
Citation: Bassolillo, S.R.; Raspaolo, G.;

Blasi, L.; D’Amato, E.; Notaro, I. Path

Planning for Fixed-Wing Unmanned

Aerial Vehicles: An Integrated

Approach with Theta* and Clothoids.

Drones 2024, 8, 62. https://doi.org/

10.3390/drones8020062

Academic Editors: Hanno Hildmann

and Fabrice Saffre

Received: 30 December 2023

Revised: 2 February 2024

Accepted: 7 February 2024

Published: 12 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Path Planning for Fixed-Wing Unmanned Aerial Vehicles:
An Integrated Approach with Theta* and Clothoids
Salvatore Rosario Bassolillo 1 , Gennaro Raspaolo 2 , Luciano Blasi 2 , Egidio D’Amato 3,*
and Immacolata Notaro 2

1 Institute for High Performance Computing and Networking of National Research Council (ICAR-CNR),
Via Pietro Castellino 111, 80131 Naples, Italy; salvatore.bassolillo@icar.cnr.it

2 Department of Engineering, University of Campania Luigi Vanvitelli, 81031 Aversa, Italy;
gennaro.raspaolo@unicampania.it (G.R.); luciano.blasi@unicampania.it (L.B.);
immacolata.notaro@unicampania.it (I.N.)

3 Department of Science and Technology, University of Naples Parthenope, 80143 Napoli, Italy
* Correspondence: egidio.damato@uniparthenope.it

Abstract: Unmanned Aerial Vehicles (UAVs) have emerged as a compelling alternative to manned
operations, offering the capability to navigate hazardous environments without risks for human
operators. Despite their potential, optimizing UAV missions in complex and unstructured envi-
ronments remains a pivotal challenge. Path planning becomes a crucial aspect to increase mission
efficiency, although it is inherently complex due to various factors such as obstacles, no-fly zones,
non-cooperative aircraft, and flight mechanics limitations. This paper presents a path-planning tech-
nique for fixed-wing unmanned aerial vehicles (UAVs) based on the Theta* algorithm. The approach
introduces innovative features, such as the use of Euler spiral, or clothoids, to serve as connection
arcs between nodes, mitigating trajectory discontinuities. The design of clothoids can be linked to the
aircraft performance model, establishing a connection between curvature constraints and the specific
characteristics of the vehicle. Furthermore, to lower the computational burden, the implementation of
an adaptive exploration distance and a vision cone was considered, reducing the number of explored
solutions. This methodology ensures a seamless and optimized flight path for fixed-wing UAVs
operating in static environments, showcasing a noteworthy improvement in trajectory smoothness.
The proposed methodology has been numerically evaluated in several complex test cases as well as
in a real urban scenario to prove its effectiveness.

Keywords: path planning; unmanned aerial vehicle; clothoids; obstacle avoidance

1. Introduction

Unmanned Aerial Vehicles (UAVs) have attracted significant attention as a viable
substitute for manned operations. The ability to operate in hazardous environments
without risks for human operators, combined with the cost-effectiveness of operations, has
propelled UAVs into one of the most rapidly expanding domains. In fact, the number of
drones and unmanned operations is expected to double by 2025 [1,2].

To fully exploit the potential of UAVs and improve mission efficiency, a key challenge
is planning paths in complex and unstructured environments.

Nevertheless, path planning presents a challenge due to the inherent complexity of
environments. This issue is commonly framed as an optimization problem, where the
definition of the shortest path involves a sequence of waypoints. These waypoints must
be chosen considering the presence of obstacles, no-fly zones, non-cooperative aircraft,
and limitations from flight mechanics [3,4]

In the literature, several publications explored the definition of three-dimensional
trajectories by decoupling planar maneuvers from altitude changes [5,6]. Extensive research

Drones 2024, 8, 62. https://doi.org/10.3390/drones8020062 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8020062
https://doi.org/10.3390/drones8020062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-0411-3729
https://orcid.org/0009-0008-0278-3463
https://orcid.org/0000-0001-5927-352X
https://orcid.org/0000-0002-2766-3862
https://orcid.org/0000-0001-7997-039X
https://doi.org/10.3390/drones8020062
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8020062?type=check_update&version=2

Drones 2024, 8, 62 2 of 23

addressed two-dimensional (or decoupled three-dimensional) aerial path planning issues,
sharing algorithms and solutions with the fields of robotics and automotive science.

Literature reviews on UAV path planning classify methods into variational, optimal
control, geometrical, graph optimization, artificial potential field, and natural optimization.
While the variational approach to path planning is considered natural [7,8], its application
becomes challenging in complex scenarios with flight dynamics constraints.

Optimal control serves as an alternative, involving a closed-loop algorithm with
convergence to a local sub-optimal trajectory. In [9], the authors addressed the challenge
of flying a helicopter with a slung load by formulating an optimal control problem, using
trajectories as references to a state feedback controller. Pseudospectral optimal control [10]
was also used for unmanned helicopters, to plan minimum-time trajectory in environments
with obstacles. The authors of [11] introduced a Distributed Model Predictive Controller
(DMPC) for UAV guidance, taking into account anticollision constraints in accordance
with the International Civil Aviation Organization (ICAO) Right of Way rules. However,
optimal control may be ineffective in finding a global optimum, as it demands significant
computational capabilities, especially when employing non-linear optimization algorithms.

Several publications [12,13] introduced purely geometrical approaches, describing
paths as sequences of segments, arcs, or template curves. Examples include solutions
to Dubins’ car problem [14,15] or clothoid curves [16,17]. However, such solutions often
require combining other algorithms to account for obstacles and no-fly zones.

Graph optimization is an effective strategy for designing edges using geometrical
methods. In these approaches, the environment needs to be discretized using regular or
irregular grids [18]. Alternatives include Visibility Graphs [19–21], Voronoi diagrams [22,23],
Rapidly Exploring Random Trees (RRT) [24–26], Tangent Graphs [27], Sparse Tangential
Networks (SPARTAN) [28], and road maps [29,30].

In order to determine the most efficient route across graphs, ensuring consistent and
reproducible outcomes in expansive settings, widely recognized heuristics like Dijkstra’s
algorithm [31], A* [32,33], and D* [34] are frequently employed. However, these algo-
rithms do not guarantee the shortest path in continuous space. Indeed, in [35], the Theta*
approach was introduced, which outperformed several solutions based on A*, A* with
post-smoothing [36], and the so-called Field D* [37], in terms of path length and computa-
tion time. The Theta* algorithm represents an improvement over A* and it is particularly
useful in scenarios where agents need to find the shortest path through a continuous space.
Theta* allows for a more flexible search by moving along directions, minimizing heading
changes. Ref. [38] presented a grid map-based path-planning algorithm, based on Theta*,
for the real-time generation of realistic paths, taking into account both the heading angle
and the angular rate of unmanned surface vehicles (USVs). To improve A*, in [33], the
authors proposed a Theta*-based procedure applied to orographic obstacles and urban
environments, in order to evaluate the solution for different kinds of obstacles. In [39], a
revised and adapted Lazy Theta* path-planning algorithm was presented, reducing the
dimension of the problem and using a sparse resolution grid in the form of an octree,
in order to generate paths in large 3D scenarios in real-time.

In robot motion planning problems, kinodynamic path searching methods have been
adopted to satisfy kinematic and dynamic constraints. In particular, several hybrid A*
algorithms [40–42] combine the benefits of A* search in continuous space with a discretized
set of headings in order to obtain feasible trajectories for autonomous vehicles navigating
in unknown environments. In [43], the authors proposed a hierarchical path-planning
architecture for UAVs, consisting of an A* path-search step followed by B-Spline trajectory
optimization. In [44], the authors proposed an improved A* and a path pruning method
to generate safe guiding trajectories for quadrotor UAVs. Another example is the Kino-
dynamic RRT* (KRRT*) algorithm, first introduced in [45], where the authors extended
the capabilities of RRT* to obtain smoother trajectories for robot motion planning with
linear differential constraints. In [46], the authors presented an application of this approach,
named Multi-robot Kinodynamic RRT* (MK-RRT*), to the path-planning problem for a

Drones 2024, 8, 62 3 of 23

fleet of UAVs, testing their algorithm in real-world experiments. Alternatively, the au-
thors in [47] employed the KRRT* to plan trajectories for fixed-wing UAVs in complex
terrain environments.

