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Abstract: Traditional Internet of Things (IoT) networks have limited coverage and may experience
failures due to natural disasters affecting critical IoT devices, making it difficult for them to provide
communication services. Therefore, how to establish network communication service more efficiently
in the presence of fault points is the problem we solve in this paper. To address this issue, this study
constructs a hierarchical multi-domain data transmission architecture for an emergency network
with unmanned aerial vehicles (UAVs) employed as core communication devices. This architecture
expands the functionality of UAVs as key network devices and provides a theoretical basis for their
feasibility as intelligent network controllers and switches. Firstly, the UAV controllers perceive the
network status and learn the spatio-temporal characteristics of air-to-ground network links. Secondly,
a routing algorithm within the domain based on federated reinforcement distillation (FedRDR) is
developed, which enhances the generalization capability of the routing decision model by increasing
the training data samples. Simulation experiments are conducted, and the results show that the
average communication data size between each domain controller and the server is approximately
45.3 KB when using the FedRDR algorithm. Compared to the transmission of parameters through
federated reinforcement learning algorithms, FedRDR reduces the transmitted parameter size by
approximately 29%. Therefore, the FedRDR routing algorithm helps to facilitate knowledge transfer,
accelerate the training process of intelligent agents within the domain, and reduce communication
costs in resource-constrained scenarios for UAV networks and has practical value.

Keywords: routing algorithm; UAV-assisted networks; reinforcement learning; federated learning

1. Introduction

In emergency situations and natural disaster conditions, traditional IoT communica-
tions infrastructure, including sensor facilities, may be damaged. This can lead to commu-
nication service disruptions. One urgent issue to address is the ability to transition quickly
from a faulty state to a normal state and ensure that ongoing communication services
can continue smoothly without being affected by network failures. After infrastructure is
damaged, drones communicate through wireless channels. These drones carry communica-
tion devices and communicate using wireless communication protocols. This enables the
entire IoT system to restore its normal communication state. For example, in September
2023, certain regions in China were affected by Typhoon Dusuwei, resulting in floods and
geological disasters. Relevant departments utilized drones to play a crucial role in com-
munication support, disaster reconnaissance, and material delivery in challenging rescue
environments and complex weather conditions [1]. Reference [2] addressed the inability
to rescue disaster victims in remote areas due to traditional emergency communications
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not being successfully established in time. Therefore, they used drones to build a reliable
communication network to conduct emergency rescue operations.

Unmanned aerial vehicles (UAVs) have the ability to create collaborative air-to-ground
networks above disaster areas, regions with infrastructure challenges, or densely populated
communication hotspots. They support and enhance existing cellular infrastructure to con-
nect previously unconnected networks [3,4]. Due to their high mobility, strong line-of-sight
signal transmission, rapid deployment, and strong adaptability to various environments,
UAVs play a critical role in the Internet of Things. For instance, after Hurricane Ida hit
Louisiana, AT&T used UAV-mounted cellular on wings (COW) to restore LTE coverage
for cellular users [5]. Moreover, He et al. utilized multiple UAVs to provide services to a
wide range of users [6]. To extend the overall duration of a communication network, load
balancing can be implemented between adjacent UAVs and resource consumption can be
shared, significantly increasing the overall coverage time of the UAV network. In addition,
UAV cluster networks are a crucial component of air-to-ground collaborative networks and
provide an essential foundation for achieving aerial networking and data transmission [7,8].

In the construction of a ground-based collaborative network for drone clusters, priority
should be given to the privacy protection of user data. Federated learning (FL) provides an
effective method for training machine learning models while ensuring user privacy. In an FL
system, clients have various computing and communication resources [9]. In recent years,
researchers have been devoted to improving the communication efficiency of federated
learning. One commonly used method is gradient compression, which directly reduces the
size of model updates. Another widely adopted method is collaborative learning, where
clients share local model predictions instead of transmitting model updates, thus reducing
communication costs. Collaborative learning is one mode of knowledge distillation (KD).
For example, in [10], FL introduces KD to achieve efficient and low-cost information
exchange, especially when dealing with heterogeneous models, with the aim of reducing
communication expenses.

