Value

k7, k9, k11 0.01
ξ7, ξ9, ξ11 4.25
α8,α10,α12 2.5
δϕ1, δθ1, δψ1 28.5, 50, 28.5
δϕ2, δθ2, δψ2 6, 6, 12
ρϕ1, ρθ1, ρψ1 3
ρϕ2, ρθ2, ρψ2 2.5
σϕ,σθ,σψ 1.7

The proposed control scheme is compared with the integral backstepping control
and the integral terminal sliding mode. The simulations are performed with external
disturbances caused by wind gusts or other factors.
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The external disturbances are assumed to follow a Gaussian distribution. The “Ran-
dom Number” block in Simulink was utilized to generate random numbers with a mean
of 0 and a standard deviation of 10 as disturbances. The sampling time was set to 2 s. To
ensure that the disturbances in the position loop stay within the range of −1.5 to 1.5 m/s2

and that the disturbances in the attitude loop stay within the range of −2 to 2 rad/s2, the
generated random numbers should be multiplied by appropriate scaling factors.

4.1. Case1

In this case, the quadrotor was required to track a simple rectangle trajectory. External
disturbances are taken into account. A 3D trajectory plot provides a visual representation
of the tracking performance of a control scheme (Figure 5). It allows for a comprehensive
view of how well a control scheme is able to follow the desired trajectory in 3D space. The
simulation results are presented in Figures 6–11. To provide a more intuitive representation
of the control performance, error curves for the x, y, and z directions and Euler angles
were plotted.
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The desired trajectories are defined as follows:

x5d =

{
π
3 , 0 ≤ x < 40

0, 40 ≤ x < 80
, (61)

x7d =


0.5 + 0.05t 0 ≤ t < 20

1.5 20 ≤ t < 40
1.5 − 0.05(t − 40) 40 ≤ t < 60

0.5 60 ≤ t < 80

, (62)

x9d =


0.5 0 ≤ t < 20

0.5 + 0.05(t − 20) 20 ≤ t < 40
1.5 40 ≤ t < 60

1.5 − 0.05(t − 60) 60 ≤ t < 80

, (63)

x11d = 0.5, (64)

As the initial position and attitude are set to 0, the quadrotor attempts to approach the
desired trajectory quickly, which results in excessively large desired roll and pitch angles
during the initial stages of the simulation, leading to significant tracking errors.
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The results demonstrate that both controllers track the desired position and attitude
in the presence of disturbances in Figures 5 and 9–11, while the proposed controller
behaves excellently. Even when there is a sudden change in the yaw angle, the proposed
controller still rapidly reacts and tracks the new trajectory, as shown in Figure 11. Through
comparison, it is evident that the proposed controller exhibits better performance than
its counterparts.

Finally, in comparison with IBS-ITSM, the proposed controller possesses better per-
formance. The square trajectory used in this case is relatively simple. In the next case, a
more complex trajectory will be employed to further demonstrate the supremacy of the
proposed controller.

4.2. Case2

In this scenario, the quadrotor is required to track a sophisticated trajectory under the
influence of external disturbances. The simulation results are presented in Figures 12–18.

Drones 2024, 8, x FOR PEER REVIEW 17 of 21 
 

more complex trajectory will be employed to further demonstrate the supremacy of the 

proposed controller.  

4.2. Case2 

In this scenario, the quadrotor is required to track a sophisticated trajectory under 

the influence of external disturbances. The simulation results are presented in Figures 12–

18. 

The desired trajectories are defined as follows: 

x5d = {
π

3
, 0 ≤ t < 40

0, 40 ≤ t < 80
, (65) 

x7d = 0.4 cos(0.5t), (66) 

x9d = 0.4 sin(0.5t), (67) 

x11d = 0.2 + 0.025t, (68) 

From Figures 13–18, it can be observed that the tracking performance of the IBS-ITSM 

control scheme is not ideal, exhibiting relatively large fluctuations in the presence of dis-

turbances. In contrast, the proposed controller successfully tracked the desired trajectory 

and attitude faster and more accurately, demonstrating the robustness and superiority of 

the proposed controller. 

 

Figure 12. Three-dimensional spiral trajectory tracking. Figure 12. Three-dimensional spiral trajectory tracking.

The desired trajectories are defined as follows:

x5d =

{
π
3 , 0 ≤ t < 40

0, 40 ≤ t < 80
, (65)

x7d = 0.4cos(0.5t), (66)

x9d = 0.4sin(0.5t), (67)

x11d = 0.2 + 0.025t, (68)

From Figures 13–18, it can be observed that the tracking performance of the IBS-
ITSM control scheme is not ideal, exhibiting relatively large fluctuations in the presence of
disturbances. In contrast, the proposed controller successfully tracked the desired trajectory
and attitude faster and more accurately, demonstrating the robustness and superiority of
the proposed controller.
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5. Conclusions

In this article, the quadrotor dynamic model that factors in parameter uncertainty
and external disturbances was derived by utilizing the Newton–Euler equation. An AIBS
control was proposed in a position loop, with the desired attitude deduced from decou-
pling equations stemming from the desired position. Furthermore, a novel ABFNITSM
control was proposed for attitude tracking, incorporating the use of integral elements, back-
stepping, adaptive estimation techniques, and dead-zone techniques, built upon terminal
sliding mode control. To mitigate chattering, the introduction of a saturation function was
employed. The stability of the control system was confirmed through the employment of
Lyapunov theory. Finally, through contrastive analysis with IBS-ITSM, better performance
and robust resistance against external random disturbances were exhibited by the proposed
AIBS-ABFNITSM control scheme.

6. Future Work

Future research will encompass the validation of the AIBS-ABFNITSM control scheme’s
performance in trajectory-tracking tasks utilizing an actual quadrotor. Given Euler angles’
inherent limitations, the exploration of the application of quaternions in the trajectory-
tracking control of a quadrotor’s attitude warrants further investigation.
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Appendix A

Appendix A.1. Assumptions

• The quadrotor structure is symmetric.
• The geometric center of the quadrotor coincides with its center of gravity.
• The forces and torques generated by air friction are proportional to the quadrotor’s

velocity and the square of the quadrotor’s angular velocity, respectively.
• External disturbances enter the system in the form of acceleration.
• The forces and moments generated by the motors are proportional to the square of the

motor speeds.
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