In the context of guidance algorithms with real-time requirements, the techniques
based on Artificial Potential Field have proven to be highly effective [48–50]. However,
increasing the number of obstacles or potential sources in the environment raises the
likelihood of encountering singularities, which need a strategy to find a solution.

Natural optimization methods enable the creation of sophisticated models [51,52]
based on flight dynamics, where a sequence of feasible maneuvers is optimized to reach
the target point. In [53], the authors proposed a technique for creating continuously
parameterized classes of feasible trajectories, made of a small collection of user-provided
example motions. An incremental path-planning algorithm for autonomous vehicles flying
in an environment with moving obstacles able to take into account flight dynamics was
presented in [54]. Furthermore, a trajectory planning model, coupled with a Particle Swarm
Optimizer (PSO) [55] was able to identify optimal UAV flight trajectories compliant with
environmental constraints. Nevertheless, these methods are computationally expensive
and slow, making them only suitable for offline optimization applications.

This article introduces a novel approach to the path planning of a fixed-wing aircraft.
The trajectory is defined as a piece-wise curve made of segments, circular and spiral arcs
between two prescribed points, with assigned initial and target directions. To ensure
compliance with aircraft performance constraints, the heading variation between two
directions is made by defining an Euler spiral-based path transition curve made of two
spirals and a circular arc, where the maximum curvature and the maximum change in
curvature depend on the aircraft characteristics. The final path is optimized by using an
evolution of the Theta* algorithm, whose arcs between nodes are the above defined path-
transition curves. In this manner, the final trajectory is free of discontinuities and proves to
be entirely flyable by the aircraft. This approach is an important enhancement with respect
to previous works that adopt Dubins arcs to smooth the path, introducing a discontinuity
in the curvature between straight segments and circular arcs. The transition between lines
with discontinuous curvature requires a step in the yaw rate, and, consequently, in the bank
angle, which is impossible due to flight dynamics constraints. To enhance the performance
of the presented algorithm, the exploration distance of Theta*, which is useful to exploit the
search space, is variable, taking into account the actual distance to obstacles. Additionally,
in order to avoid unnecessary areas and prevent excessive maneuvers, Theta* explores the
search space using a vision cone, the extent of which is a parameter of the algorithm.

The manuscript is structured as follows: Section 2 introduces the path transition
curve as a solution to path planning in the absence of obstacles. Section 3 outlines the
Theta*-based path-planning algorithm, incorporating the concept of smooth transitions
between edges linking nodes. In Section 4, several numerical results are presented to
prove the effectiveness of the proposed approach, incorporating a comparative analysis of
several implemented versions of Theta*. Section 5 introduces a numerical comparison of
the Theta*-based algorithm with three state-of-the-art planners in order to highlight the
pros and cons of the proposed methodology. Finally, Section 6 provides a concise summary
of the conclusions drawn from the current study.

2. Path Transition Curve

A standard flight path, navigating through a sequence of waypoints, comprises linear
and circular trajectory segments [56]. In fixed-wing aircraft, the transition between these
segments poses challenges due to inherent path curvature discontinuity, requiring an
immediate shift in yaw rate and bank angle. Flight dynamics prerequisites stress the need
for continuous curvature paths within specified bounds for precise tracking [57,58]. Euler
spirals or clothoids, based on a linear 2D dynamic aircraft model, offer a linear curvature
and arc length relationship, making them apt for geometrically determining the flight path
during optimization.

Drones 2024, 8, 62 4 of 23

The model simulates non-steady constant altitude turns for altering aircraft heading
and estimating fuel consumption. This study focuses on coordinated turns with zero
sideslip angle, where the velocity vector consistently lies in the plane of symmetry. Heading
angle (ψ) and roll angular velocity (µ) are key parameters, and motion is confined to a
horizontal plane.

Considering quasi-steady turns, the following simplifications can be employed: (a) a
negligible change in velocity (V̇ = 0), (b) a negligible component of thrust normal to the
flight path, and (c) a constant weight.

The angle of attack (α), drag (D), thrust (T), and specific fuel consumption (C) can be
considered as functional relationships of the form:

α = α(h, V, L), D = D(h, V, L), T = T(h, V, P), C = C(h, V, P)

where h is the altitude and P is the engine power.
The equations of motion can be formulated in terms of speed (V) and heading angle

(ψ) as follows:

ẋ = V cos ψ
ẏ = V sin ψ

V̇ = 0 = (g/W) · (T(h, V, P)− D(h, V, L))
ψ̇ = gL sin ϕ/WV

ϕ̇ = µ
γ̇ = 0 = (g/WV) · (L cos ϕ − W)

Ẇ = −C(h, V, P)T(h, V, P)

(1)

These eight equations are based on ten variables (six states: x, y, ψ, ϕγ, W, and four
controls: V, P, L, µ).

Considering subsonic speed, the drag polar can be approximated with a parabolic
function with constant coefficients as follows:

CD = CD0 + KC2
L (2)

where CD0 and K are constants and CL is the lift coefficient that can be computed as

CL =
L

1
2 ρV2S

=
W

1
2 ρV2S cos ϕ

(3)

From this model, it is possible to establish the curvature and the sharpness of the
trajectory during a turn maneuver. Considering a typical circular motion of radius r, whose
model is given by

r =
W
g

V2

F
(4)

with the centripetal force F = L sin ϕ, the turn radius can be deduced as follows:

r =
W
g

V2

L sin ϕ
=

2
ρg

W
S

1
CL

1
sin ϕ

(5)

where ρ is the air density and W
S represents the wing loading. However, because L cos ϕ =

W = 1
2 ρV2SCL cos ϕ, the turn radius can be written as dependent on only the speed

(V = const) and the bank angle ϕ.
At constant speed, the minimum turn radius rmin can be obtained when tan ϕ is

maximum, taking into account the maximum load factor nmax compliant with the maximum
available thrust and the structural limits of the aircraft:

tan ϕmax =
√

n2
max − 1 (6)

Drones 2024, 8, 62 5 of 23

Because the curvature k is inversely proportional to the curvature radius, a path is
valid if the curvature is smaller than the specified maximum value

|κ(t)| < κmax =
1

rmin
=

g tan ϕmax

V2 (7)

where kmax denotes the maximum curvature.
The maximum sharpness can be found by differentiating the curvature function with

respect to time:

σmax =
g

V2 ϕ̇max sec2 ϕmax (8)

Since the curvature of a spiral is linear along the curve, the minimum and maximum
curvature occur at the tips of the clothoid segment.

Flight Path Transition Curve between Two Directions

Consider two straight lines, denoted as rj and rk intersecting at a point Q, that define
the desired headings for an aircraft, represented by ψj and ψk, respectively.

A flight path transition curve between these intersecting straight lines can be computed
using two clothoids and an arc (coordinated turn), if necessary. The presence of such a
circular arc must be taken into account, considering any constraints on the aircraft roll
rate. This definition can be regarded as an alternative to the Dubins path [14], achieved by
smoothing the tips of the circular arc to avoid curvature discontinuities.

With reference to Figure 1, achieving the transition from the linear trajectory, defined
by rj, to the circular arc involves a curvature increment from zero to kmax. Subsequently,
the curvature remains constant until another transition occurs between the arc and the final
direction rk, characterized by a curvature decrease from kmax to zero.

Δ"2 = %!"#&!"#

Δ"

%

%!"#

' = Δ(
%!"#

− Δ"
2

Δ"2 = %!"#&!"#

(a)

!!

!"

Δ#
$

(b)
Figure 1. Curvature variation along the path between two straight segments. (a) Trapezoid construc-
tion: the oblique edges represent the spirals, and the minor base is the circular arc. (b) Path transition
curve: dot lines represent the spiral-only trajectory without curvature constraint, solid lines are for
the curve made of three pieces: two spirals and an arc of circumference.

Procedure 1. Flight path transition curve between two directions

• STEP 1. Firstly, compute the angles ψj and ψk between an arbitrary axis and rj and rk,
respectively.

• STEP 2. Assuming ∆ψ =
∣∣ψk − ψj

∣∣, κmax the maximum curvature and σmax the maxi-
mum sharpness, it is possible to compute ∆s = 2κmax/σmax, as the length of a virtual
curve with maximum sharpness and maximum curvature. It is worth noting that it is
called virtual because the heading change constraint is not considered yet.