In the design of air-to-ground collaborative networking, drones mainly provide an
access service to ground nodes. Due to the wide coverage area required for the service,
the communication range supported by drones is limited. Therefore, we use multiple
drones for multi-domain collaboration to achieve multi-domain coverage. At the same
time, the drones are equipped with domain controllers to achieve relay communication of
the collaborative network through the domain controllers. The network management of
distributed and heterogeneous nodes may be challenging. Moreover, due to the dynamic
changes in network conditions, link interruptions can easily occur, making transmission
reliability difficult to ensure. This paper focuses on the application of air-to-ground col-
laborative networking and uses mobile edge computing technology to study network
transmission strategies and routing mechanisms in highly dynamic networks. Based on the
above network architecture, an intra-domain routing mechanism is designed. Considering
the intelligent perception of the network state in the domain, we design a quality of service
(QoS)-sensing routing mechanism based on deep reinforcement learning (DRL) to obtain
the optimal forwarding path and improve the quality of service in the domain. To address
the issues of the low intra-domain data volume and poor generalization ability of local
decision models, a joint strategy is proposed to aggregate multi-domain data and accelerate
intra-domain training while protecting intra-domain privacy and avoiding network infor-
mation leakage. The difference between this paper and the existing UAV rescue network is
that we adopt the hierarchical multi-domain air-ground cooperative network architecture
used in SDN architectures and use a high-performance UAV as the domain controller to
simplify the management difficulty and improve the scalability of large-scale networks.
Moreover, our enhanced distillation learning algorithm is used as the intra-domain routing
algorithm to improve the communication performance of the network and make it adapt to
the disaster relief network faster.

The main contributions of this paper are as follows:
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(1) First, we design an air–ground collaborative network architecture for UAV-assisted
networks. This architecture utilizes SDN’s hierarchical multi-domain networking tech-
nology with a super domain controller responsible for obtaining global network state
information and cross-domain business requests. The domain controller is responsible for
collecting network state information within its domain and aggregating both local and
cross-domain business requests, ultimately enhancing the network’s information process-
ing capabilities and reducing communication latency. This architecture is the basis of the
design of the intra-domain routing algorithm proposed in this paper.

(2) In order to achieve the real-time awareness of the network status, we introduce
unmanned aerial vehicles (UAVs) for communication transmission, enabling the entire
IoT system to handle tasks more flexibly. We adopt a federated reinforcement learning
approach where the server sends the obtained model parameters to each domain, and the
intelligent agent in the local domain controller is further trained and updated based on
these parameters. This approach allows for the use of independent model parameters
within each domain while protecting the privacy of network states within the domain.

(3) Considering the challenges of energy consumption and limited computational
resources in UAVs, as well as the need to reduce the burden of handling large parameters,
we introduce knowledge distillation and develop a routing algorithm based on federated
reinforcement distillation (FedRDR). By combining federated reinforcement learning with
knowledge distillation, we can address the issue of transmission overload caused by the
presence of a large amount of parameter data in intelligent agent models. This enables
us to achieve real-time awareness of the network status and adjust the data forwarding
rules accordingly.

(4) To validate our method, we construct a simulation environment for a drone network
using a Mininet network simulator and Ryu controller and conduct algorithm analysis
using Python. Through our experiments, we demonstrate that FedRDR outperforms other
routing algorithms based on joint learning. Specifically, compared to the federated forced
learning routing algorithm, FedRDR can reduce parameter transmission by approximately
29% and significantly accelerate the convergence speed of the model.

2. Related Work

In recent years, natural disasters have had a significant impact on infrastructure,
including communication base stations. Essential resources have become scarce, and dis-
ruptions in communication links have occurred as a result, making the delivery of critical
services to individuals challenging [11]. The process of reconstructing a fully operational
communication backbone network after a disaster, which is crucial for restarting telecom-
munications and internet services, can take anywhere from several days to weeks [12].
Hence, it is therefore imperative that we are able to harness the power of emerging artificial
intelligence technologies to restore such emergency communication networks.

UAVs are highly effective in search and rescue missions due to their rapid deployment
capabilities. By deploying drones in the air, it is possible to establish a local area network
(LAN) and backbone network, even in locations without existing network infrastructure.
This approach significantly reduces the data transmission time compared to relying solely
on satellite links [13]. Once a mission is completed, the retrieval of the drones minimizes the
consumption of resources required for network construction. In the context of drone control
strategies, G. B. Tarekegn et al. proposed a dynamic and mobile control strategy utilizing
DRL [14]. The objective was to maximize communication coverage and network connec-
tivity for multiple real-time users within a specified timeframe. Additionally, Zhang et al.
studied a communication system assisted by multiple drones equipped with base stations
(BSs) to minimize the number of drones required and improve coverage by optimizing the
three-dimensional positions of drones [15], user clusters, and frequency band allocation.
The above research relies on the perspective of ground users and fully leverages their
geographical positions. However, GPS location errors resulting from disasters can pose
challenges for air–ground drone communication.
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Deploying multiple drones can significantly enhance network coverage within a
specific area. Wang et al. utilized a particle swarm optimization algorithm to optimize the
deployment positions of multiple drones with the aim of maximizing network coverage [16].
Shi et al. employed a distributed deep Q network (DQN) approach in which each drone
possesses its own DQN and shares action decisions. This algorithm focuses on maximizing
throughput while considering fair service constraints [17]. In a similar vein, Dai et al.
proposed a drone network resource allocation algorithm based on multi-agent cooperative
environment learning [18]. This method adopts a distributed architecture, where each
drone is treated as an independent agent. By dynamically making decisions related to
deployment positions, transmission power, and occupied sub-channels, this algorithm
enhances the utility of the drone network. However, in the aforementioned research, drones
are required to maintain continuous communication to process network information, which
can potentially result in reduced work efficiency.

In disaster areas, there is a significant demand for wireless communication, and the
privacy of various types of sensitive data must be protected. Federated learning (FL)
is a privacy-preserving approach that transmits only the model instead of the raw data
during the training process. However, if model updates contain a large number of pa-
rameters, they can become excessively large, resulting in high communication costs that
burden clients. To address this issue, Wu et al. proposed a federated learning method
called FedKD [19], which utilizes adaptive knowledge distillation and dynamic gradient
compression techniques. This approach affords enhanced communication efficiency and
effectiveness. Wang et al. introduced ProgFed [20]. Furthermore, Yang et al. proposed
another privacy-preserving method called partial variable training (PVT) [21], which trains
only a small subset of variables on edge devices to reduce memory usage and communi-
cation costs. However, all of these cost-reduction methods have been proposed for their
respective scenarios and do not consider improving the overall workload problem from
the perspective of the transmitted parameter data volume.

Since most of the existing studies focus on single UAVs and the communication cover-
age of a single UAV is limited, they are not applicable to resource-constrained networks,
and many studies on multi-UAV networks need the support of ground base stations. In dis-
aster scenarios, ground base stations may be destroyed at any time, so the above studies
are not applicable to disaster scenarios due to the emergence of federal reinforcement
learning. We should protect user privacy and reduce communication costs. However, these
studies are presented for their own scenarios and do not consider the overall workload
problem from the perspective of the amount of transmitted parameter data. Therefore, they
do not apply to resource-constrained networks. Therefore, we propose a UAV-assisted
software-defined networking framework to enhance the network’s information processing
capability and reduce communication latency between the air and ground. Additionally, we
design a state-aware routing algorithm based on deep reinforcement learning to achieve the
real-time perception of the network status and adjust the data forwarding rules accordingly.
Finally, we develop FedRDR to address the issue of transmission link overload caused by
the large volume of intelligent agent model parameter data while also ensuring the privacy
of the network status within the domain.

3. System Model

Based on the unique characteristics of UAV edge computing networks, this paper
presents a hierarchical multi-domain network architecture based on SDN. This architecture
aims to establish network connections for mobile nodes, thereby creating a mobile edge
computing network system with UAVs acting as edge controllers. This paper stipulates that
all network communication should be completed before the UAV’s energy consumption is
complete. The network architecture consists of two main components: the control plane and
the data plane. The control plane comprises a global server and high-performance UAVs
acting as domain controllers. We constructed a set N = {1, 2, 3, . . . , n} to represent the
domain controllers. The data plane is composed of ordinary UAVs. As a switch in the data
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plane, ordinary UAVs provide mobile node access and data forwarding services. We also
created a set M = {1, 2, 3, . . . , m} to represent the switches. The global controller maintains
the domain controller information for all high-performance UAVs. We assume that all high-
performance UAVs can communicate with the global controller deployed on the ground
or satellite. For situations in which infrastructure is damaged due to natural disasters,
the network status information obtained through network processors (such as topology
or link, node, or network traffic status) is converted into a traffic matrix. Based on this,
decisions are made for our routing selection. In order to protect the privacy of information
regarding the network status of different domains, a federated learning architecture is
deployed on domain controllers and global controllers for the overall decision-making
model. This enhances the data privacy and security of the network while reducing network
transmission costs.