Drones 2024, 8, 62 6 of 23

• STEP 3. The area of the trapezium with major base ∆s, minor base l as the length of the
circular arc, and height κmax must be equal to ∆ψ. The minor base can be computed as

l =
∆ψ

κmax
− ∆s

2

If l > 0, the path includes a circular arc with curvature κmax. If l = 0, then the path
includes only two clothoids and the maximum curvature κmax is reached at the middle
point. If l < 0, the path includes only two clothoids that do not reach the maximum
curvature.

• STEP 4. Starting from the intersection point Q = (xQ, yQ), the path can be computed
by integrating the following equations as follows:

ẋ(s) = V cos ψ(s)
ẏ(s) = V sin ψ(s)

ψ̈(s) = Vσ(s)
(9)

– For the half-circular arc, the initial conditions are x(0) = xQ, y(0) = yQ, ψ̇(0) =

Vκmax, while σ(s) = 0 and s ∈
[
0, l

2

]
.

– For the spiral curve, in the case of l > 0 (l ≤ 0), the initial conditions are
x(0) = xQ + x(l/2), y(0) = yQ + y(l/2), ψ̇(0) = Vκmax (x(0) = xQ, y(0) = yQ,

ψ̇(0) = V
√

∆ψ · σmax), while σ(s) = −σmax and s ∈
[

l
2 , ∆s−l

2

]
.

These segments represent the second half of the overall curve. The first part can
be computed by mirroring the results with respect to the median line between the
considered directions. The set of Equation (9) has been employed to mitigate non-
linearities in the calculation of heading variation ψ̇. This implies that, in the simulation
of aircraft motion, the variation law of the bank angle ϕ̇ can be computed as follows:

ϕ̇ = σ V2

g cos2 ϕ

ϕ = arctan
(

V2

g κ
) (10)

• STEP 5. The curve must be moved in order to be tangent to both the assigned
directions.

3. Path-Planning Algorithm

Given a starting point A with a prescribed initial direction rA, a target point B, with a
prescribed final direction rB, and a set of No obstacles, the optimal flyable path is a smoothed
curve, with continuous curvature κ(s), composed of segments and flight path transition
curves that does not cross any obstacle, passing through several waypoints Pi in the
free space.

Its construction involves the use of an optimization algorithm to find the optimal
sequence of waypoints Pi. In this paper, a heuristic algorithm Theta* has been modified to
generate flyable paths.

The genesis of Theta* can be attributed to A. Nash [35], who originally introduced it
as an extension of the A* algorithm. A* is a path-planning approach, primarily preferred
for its effectiveness and simplicity of implementation. However, it imposes a limitation on
the heading variation, which is typically constrained to multiples of 45°. This restriction,
due to the grid-based movement, often results in a path deviating from the true shortest
route with several changes in the heading of the vehicle.

Theta* emerged to overcome the A* constraints, particularly the grid-dependent path
limitation governing heading variations. It explores the search space similarly to A*, but it
optimizes the path during exploration to avoid unnecessary changes in the trajectory

Drones 2024, 8, 62 7 of 23

direction. However, flight paths resulting from both A* and Theta* appear as piecewise
linear trajectories that are not compliant with the aircraft flight mechanics constraints.

The proposed procedure avoids the need for smoothing in the post-processing phase,
allowing the aircraft performance constraints to be taken into account directly in the
trajectory optimization process. While in its classical formulation, the arc connecting two
points, Pi and Pj, is a straight segment, the proposed solution considers a flyable edge
Γ(Pi, Pj) with continuous curvature κ(s), made of three parts: an initial straight segment
starting in Pi, a flight path transition curve with a starting direction ri, and a segment
connecting the ending point of the transition curve and the node Pj, with a direction rj that
must be computed in order to minimize the overall length.

The procedure to connect the node Pi with direction ri and the node Pj is the following.
Procedure 2. Flyable edge between two points Pi, with direction ri, and Pj.

• STEP 0—Set an initial guess for the building distance dc.
• STEP 1—Consider a point Q0 = (xQ0 , yQ0) to be used as the intersection point between

the direction ri and the candidate direction r0
j such that

{
xQ0 = xPi + dc cos ψi
yQ0 = yPi + dc sin ψi

(11)

where ψi is the heading angle to describe the direction ri, and xPi and yPi are the
coordinates of the point Pi (see Figure 2a).

• STEP 2—Compute r0
j as the direction Pj − Q0.

• STEP 3—Build the transition curve using Procedure 1.
• STEP 4—Add two segments: the former connecting Pi with the initial point of the

transition curve and the latter connecting the ending point of the transition curve
with Pj.

• STEP 5—Compute ∆L the length of the first segment of the just-built flyable path
between Pi and Pj.

• STEP 6—If ∆L > 0, then dc = dc − ∆L and return to STEP 1 (see Figure 2b, otherwise
return the obtained flyable path Γ(Pi, Pj) and the final direction rj = r0

j .

In the original Theta* algorithm, exploration of the space and grid construction occur
simultaneously. However, the resolution at which the search space is decomposed becomes
crucial for finding the optimal trajectory, especially in obstacle-dense scenarios. In simple
scenarios, a high-resolution decomposition would only waste computational resources,
while a low-resolution grid in complex environments can result in sub-optimal trajectories.
In the proposed algorithm, a variable distance of exploration has been employed, depending
on the relative distance from the obstacles.

To speed up the exploration process and avoid the computation of the distances
from the obstacles at each step, an image-based solution has been adopted. In particular,
a binary representation of the scenario is considered, where the zones occupied by obstacles
are marked with ones and the free spaces with zeros. Then, a convolutional filter is
applied to obtain a blurred image, as shown in Figure 3b, where the color scale represents
the considered exploration distance dsearch. The blue areas indicate low-resolution zones
because they are far from the obstacles, while the green ones stand for high-resolution
regions because they are close to the obstacles.

To further reduce the computational time, given a node Pi, a vision cone Vi of angle η
is adopted to limit exploration only to the nodes Pj falling within Vi, with an exploration
distance dsearch(Pi). Denote with Vi the set of neighbors Pj in the free space, within the
vision cone Vi, with a distance dsearch(Pi) from Pi:

Vi = {Pj ∈ Vi : ∥Pj − Pi∥2 = dsearch(Pi)}

where ∥ · ∥2 indicates the Euclidean norm.

Drones 2024, 8, 62 8 of 23

!!

""
##

!$

∆%

(a)

!!

""
!#

(b)
Figure 2. The optimal path between two graph nodes is found with an iterative method. (a) First step
of the method. (b) Final result.

The procedure to find the path between the starting point A and the target point B is
the following.

Procedure 3. Theta* exploration process to find the flyable path between two points
A and B, with assigned directions rA and rB, respectively.

• STEP 0—Consider the set C of explored nodes and the set O of unexplored nodes con-
sisting of tuples < Pi, ri, Ph

i ,Fi >, where Pi is the considered node, ri is the departing
direction, Ph

i is the parent node, and Fi is the global cost:

Fi = H(A, Ph
i) + L(Ph

i , Pi) + ∥B − Pi∥2

with H(A, Ph
i) the length of the path used to fly between A and Ph

i , L(Ph
i , Pi) the length

of the flyable edge Γ(Ph
i , Pi) between Ph

i and Pi, and ∥B − Pi∥2 the Euclidean distance
between B and Pi.
Initialize C = ∅ and O =< A, rA, A,FA >.

• STEP 1—Select and remove from O the tuple < Pi, ri, Ph
i ,Fi > with minimum global

cost. Add the tuple to C. If Pi = B, then terminate the procedure.
• STEP 2—Compute the vision cone Vi and build the set Vi. If B is in Vi, add B to the

set of neighbors Vi.
• STEP 3—For each node Pj ∈ Vi, build the flyable paths Γ(Pi, Pj) and Γ(Ph

i , Pj).
If Pj = B, then two flyable edges are needed to find a trajectory between two points
with assigned initial and final directions. In particular, said B̃ = Pi+B

2 an intermediate
point, two flyable edges Γ(Pi, B̃) and Γ(B̃, B) must be computed.