The domain controller plays a crucial role in collecting status information within its
coverage domain and ensuring information consistency throughout the network. This
helps to reduce the delay of business control within the domain and reduces reliance on the
server for the control architecture. When the domain controller receives an intra-domain
traffic flow request, it processes the request, identifies the forwarding path for the traffic
flow, and then sends control messages to the switches within the domain to modify their
status and complete the forwarding of the request. The server interacts with the domain
controller to establish global data and achieves the establishment of a logically centralized
control plane with global knowledge using a physically distributed hierarchical approach.

Multi-domain routing is facilitated by the domain controller and the global server
through the federated learning model. The domain controller is responsible for maintaining
the routing information within its domain and updating it within the global server as a
parameter for federated learning. The global server collects parameters from all domain
controllers and maintains a global federated learning model. As the model parameters are
transmitted during the learning process, the specific routing path information within the
domain is protected, ensuring privacy preservation. The intelligent routing system model,
based on the SDN hierarchical multi-domain data transmission architecture, is illustrated
in Figure 1.

Figure 1. The intelligent routing system model.
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4. Algorithm Model

This paper proposes a routing algorithm based on federated enhanced distillation.
In real network environments, each domain generates relatively small amounts of data.
Agents deployed in a single-domain controller require extensive training to obtain a stable
model, which significantly increases the model’s training time and the computational
energy consumption of the UAVs acting as controllers. Moreover, since the agent can only
use data within its own domain for training, the trained model exhibits personalized char-
acteristics and is only suitable for local routing decisions. To address these challenges, we
designed a federated reinforcement learning routing algorithm. This algorithm constructs
multiple model training domains and aggregates data from multiple domains. Each domain
controller can participate in the training of the complete model, thereby expanding the data
samples and avoiding the leakage of network state information within each domain. This
approach enhances the universality and generalization ability of the model.

To ensure that the model can better adapt to the task requirements and possess a
greater generalization ability, larger-scale models are often utilized. However, the exchange
of model parameters incurs significant costs. Communication between the server and the
domain controller can lead to excessive link load when uploading large amounts of data.
This can result in data loss within the domain, which, in turn, impacts the training of the
decision-making model.

Therefore, in order to perform tasks within each domain, complex models need to
be deployed, resulting in resource wastage. In the proposed federated reinforcement
distillation approach, it is not the model parameters that are transmitted but rather the
proxy experience memory. Through the federated reinforcement distillation algorithm,
knowledge is transferred from one domain controller to a heterogeneous model in another
domain controller. In complex task domains, agents with larger-scale neural networks are
deployed to achieve a better task performance, while smaller-scale models are deployed
in simpler task domains. This enables models in each domain to complete tasks more
efficiently within their local domain, thus reducing the computational energy consumption
of the domain controller.

In this study, the routing path is directly determined by the deep reinforcement
learning algorithm with the aim of achieving the fastest forwarding of traffic from the
source to the destination node. Furthermore, quality of service (QoS) is considered by
taking into account link delay. After taking an action, the agent modifies the current
network environment. Network state parameters are collected through the network state
monitoring module and subsequently updated to reflect changes in the network state.

Therefore, we have designed a federated reinforcement distillation [22] routing
method—a distributed machine learning architecture that protects privacy and has high
communication efficiency. We constructed a proxy for domain experience memory and
exchanged data between the domain controller and the server. The proposed federated
reinforcement distillation routing algorithm does not leak sensitive intra-domain data when
combining multi-domain proxy experience memories and reduces the amount of data that
needs to be transmitted compared to traditional federated distillation algorithms, thus
lowering communication costs.

When there are data to be transmitted in the switch queue, the domain controller
obtains the network state through the network state monitoring module and calculates
the routing strategy so as to guide the specific forwarding process of the data. For each
input state of the algorithm, a strategy is selected to obtain an output result, and an action
is selected according to the output result. The input state (state), output action (action),
and reward value (reward) of the algorithm are, respectively, defined as follows.

(1) The input state: At present, the training process of the reinforcement learning
routing algorithm in most studies is based on the network traffic matrix. However, in an
actual network, it is difficult to obtain a real-time and effective traffic matrix. In this paper,
the switch traffic is used as the state input of the agent so that the actions made are more
time-effective. The input state is specifically represented as a matrix. Every time the agent
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takes an action, the domain controller obtains the current state parameters, including the
short-term traffic of the switch. We assume that there are n nodes in the network, in which
di represents the i-th node. The input status St of time t is represented by Equation (1):

St =


d1 : f t

1
d2 : f t

2
...

...
...

dn : f t
n

 (1)

where f t
i represents the amount of traffic flowing through di from time t − 1 to time t.

(2) The output action: After the agent receives the input state, the output value
is calculated according to the neural network, and the output value is mapped to the
corresponding action. According to the authors of [23], the action output is the path of
the data flow, but a routing algorithm based on Q-learning is used. When the traffic in the
network increases, the state and action space increase sharply, resulting in a poor learning
effect for the agent. This study considers all nodes from the source to the destination node
as the candidate action set. The space size of this method is fixed, which facilitates the
training process of the agent. The action candidate set of the current state contains all the
next hop nodes connected to the current traffic node, which are expressed according to
Equation (2):

A = ai− > [aij. . . aik] (2)

where ai represents the current traffic node, and [aij. . . aik] represents all the next hop nodes
of node i, from node j to node k.

(3) The reward value: The reward value is an important parameter that affects the
training of the agent. After the agent selects an action in the current state, the environment
is subsequently affected. A reward value is then obtained based on the feedback of the
environment to evaluate the quality of the action. At the same time, the network transitions
to the next state. Common reward values in network traffic are designed for link bandwidth,
latency, and throughput. The goal of this study is to minimize the delay of the link, so the
reward set is the average delay of the link. The reward value is expressed as shown in
Equation (3):

R = −
∑m

j=1 Dj

m
(3)

where m represents the number of flows in the network, Dj represents the link delay of the
jth flow, and R is the average link delay. Because the agent needs to find the maximum
reward value during training, the reward value is set as a negative value.

This study introduces deep reinforcement learning (DDQN) to compute routing deci-
sions. The main network, the Q-network, and the target network, the target Q-network,
are both four-layer networks, consisting of an input layer, two hidden layers, and an
output layer. The values output by the output layer are mapped into the action space,
corresponding one-to-one with the designed candidate actions. In the training process,
the intelligent agent first interacts with the environment, takes actions At based on the state
St, and receives a reward value rt. After the agent takes action, the environment enters
the next state, and these four parameters are stored in the experience pool. The network
parameters are updated when the experience pool is full. Firstly, both St and St+1 in mem-
ory (St, At, rt, St+1) are input into the main network, the Q-network, obtaining the value
function Qmain(At) and the optimal Q-value MAXQmain(At+1), which can be calculated
as shown in Equation (4):

At+1 = argmaxQ(St+1, At+1, w) (4)



Drones 2024, 8, 49 8 of 23

Next, MAXQmain(At+1) is input into the target network, and
Qtargte(At+1) = MaxQmain(At+1) is obtained through Qtarget(At+1). Then, Qtargte(At+1),
Qmain(At), and rt are incorporated into the loss function to calculate the loss, which is
illustrated by Equation (5):

loss = E[(rt + γQtarget(St+1, At+1, wtarget)− Qmain(St, At, wmain))
2] (5)

Then, the main network parameters are updated according to the loss function by being
copied to the target network at regular intervals. According to the Bellman formula, the ob-
jective value function can be calculated from the estimated values Qtarget(St+1, At+1, wtarget)
of rt and at+1, as shown in Equation (6):

qt = rt + γQtarget(St+1, argmaxaj Qmain(St+1, At+1, wmain), wtarget) (6)

The network parameters of the original network are then updated by Equation (7):

w
′
main = wmain + α(Qmain(St, At, wmain)− qt)∇Qmain(St, At, wmain) (7)

During the training process of the primary Q-network, the experience replay technique
is used to store a series of states, actions, rewards, and next states obtained by the intelligent
agent interacting with the environment in an experience replay pool. During training, fixed
batches of data can be randomly selected from the experience pool to increase the training
speed of the intelligent agent. However, since each datum stored after the interaction
between the intelligent agent and the environment contains the next moment state, there
is a certain correlation between the samples. To reduce the correlation between data
samples and prevent the intelligent agent from falling into the local optimum, a random
strategy is adopted when selecting data sets. In addition, because each tuple has different
contributions to training, some scholars have used the priority-based experience replay
technique. This study adopts the method of directly selecting fixed batches of data from
the total experience memory for training using the experience replay technique. When
the memory is full, the principle of first-in-first-out (FIFO) is used to replace old data with
new data.