Γ(Pi, B) = Γ(Pi, B̃) ∪ Γ(B̃, B)

• STEP 4—For each node Pj, compute the two possible global costs associated to Pj:

F1
j =

{
H(A, Ph

i) + L(Ph
i , Pj) + ∥B − Pj∥2 if Γ(Ph

i , Pj) is feasible
+∞ otherwise

F2
j =

{
H(A, Pi) + L(Pi, Pj) + ∥B − Pj∥2 if Γ(Pi, Pj) is feasible

+∞ otherwise

where the edge Γ(·, ·) is feasible if it does not intersect any obstacle.
• STEP 5—For each node Pj assign to Fj the minimum global cost associated to Pj and

the relative parent node

Ph
j =

{
Pi if F2

j < F1
j

Ph
i otherwise

Drones 2024, 8, 62 9 of 23

• STEP 6—Consider the tuple < Pj, rj, Ph
j ,Fj >. If C contains a tuple < Pj, r0

j , Ph0

j ,F0
j >,

if F0
j > Fj then remove < Pj, r0

j , Ph0

j ,F0
j > and add < Pj, rj, Ph

j ,Fj > to C. If C does not

contain any tuple with Pj, then add < Pj, rj, Ph
j ,Fj to C.

• STEP 7—Go to STEP 1.

To reconstruct the optimal flyable path between A and B, find the tuple with B in the
set C and move to its parent node. Iterate the process until the parent node is A.

X [m]

Y
 [m

]

(a) (b)
Figure 3. Image-based solution adopted to speed up the process. The distance between two nodes of
the grid depends on their distances from the obstacles. (a) Example of binary representation of the
scenario. (b) Example of filtered scenario; the blue areas indicate the low-resolution zones because
they are far from the obstacles while the green ones stand for the high-resolution regions because
they are close to the obstacles.

To preliminarily evaluate the algorithm capability in identifying feasible paths, a sim-
ple example is presented in Figure 4, where the initial point and the target point A and
B are given, with starting and target directions ψstart and ψend, respectively. The scenario
presents one convex obstacle to be avoided at the center of the environment. In Figure 4b,
the final path avoiding the obstacle is shown, while in Figure 4a, the blue lines show the
arcs explored by the algorithm during the search. The results are summarized in Table 1.

In Figure 5, the details of the planned path for this scenario are shown, highlighting
the starting turn maneuver, which is needed to deviate from the preassigned initial slope,
and the turn needed to go around the obstacle.

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(a)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(b)
Figure 4. Test case #0: Scenario with one obstacle, represented in red, starting point at A = (0, 0) m
and target point at B = (3000, 3000) m. (a) Paths (blue lines) explored by the algorithm during the
optimization process. (b) Final path (black line).

Drones 2024, 8, 62 10 of 23

X [m]

Y
 [
m

]

Path

Starting point

(a)

X [m]

Y
 [

m
]

Path

Obstacles

(b)
Figure 5. Test case #0: Details of the optimal flyable path. (a) Initial turn maneuver. (b) Turn around
the obstacle.

Table 1. Test case #0: Results in terms of time, length, and number of explored nodes.

Value

dsearch [m] 100
Time [s] 16.61

Path length [m] 4527.4
Explored nodes 190

Total generated nodes 286

4. Results

For a more comprehensive assessment of the algorithm effectiveness, the path planner
was tested on five different scenarios. The first test case presents a scenario with several
convex and concave obstacles to test the ability of the algorithm to avoid the concavity of
obstacles when the vision cone is also in use. In the second test case, the capability of the
procedure to use a variable exploration distance is stressed, comparing results with a Theta*
without the new feature. The third test case presents a comparison of the results provided
by different variants of the algorithm with varying combinations of the proposed features.
The fourth test simulates the use of the path planner in a real urban scenario. In particular,
a dense area of Napoli (IT) is considered, with the aircraft flying at a fixed flight altitude of
h = 10 m, avoiding buildings. Finally, the last test case is considered to verify the accurate
tracking of an aircraft along the planned trajectory.

As shown in Table 2, the different algorithm variants will be referred to using the
following notation: θ∗C for the base algorithm implementing only the path transition curve
as edges; θ∗V for the algorithm with the vision cone option active; θ∗G in the case when
the variable exploration distance is used; θ∗F indicates the algorithm using all the optional
features, i.e., the vision cone and the variable exploration distance.

Table 2. Algorithm variants. Table of active features: (x) stands for not active, (+) active

Smooth
Transition

Vision
Cone

Variable
Grid

θ∗ x x x
θ∗C + x x
θ∗V + + x
θ∗G + x +
θ∗F + + +

Drones 2024, 8, 62 11 of 23

4.1. Test Case #1

This simulation test case evaluates the performance of the proposed algorithm, with and
without the vision cone option, in terms of path length and computational burden.

The parameters used in the first scenario are listed in Table 3. The scenario is composed
of four convex and two concave obstacles. To stress the algorithm and prove its effectiveness,
the starting point is placed inside the concave obstacle (Figure 6), and the positions of the
obstacles are chosen in order to create narrow passages. The starting and ending directions
are arbitrarily chosen.

Figure 6 shows the result for the first test case. In particular, Figure 6a,b represent
the explored paths and the final trajectory, respectively, when the vision cone option
is not active, while Figure 6c,d show the results of the algorithm with the vision cone
option active.

As can be seen, the aircraft is able to fly effectively in the operational scenarios, passing
through narrow passages and avoiding becoming stuck in concave obstacles.

During the exploration phase, the use of the vision cone reduces the number of
explored nodes, allowing for a lower number of explored paths, as shown in Figure 6a,c.
In particular, in this case study, the lower number of tested trajectories results in a final
trajectory (Figure 6d) slightly longer than the path obtained without an active vision cone
(Figure 6b), but with the advantage of a reduced computational burden, as highlighted in
Table 4.

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(a)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(b)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(c)

X [m]

Y
 [

m
]

Path

Obstacles

Starting point

Ending point

(d)
Figure 6. Test case #1. Comparison between θ∗C and θ∗V algorithms. Obstacles are represented in
red, explored paths with solid blue lines, and final paths with solid black lines. (a,b) θ∗C algorithm.
(c,d) θ∗V algorithm.

Drones 2024, 8, 62 12 of 23

Table 3. Test-case #1: scenario parameters.

Value

A [m] (1300,100)
ψstart [deg] 270

B [m] (3500,2500)
ψend [deg] 50

η [deg] 80

Table 4. Test-case #1. Comparison of time, length, and grid nodes between the algorithm with and
without the vision cone.

θ∗C θ∗V

Time [s] 42.40 13.21
Path length [m] 4389.2 4606.9
Explored nodes 305 245

Total nodes generated 368 294

4.2. Test Case #2

The main aim of the second test case is to assess the algorithm ability to use vari-
able exploration distance to find the shortest path with a reduced computational burden.
The second operational scenario consists of three convex obstacles and one concave obstacle,
arranged to form narrow corridors along the path from the starting point to the destination
point. Table 5 lists the parameters used. The obstacles are placed to highlight the different
results obtained by using fixed or variable exploration distances. In particular, Figure 7a,c
represent the explored nodes running the algorithm with fixed exploration distances equal
to dsearch = 50 m and dsearch = 100 m, respectively, while the final paths obtained at the end
of these runs are represented in Figure 7b,d, respectively. In this scenario, having more
explored nodes is advantageous in terms of the final trajectory length, as it allows for close
passage between obstacles. On the other hand, a lower number of points does not allow
for finding a solution of the same quality, as the algorithm avoids the passage through the
narrow corridor, leading to a longer trajectory.

A better result can be achieved using a variable exploration distance, as illustrated in
Figure 7e,f. In particular, Figure 7e demonstrates the benefits of employing the new feature,
creating a region with a higher density of nodes only in the neighbors of obstacles. This
allows the identification of a final trajectory (Figure 7f) very similar to the one obtained with
more nodes, as shown in Figure 7b. However, this result is achieved with fewer generated
nodes and, consequently, with a lower computational burden.

Table 6 shows the comparison between the proposed algorithms in terms of com-
putational times and trajectory lengths. As can be observed, the algorithm featuring a
variable search distance ensures a good solution in terms of final trajectory length with a
lower computational burden compared to the other two algorithm variants using a fixed
exploration distance.

Table 5. Test-case #2: scenario parameters.

Value

A [m] (1800, 500)
ψstart [deg] 0

B [m] (5000, 1500)
ψend [deg] 90

Drones 2024, 8, 62 13 of 23

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(a)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(b)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(c)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(d)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(e)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(f)
Figure 7. Test case #2. Comparison between θ∗C and θ∗G algorithms. Obstacles are represented in red,
explored nodes with blue dots, and final paths with solid black lines. (a,b) θ∗C algorithm with fixed
search distance dsearch = 50 m. (c,d) θ∗C algorithm with fixed search distance dsearch = 100 m. (e,f) θ∗G
algorithm.

Table 6. Test-case #2. Comparison of time, length, and grid nodes between the algorithm with fixed
grid and search distance 50 m; fixed grid and search distance 100 m; variable grid.

θ∗C θ∗C θ∗G

dsearch [m] 50 100 variable
Time [s] 41.59 32.88 22.92

Path length [m] 3761.2 4348.1 3845.5
Explored nodes 336 299 285

Total generated nodes 465 418 450

4.3. Test Case #3

This scenario, consisting of three convex obstacles and one concave obstacle, allows us
to test whether the proposed algorithm is able to reduce the computational burden com-
pared to its variants, which use either the vision cone or the variable exploration distance.

Drones 2024, 8, 62 14 of 23

The specific arrangement of obstacles forces the algorithms to construct similar paths,
allowing us to evaluate the solution goodness in terms of computational burden rather
than path length.

The parameters used for this simulation are stated in Table 7.
Figure 8 shows the trajectories explored with the algorithms, while Figure 9 illustrates

the final paths, which appear very similar in all the analyzed cases.
Table 8 presents the results in terms of computation time and trajectory lengths.

As can be seen, all the algorithm variants are able to identify trajectories of similar lengths.
However, the θ∗F algorithm, which features both the vision cone and the variable exploration
distance, provides not only the shortest trajectory but, above all, shows a significant
reduction in the computational time compared to the other algorithm variants.

Table 7. Test-case #3: scenario parameters.

Value

A [m] (1800, 500)
ψstart [deg] 0

B [m] (3500, 3000)
ψend [deg] 0

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(a)

X [m]

Y
 [m

]
Path
Obstacles
Starting point
Ending point

(b)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(c)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(d)
Figure 8. Test case #3. Comparison between θ∗C, θ∗G, θ∗V , and θ∗F algorithms. Obstacles are represented
in red, and explored paths with solid blue lines. (a) Explored paths with θ∗C algorithm. (b) Explored
paths with θ∗G algorithm. (c) Explored paths with θ∗V algorithm. (d) Explored paths with θ∗F algorithm.

Drones 2024, 8, 62 15 of 23

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(a)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(b)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(c)
Figure 9. Test case #3. Final paths. Obstacles are represented in red, and final paths with solid black
line. (a) Final path with θ∗C and θ∗V algorithms. (b) Final path with θ∗G algorithm. (c) Final path with
θ∗F algorithm.

Table 8. Test-case #3. Comparison of time, length, and grid nodes between the algorithm with Theta∗

clothoid; Theta∗ clothoid with variable grid; Theta∗ clothoid with vision cone; Theta∗ clothoid with
both variable grid and vision cone.

θ∗C θ∗V θ∗G θ∗F

dsearch [m] 50 50 variable variable
Time [s] 35.39 15.36 33.94 11.80

Path length [m] 3168.1 3168.1 3194.0 3183.5
Explored nodes 329 316 343 258

Total generated nodes 447 386 624 384

4.4. Test Case #4: Urban Scenario

The aim of test case #4 is to evaluate the algorithm’s capability of identifying the
optimum path in a real urban environment. The parameters used in this scenario are shown
in Table 9. The coordinates are given in terms of longitude and latitude; in particular,
this scenario replicates the area of Naples city located between Piazza Nazionale and
Centro Direzionale.

The path search is carried out with a fixed exploration distance dsearch = 40 m. This
distance turned out to be a fair compromise between two needs: having a higher number
of points to navigate narrow passages and limiting the computational burden even in a
scenario full of obstacles.

Figure 10 represents the results for this urban scenario. Figure 10a shows the explo-
ration phase, where the algorithm performs an extensive search of its surroundings to
find a feasible path compliant with the UAV’s performance. The final path identified is
presented in Figure 10b.

Drones 2024, 8, 62 16 of 23

Table 10 summarizes the obtained results. Due to the large number of obstacles
involved in this scenario, the computational burden appears significantly higher compared
to the previous test cases. A time reduction could be expected through a pre-processing
work aimed at limiting the number of obstacles considered in each iteration, but this goes
beyond the scope of this test.

Table 9. Test-case #4: scenario parameters.

Value

A (lon,lat) [deg, deg] (14.277, 40.8566)
ψstart [deg] 45

B (lon,lat) [deg, deg] (14.284, 40.859)
ψend [deg] 45

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(a)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(b)
Figure 10. Test case #4. Simulation results for the search of the path between the starting and the
target point in a realistic urban scenario in Naples. Obstacles are represented in red, explored paths
with solid blue lines, and final paths with solid black lines. (a) Exploration phase. (b) Final path.

Table 10. Test-case #4. Results in terms of time, length and grid nodes of the algorithm for an
urban scenario.

Value

dsearch [m] 40
Time [s] 148.91

Path length [m] 734.04
Explored nodes 37

Total generated nodes 63
Number of obstacles 336

4.5. Test Case #5: Simulation of a Short Cruise Path

In this test case, the problem of planning an optimal path for guiding an aircraft during
the cruise phase to avoid specific no-fly zones is considered. The scenario involves two
obstacles, a starting point A = [−15,−15] km, a target point B = [20, 20] km, an initial
heading ψ = 75 deg, and a final heading ψ = 0 deg. To ensure realism and reproducibil-
ity, a general aviation aircraft with characteristics outlined in [59] was considered for
testing. For trajectory tracking, a control system based on classical control methods [60]
was developed.

After planning the optimal path with θ∗F, considering kmax = 6 × 10−4 1
m and σmax =

8.2 × 10−5 1
m·s , trajectory tracking was simulated to verify its actual feasibility at the cruise

speed of V = 67 m
s . Figure 11a displays the planned and tracked path, while Figure 11b

illustrates the desired and actual heading of the aircraft. As observed, the aircraft effec-
tively follows the trajectory, and the only minor discrepancy arises from the sharpness

Drones 2024, 8, 62 17 of 23

discontinuity, resulting in a jump in the roll angular velocity. Nevertheless, such a model
error translates into a tracking error maximum of 7 meters.

X [km]

Y
 [k

m
]

Reference path
Tracked path
Starting point
Target point
Obstacle

(a)

Time [s]

 [d
eg

]

Reference
Tracked

(b)
Figure 11. Test-case #5. Simulation results. (a) Planned path in black solid line and tracked trajectory
in dashed cyan. (b) Reference and tracked heading during flight.

5. Discussion

The algorithm’s efficacy was comprehensively evaluated through four distinct scenarios.
In scenarios where the vision cone was active, the algorithm demonstrates a reduction

in the number of explored nodes, leading to a more efficient exploration phase. However,
such a feature occasionally results in slightly longer trajectories. Furthermore, as high-
lighted in the first test case, featuring convex and concave obstacles, the algorithm is able
to overcome concave structures while using the vision cone. This capability is crucial
for scenarios with intricate obstacles where maintaining awareness of the environment
is pivotal.

The implementation of the variable exploration distance showcased its advantages,
particularly in scenarios with narrow passages. By dynamically adjusting node density,
the algorithm achieved optimal trajectories with a reduced computational cost compared
to standard implementations. The results were emphasized in the second test case. A com-
parison with a Theta* employing constant distances demonstrated the algorithm’s superior
performance when dynamically adjusting node densities.

Across all scenarios, the algorithm consistently performed well in terms of trajec-
tory lengths. The θ∗F variant, incorporating both the vision cone and variable exploration
distance, emerged as the most efficient in terms of both trajectory length and computa-
tional time.

In particular, the third test case also involved a comprehensive comparison of algo-
rithm variants, each incorporating different combinations of optional features. Notably,
the use of both vision cone and variable exploration distance features (denoted as θ∗F)
resulted in better trajectories in terms of overall length with a significant reduction in com-
putational burden. This indicates the synergistic benefits of employing multiple features.

The final test case simulated the algorithm performance in a real urban environment in
Naples, Italy. The algorithm successfully navigated a dense urban area, avoiding obstacles
and producing feasible trajectories. While the computational burden increased due to the
complexity of the scenario, the ability to find suitable trajectories in cluttered environments
while managing computational resources is crucial for real-world UAV applications.

To highlight the effectiveness of the proposed methodology in terms of the ability
to find the minimum-length path and avoid collisions with environmental obstacles, this
section presents a comparison with three algorithms with the same objectives: the Essential
Visibility Graph (EVG) with Dubins-based smoothing [56,61], a custom graph-based solu-
tion with clothoids [17], and an RRT-based algorithm, named the Stack-RRT* algorithm [62].

The comparison between the EVG and the proposed algorithm is made by considering
four different configurations of the same scenario, whose parameters are summarized
in Table 11. As depicted in Table 12, the EVG is faster and able to guarantee a proved

Drones 2024, 8, 62 18 of 23

optimal path in terms of length. However, as shown in Figure 12, the resulting trajectory is
composed of several straight segments, requiring a post-processing smoothing procedure,
implemented using Dubins arcs, to make it easily flyable by a fixed-wing aircraft. This
approach leads to the presence of discontinuities in curvature κ(s). The proposed θ∗F algo-
rithm is able to create a completely flyable path that can be easily followed by the aircraft,
with a slight increase in the total length (maximum 1.6%). Regarding the computation
time, there is a clear distinction between the processing times required by the proposed
algorithm compared to those presented in [61]. Undoubtedly, the lack of optimization
in the code, as well as the implementation in Matlab, has an impact on such extended
processing times. The computer considered in this analysis is a laptop with an i5-8250U
processor and 8GB of RAM. Certainly, the number of nodes explored in Theta* is much
higher than those analyzed in an Essential Visibility Graph. From this perspective, the EVG
may appear superior, but in the presence of uncertainty and scenarios involving moving
obstacles, Theta* can adapt more easily, even from a procedural standpoint.

The comparison with another clothoid-based approach [17] is faced using the scenario
of the test case #3 (see Section 4.3). The parameters are summarized in Table 7. The paths
for the comparison are illustrated in Figure 13, while the results are shown in Table 13. It is
worth noting that, although both models provide easily flyable trajectories for fixed-wing
aircraft, the proposed algorithm appears to be more efficient, ensuring a shorter trajectory
at a lower computational burden.

Finally, a comparison with an RRT-based algorithm is presented, considering four
different scenarios introduced in [62]. The results, in terms of generated paths, are depicted
in Figure 14. As shown in the figures, θ∗F is capable of planning paths similar to Stack-
RRT*, effectively addressing challenges posed by non-convex obstacles. Additionally,
as emphasized in Table 14, θ∗F can identify paths with lengths comparable to the outcomes
reported in [62]. Regarding computation times, although they may appear high, it is
important to consider both the type of processor available and the lack of code optimization.

Table 11. Comparison θ∗F—EVG: scenario parameters.

Value

A [m] (20,000, 20,000)
ψstart [deg] 225

B(a) [m] (−15,000, −15,000)
B(b) [m] (−10,000, 0)
B(c) [m] (0, 0)
B(d) [m] (0, −15,000)

ψend [deg] 180

Table 12. Comparison θ∗F—EVG. Comparison of the algorithms in terms of time and path length.

(a) (b) (c) (d)

Time θ∗F [s] 85.98 122.81 45.40 71.21
Time EVG [s] 1.26 1.52 0.967 1.48

Path length θ∗F [m] 51,595.9 38,782.1 29,616.0 41,846.7
Path length EVG [m] 51,402.1 38,169.0 29,298.4 41,597.1

Table 13. Comparison θ∗F—clothoid-based model. Comparison of the algorithms in terms of time and
path length.

θ∗F Clothoid-Based Model

Time [s] 11.50 16.83
Path length [m] 5273.0 5754.1

Drones 2024, 8, 62 19 of 23

X [km]

Y
 [k

m
]

Path
Obstacles
Starting point
Ending point

(a)

X [km]

Y
 [k

m
]

Path
Obstacles
Starting point
Ending point

(b)

X [km]

Y
 [k

m
]

Path
Obstacles
Starting point
Ending point

(c)

X [km]
Y

 [k
m

]

Path
Obstacles
Starting point
Ending point

(d)
Figure 12. Comparison θ∗F—EVG. Final paths obtained with θ∗F algorithm for the scenario proposed
in [61]. Obstacles are represented in red and final paths with solid black lines. (a) Explored paths
with θ∗F algorithm and ending point B(a). (b) Explored paths with θ∗F algorithm and ending point B(b).
(c) Explored paths with θ∗F algorithm and ending point B(c). (d) Explored paths with θ∗F algorithm
and ending point B(d).

X [m]

Y
 [m

]

F

Clothoid based
Obstacles
Starting point
Ending point

Figure 13. Comparison θ∗F—clothoid-based solution. Final path obtained with θ∗F (dotted line)
and clothoid-based algorithm (solid line) for the scenario proposed in Section 4.3. Obstacles are
represented in red and final paths with solid black lines.

Table 14. Results of θ∗F for the scenarios presented in Figure 14. Results in terms of time and
path length.

(a) (b) (c) (d)

Time [s] 7.82 4.68 6.90 21.35
Path length [m] 81.73 74.73 46.30 123.99
Explored nodes 93 49 19 136

Total generated nodes 143 86 49 206

Drones 2024, 8, 62 20 of 23

X [m]

Y
 [

m
]

Path

Obstacles

Starting point

Ending point

(a)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(b)

X [m]

Y
 [m

]

Path
Obstacles
Starting point
Ending point

(c)

X [m]
Y

 [m
]

Path
Obstacles
Starting point
Ending point

(d)
Figure 14. Comparison θ∗F - Stack-RRT*. Final paths obtained with θ∗F algorithm for the scenario
proposed in [62]. Obstacles are represented in red and final paths with solid black lines. (a) Explored
paths with θ∗F algorithm for the scenario presented in Figure 5 of Ref. [62]. (b) Explored paths with θ∗F
algorithm for the scenario presented in Figure 6 of Ref. [62]. (c) Explored paths with θ∗F algorithm for
the scenario presented in Figure 7 of Ref. [62]. (d) Explored paths with θ∗F algorithm for the scenario
presented in Figure 8 of Ref. [62].

6. Conclusions

In this paper, a path-planning strategy for fixed-wing UAVs is proposed by enhancing
the so-called Theta* algorithm. The path design involves a piece-wise curve composed
of circular and spiral arcs, ensuring compliance with aircraft performance constraints.
In particular, the transition between the initial and the target directions is made by means
of Euler spiral-based transition curves, comprising two spirals and one circular arc having
a curvature compliant with the specific aircraft characteristics.

The optimization of the final path is based on an enhanced version of the Theta*
algorithm, where arcs between nodes are defined by the aforementioned path transition
curves. This solution is able to generate trajectories without discontinuities, ensuring that
the entire flight path is compliant with the performance of the aircraft. To reduce the
algorithm’s burden on the CPU, the computational grid of Theta* is dynamically generated
with a variable step size, taking into account actual distances to obstacles. The exploration
of the search space is further enhanced by the introduction of a vision cone, limiting the
algorithm exploration only to relevant areas and preventing unnecessary maneuvers.

The results of comprehensive tests on five distinct scenarios demonstrate the effec-
tiveness of the proposed algorithm. The first test, involving scenarios with both convex
and concave obstacles, highlights the capability of the algorithm to find feasible paths in
complex environments, also with the use of the vision cone feature, which is mainly aimed
at reducing computational time. The second test emphasizes the advantages of adopting a
variable exploration distance, showing its superiority over a standard Theta* algorithm.
In the third test, a comparative analysis between the algorithm variants, incorporating all
the developed features, demonstrates the robustness of the proposed approach. The fourth
test simulates a real urban scenario in Naples, Italy, where the UAV, flying at a fixed altitude,

Drones 2024, 8, 62 21 of 23

successfully avoids buildings while reaching the destination point. Finally, the last test case
verifies the accurate tracking along the planned trajectory using a high-fidelity simulator.

In summary, the results show that the proposed path-planning procedure allows
the aircraft to effectively navigate through narrow passages and avoid concave obstacles.
During the exploration phase, the use of a vision cone significantly reduces the number of
nodes explored, resulting in a slightly longer final trajectory but improving computational
efficiency.

Furthermore, the adoption of a variable exploration distance, creating a region of
higher node density only in the proximity of obstacles, improves the algorithm’s effective-
ness by achieving a final path similar to a trajectory obtained with a denser presence of
nodes but with a reduced computational burden.

Further improvement opportunities exist, especially in scenarios with a high number
of obstacles. Exploring pre-processing techniques to limit obstacles considered in each
iteration could potentially enhance computational efficiency. Furthermore, additional
refinements and applications can be explored, considering 3D scenarios and the use of path
transition curves including climb maneuvers.

Author Contributions: Conceptualization, E.D. and I.N.; data curation, S.R.B. and G.R.; formal
analysis, S.R.B., E.D. and I.N.; investigation, S.R.B.; methodology, E.D., I.N. and G.R.; resources, L.B.;
software, G.R.; supervision, E.D.; validation, S.R.B., I.N. and G.R.; writing—original draft, S.R.B.,
E.D., I.N., G.R. and L.B.; Writing—review and editing, S.R.B., E.D., I.N., G.R. and L.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the research project—ID:20222N4C8E “Resilient and Secure
Networked Multivehicle Systems in Adversary Environments” granted by the Italian Ministry of
University and Research (MUR) within the PRIN 2022 program, funded by the European Union
through the PNRR program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Federal Aviation Administration. FAA Aerospace Forecast. Fiscal Years 2022–2042; Federal Aviation Administration: Washington,

DC, USA, 2022.
2. Ramesh, P.; Jeyan, J.M.L. Comparative analysis of the impact of operating parameters on military and civil applications of mini

unmanned aerial vehicle (UAV). In Proceedings of the AIP Conference Proceedings; AIP Publishing LLC: College Park, MD, USA,
2022 ; Volume 2311, p. 030034.

3. Aggarwal, S.; Kumar, N. Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Comput.
Commun. 2020, 149, 270–299. [CrossRef]

4. Gul, F.; Mir, I.; Abualigah, L.; Sumari, P.; Forestiero, A. A consolidated review of path planning and optimization techniques:
Technical perspectives and future directions. Electronics 2021, 10, 2250. [CrossRef]

5. D’Amato, E.; Mattei, M.; Notaro, I. Bi-level flight path planning of UAV formations with collision avoidance. J. Intell. Robot. Syst.
2019, 93, 193–211. [CrossRef]

6. Goerzen, C.; Kong, Z.; Mettler, B. A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J.
Intell. Robot. Syst. 2010, 57, 65–100. [CrossRef]

7. Dasgupta, B.; Gupta, A.; Singla, E. A variational approach to path planning for hyper-redundant manipulators. Robot. Auton.
Syst. 2009, 57, 194–201. [CrossRef]

8. Shukla, A.; Singla, E.; Wahi, P.; Dasgupta, B. A direct variational method for planning monotonically optimal paths for redundant
manipulators in constrained workspaces. Robot. Auton. Syst. 2013, 61, 209–220. [CrossRef]

9. la Cour-Harbo, A.; Bisgaard, M. State-control trajectory generation for helicopter slung load system using optimal control. In
Proceedings of the AIAA Guidance, Navigation, and Control Conference; AIAA: Chicago, IL, USA, 2009 ; p. 6296.

10. Xu, N.; Kang, W.; Cai, G.; Chen, B.M. Minimum-time trajectory planning for helicopter UAVs using computational dynamic
optimization. In Proceedings of the 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Republic
of Korea, 14–17 October 2012; pp. 2732–2737.

http://doi.org/10.1016/j.comcom.2019.10.014
http://dx.doi.org/10.3390/electronics10182250
http://dx.doi.org/10.1007/s10846-018-0861-1
http://dx.doi.org/10.1007/s10846-009-9383-1
http://dx.doi.org/10.1016/j.robot.2008.05.001
http://dx.doi.org/10.1016/j.robot.2012.08.012

Drones 2024, 8, 62 22 of 23

11. D’Amato, E.; Mattei, M.; Notaro, I. Distributed reactive model predictive control for collision avoidance of unmanned aerial
vehicles in civil airspace. J. Intell. Robot. Syst. 2020, 97, 185–203. [CrossRef]

12. Liu, P.; Yu, H.; Cang, S. Geometric analysis-based trajectory planning and control for underactuated capsule systems with
viscoelastic property. Trans. Inst. Meas. Control. 2017, 40, 0142331217708833. [CrossRef]

13. Duan, H.; Zhao, J.; Deng, Y.; Shi, Y.; Ding, X. Dynamic Discrete Pigeon-Inspired Optimization for Multi-UAV Cooperative
Search-Attack Mission Planning. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 706–720. [CrossRef]

14. Dubins, L.E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal
positions and tangents. Am. J. Math. 1957, 79, 497–516. [CrossRef]

15. Owen, M.; Beard, R.W.; McLain, T.W. Implementing Dubins airplane paths on fixed-wing uavs. In Handbook of Unmanned Aerial
Vehicles; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1677–1701.

16. Babel, L. Coordinated target assignment and UAV path planning with timing constraints. J. Intell. Robot. Syst. 2019, 94, 857–869.
[CrossRef]

17. Blasi, L.; D’Amato, E.; Notaro, I.; Raspaolo, G. Clothoid-Based Path Planning for a Formation of Fixed-Wing UAVs. Electronics
2023, 12, 2204. [CrossRef]

18. Scherer, S.; Singh, S.; Chamberlain, L.; Elgersma, M. Flying fast and low among obstacles: Methodology and experiments. Int. J.
Robot. Res. 2008, 27, 549–574. [CrossRef]

19. Schøler, F.; Cour-Harbo, A.; Bisgaard, M. Configuration space and visibility graph generation from geometric workspaces for
uavs. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Portland, Oregon, 8–11 August 2011.

20. Schøler, F.; la Cour-Harbo, A.; Bisgaard, M. Generating approximative minimum length paths in 3D for UAVs. In Proceedings of
the Intelligent Vehicles Symposium (IV), Madrid, Spain, 3–7 June 2012; pp. 229–233.

21. Maini, P.; Sujit, P.B. Path planning for a UAV with kinematic constraints in the presence of polygonal obstacles. In Proceedings of
the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; pp. 62–67.

22. Bortoff, S.A. Path planning for UAVs. In Proceedings of the American Control Conference, Chicago, IL, USA, 6 August 2002;
Volume 1, pp. 364–368.

23. Pehlivanoglu, Y.V. A new vibrational genetic algorithm enhanced with a Voronoi diagram for path planning of autonomous UAV.
Aerosp. Sci. Technol. 2012, 16, 47–55. [CrossRef]

24. Lin, Y.; Saripalli, S. Path planning using 3D dubins curve for unmanned aerial vehicles. In Proceedings of the 2014 International
Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014; pp. 296–304.

25. Yang, K.; Sukkarieh, S. Real-time continuous curvature path planning of UAVs in cluttered environments. In Proceedings of the
2008 5th International Symposium on Mechatronics and Its Applications, Amman, Jordan, 7–29 May 2008; pp. 1–6.

26. Véras, L.G.; Medeiros, F.L.; Guimarães, L.N. Rapidly exploring Random Tree* with a sampling method based on Sukharev grids
and convex vertices of safety hulls of obstacles. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419825941. [CrossRef]

27. Liu, Y.H.; Arimoto, S. Proposal of tangent graph and extended tangent graph for path planning of mobile robots. In Proceedings
of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991; pp. 312–317.

28. Cover, H.; Choudhury, S.; Scherer, S.; Singh, S. Sparse tangential network (SPARTAN): Motion planning for micro aerial vehicles.
In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013;
pp. 2820–2825.

29. Babel, L. Curvature-constrained traveling salesman tours for aerial surveillance in scenarios with obstacles. Eur. J. Oper. Res.
2017, 262, 335–346. [CrossRef]

30. Yan, F.; Liu, Y.S.; Xiao, J.Z. Path planning in complex 3D environments using a probabilistic roadmap method. Int. J. Autom.
Comput. 2013, 10, 525–533. [CrossRef]

31. Musliman, I.A.; Rahman, A.A.; Coors, V. Implementing 3D network analysis in 3D GIS. Int. Arch. ISPRS 2008, 37 Pt B .
32. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
33. De Filippis, L.; Guglieri, G.; Quagliotti, F. Path planning strategies for UAVS in 3D environments. J. Intell. Robot. Syst. 2012,

65, 247–264. [CrossRef]
34. Carsten, J.; Ferguson, D.; Stentz, A. 3d field d: Improved path planning and replanning in three dimensions. In Proceedings of

the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 3381–3386.
35. Nash, A.; Daniel, K.; Koenig, S.; Felner, A. Theta*: Any-angle path planning on grids. In Proceedings of the AAAI 2007,

Vancouver, BC, Canada, 22–26 July 2007 ; Volume 7, pp. 1177–1183.
36. Rabin, S. A* speed optimizations. Game Program. Gems 2000, 1, 272–287.
37. Ferguson, D.; Stentz, A. Field D*: An interpolation-based path planner and replanner. In Robotics Research: Results of the 12th

International Symposium ISRR; Springer: Berlin/Heidelberg, Germany, 2007; pp. 239–253.
38. Kim, H.; Kim, D.; Shin, J.U.; Kim, H.; Myung, H. Angular rate-constrained path planning algorithm for unmanned surface

vehicles. Ocean Eng. 2014, 84, 37–44. [CrossRef]
39. Faria, M.; Marín, R.; Popović, M.; Maza, I.; Viguria, A. Efficient lazy theta* path planning over a sparse grid to explore large 3d

volumes with a multirotor uav. Sensors 2019, 19, 174. [CrossRef] [PubMed]
40. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Path planning for autonomous vehicles in unknown semi-structured environ-

ments. Int. J. Robot. Res. 2010, 29, 485–501. [CrossRef]

http://dx.doi.org/10.1007/s10846-019-01047-5
http://dx.doi.org/10.1177/0142331217708833
http://dx.doi.org/10.1109/TAES.2020.3029624
http://dx.doi.org/10.2307/2372560
http://dx.doi.org/10.1007/s10846-018-0910-9
http://dx.doi.org/10.3390/electronics12102204
http://dx.doi.org/10.1177/0278364908090949
http://dx.doi.org/10.1016/j.ast.2011.02.006
http://dx.doi.org/10.1177/1729881419825941
http://dx.doi.org/10.1016/j.ejor.2017.03.067
http://dx.doi.org/10.1007/s11633-013-0750-9
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1007/s10846-011-9568-2
http://dx.doi.org/10.1016/j.oceaneng.2014.03.034
http://dx.doi.org/10.3390/s19010174
http://www.ncbi.nlm.nih.gov/pubmed/30621305
http://dx.doi.org/10.1177/0278364909359210

Drones 2024, 8, 62 23 of 23

41. Ferraro, A.; Scordamaglia, V. A set-based approach for detecting faults of a remotely controlled robotic vehicle during a trajectory
tracking maneuver. Control Eng. Pract. 2023, 139, 105655. [CrossRef]

42. Scordamaglia, V.; Nardi, V.A. A set-based trajectory planning algorithm for a network controlled skid-steered tracked mobile
robot subject to skid and slip phenomena. J. Intell. Robot. Syst. 2021, 101, 15. [CrossRef]

43. Bartolomei, L.; Teixeira, L.; Chli, M. Perception-aware path planning for uavs using semantic segmentation. In Proceedings of the
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24
January 2021; pp. 5808–5815.

44. Zhao, Y.; Yan, L.; Chen, Y.; Dai, J.; Liu, Y. Robust and efficient trajectory replanning based on guiding path for quadrotor fast
autonomous flight. Remote Sens. 2021, 13, 972. [CrossRef]

45. Webb, D.J.; Berg, J.V.D. Kinodynamic RRT*: Optimal motion planning for systems with linear differential constraints. arXiv 2012,
arXiv:1205.5088.

46. Cain, B.; Kalaitzakis, M.; Vitzilaios, N. MK-RRT: Multi-Robot Kinodynamic RRT Trajectory Planning. In Proceedings of the 2021
International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 868–876.

47. Ge, J.; Liu, L.; Dong, X.; Tian, W. Trajectory planning of fixed-wing UAV using kinodynamic RRT algorithm. In Proceedings
of the 2020 10th International Conference on Information Science and Technology (ICIST), Bath, London, Plymouth, UK, 9–15
September 2020; pp. 44–49.

48. Eun, Y.; Bang, H. Cooperative control of multiple unmanned aerial vehicles using the potential field theory. J. Aircr. 2006,
43, 1805–1814. [CrossRef]

49. Chen, X.; Zhang, J. The three-dimension path planning of UAV based on improved artificial potential field in dynamic
environment. In Proceedings of the 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics,
Hangzhou, China, 26–27 August 2013; Volume 2, pp. 144–147.

50. Kitamura, Y.; Tanaka, T.; Kishino, F.; Yachida, M. 3-D path planning in a dynamic environment using an octree and an artificial
potential field. In Proceedings of the Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Human Robot Interaction and Cooperative Robots, Pittsburgh, PA, USA, 5–9 August 1995; Volume 2, pp. 474–481.

51. Roberge, V.; Tarbouchi, M.; Labonté, G. Fast Genetic Algorithm Path Planner for Fixed-Wing Military UAV Using GPU. IEEE
Trans. Aerosp. Electron. Syst. 2018, 54, 2105–2117. [CrossRef]

52. Chai, R.; Tsourdos, A.; Savvaris, A.; Chai, S.; Xia, Y. Solving Constrained Trajectory Planning Problems Using Biased Particle
Swarm Optimization. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 1685–1701. [CrossRef]

53. Dever, C.; Mettler, B.; Feron, E.; Popovic, J.; McConley, M. Nonlinear trajectory generation for autonomous vehicles via
parameterized maneuver classes. J. Guid. Control. Dyn. 2006, 29, 289–302. [CrossRef]

54. Frazzoli, E.; Dahleh, M.A.; Feron, E. Real-time motion planning for agile autonomous vehicles. In Proceedings of the American
Control Conference, Arlington, VA, USA, 25–27 June 2001; Volume 1, pp. 43–49.

55. Blasi, L.; Barbato, S.; D’Amato, E. A mixed probabilistic–geometric strategy for UAV optimum flight path identification based on
bit-coded basic manoeuvres. Aerosp. Sci. Technol. 2017, 71, 1–11. [CrossRef]

56. Blasi, L.; D’Amato, E.; Mattei, M.; Notaro, I. UAV Path Planning in 3D Constrained Environments Based on Layered Essential
Visibility Graphs. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 2359–2375. [CrossRef]

57. Al Nuaimi, M. Analysis and Comparison of Clothoid and Dubins Algorithms for UAV Trajectory Generation; West Virginia University:
Morgantown, WV, USA, 2014 .

58. Tuttle, T.; Wilhelm, J.P. Minimal length multi-segment clothoid return paths for vehicles with turn rate constraints. Front. Aerosp.
Eng. 2022, 1, 982808. [CrossRef]

59. Roskam, J. Airplane Flight Dynamics and Automatic Flight Controls; DARcorporation: Lawrence, Kansas, USA, 1998 .
60. Stevens, B.L.; Lewis, F.L.; Johnson, E.N. Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems; John

Wiley & Sons: Hoboken, NJ, USA, 2015.
61. D’Amato, E.; Notaro, I.; Mattei, M. Optimal flight paths over essential visibility graphs. In Proceedings of the 2018 International

Conference on Unmanned Aircraft Systems (ICUAS), Dallas, TX, USA, 12–15 June 2018; pp. 708–714.
62. Liao, B.; Hua, Y.; Wan, F.; Zhu, S.; Zong, Y.; Qing, X. Stack-RRT*: A Random Tree Expansion Algorithm for Smooth Path Planning.

Int. J. Control. Autom. Syst. 2023, 21, 993–1004. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.conengprac.2023.105655
http://dx.doi.org/10.1007/s10846-020-01267-0
http://dx.doi.org/10.3390/rs13050972
http://dx.doi.org/10.2514/1.20345
http://dx.doi.org/10.1109/TAES.2018.2807558
http://dx.doi.org/10.1109/TAES.2021.3050645
http://dx.doi.org/10.2514/1.13400
http://dx.doi.org/10.1016/j.ast.2017.09.007
http://dx.doi.org/10.1109/TAES.2022.3213230
http://dx.doi.org/10.3389/fpace.2022.982808
http://dx.doi.org/10.1007/s12555-021-0440-2

	Introduction
	Path Transition Curve
	Path-Planning Algorithm
	Results
	Test Case #1
	Test Case #2
	Test Case #3
	Test Case #4: Urban Scenario
	Test Case #5: Simulation of a Short Cruise Path

	Discussion
	Conclusions
	References