The algorithm in this paper is mainly divided into four stages: local update, parameter
upload, parameter aggregation, and parameter delivery. These stages are defined as follows.
(1) Local update: The local update process adopts the routing algorithm based on DDQN
to train the local model and update the parameters. (2) Parameter upload: The agent in
each domain controller completes training via the local environment, and multiple domain
controllers upload their own model parameters wi(ε) to the server. Here, i denotes the
ID of the domain controller, and ε denotes the number of local iterations. (3) Parameter
aggregation: D represents the delay of all links, as shown in Equation (8). The formula
for parameter aggregation is presented in Equation (9), in which ρi represents the ratio of
the parameter data volume of the i-th domain controller to the total data volume, and n
represents the number of domain controllers. The calculation expression for ρi is shown
in Equation (10). The server trains the global model through the aggregated parameters
to generate global model parameters. The model convergence judgment is performed
before the global model parameters are issued. If the model converges, it means that the
global model has been learned, and the federated reinforcement learning routing algorithm
ends. Otherwise, the algorithm enters the parameter delivery stage. (4) Parameter delivery.
In the parameter delivery stage, global parameters are delivered to each domain controller.
The domain controllers assign the parameters to the local model and use local data to
update the model training parameters. This four-stage process is executed cyclically.
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The global loss function F(w) is the weighted average of the loss functions of each
domain controller, as shown in Equation (11). The goal of the federated reinforcement
learning routing algorithm is to minimize the loss function, as shown in Equation (12).

D =
n

∑
i=1

Di (8)

wt+1(ρ) =
∑n

i=1 Diwt
i (ε)

D
=

n

∑
i=1

ρiwt+1
i (ε) (9)

ρi =
Di
D

(10)

F(w) =
∑n

i=1 DiFi(wi)

D
=

n

∑
i=1

ρiFi(wi) (11)

wfind (ε) = argmin
∑n

i=1 DiFi

(
wglobal (ε)

)
D

= argmin
n

∑
i=1

ρiFi

(
wglobal (ε)

)
(12)

The formula for proxy experience memory is shown in Equation (13):

M = {(sp
i , πp(ai|s

p
i ))}

Np

i=0 (13)

where sp
i indicates the proxy state in each domain controller, i represents the ID of the

domain controller, and πp represents the average proxy strategy. The proxy state set Ci ∈ C
is a further division of the state space, and the aggregation of the proxy state set Ci is the
entire state space C. N indicates the number of participating domains.

The interaction process of proxy experience memory between the server and domain
controllers in the FedRDR algorithm is as follows:

1. First, each domain trains the model based on local data and stores tuples (St, At, rt, St+1).
The states in the tuple are then aggregated to form a proxy state set Cj. The policy in
the proxy state set is the average of the multiple state policies πθi (a|s) that make up
the proxy state. The average strategy calculation process is as shown in Equation (14):

π
p
θi
(ak|s

p
k ) =

j

∑
k=i

πθi (ak|sk)

j − i
(14)

where θi represents the local model and sp
k represents a series of state sets, (si. . . sk. . . sj) ∈

sp
k ∈ Cj. All proxy states are combined to form a set.

2. After all the agents have filled the experience memory, the average proxy strategy is
calculated. The proxy experience memory, the proxy state, and the corresponding
average strategy are constructed, and these are uploaded to the server. The proxy expe-
rience memory of the ith domain controller is formulated as shown in Equation (15):

Mp
i = {(sp

k , π
p
θi
(ak|s

p
k ))}

Np
i

k=0 (15)

where Np
i represents the local agent experience memory size and p refers to the policy.
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3. When the local proxy experience memory is uploaded to the server, it is then aggre-
gated. The same proxy states of multiple domains are combined into one proxy state,
and the corresponding policies are then, once again, averaged. The global average
proxy experience memory formula is shown in Equation (16):

Mp = {(sp
k , πp(ak|s

p
k ))}

Np

k=0 (16)

4. The global average proxy experience memory is then delivered from the server to the
domain controller.

5. After the domain controller receives the global average proxy experience memory,
it calculates the KL dispersion loss of the local mode and the global average proxy
experience memory so that the agent can learn knowledge and speed up the training
process of the local agent. The KL dispersion loss function is shown in Equation (17):

Lp
i (Mp, θi) = −

Np

∑
k=1

πp(ak|s
p
k )log(πθi (ak|s

p
k )) (17)

The proxy state in the proxy experience memory in each domain is not the original state,
and the actual policy corresponding to the proxy state is averaged over time. Therefore,
sharing the local agent’s experience memory not only protects data privacy in the domain
but also reduces the amount of communication data. The FedRDR algorithm model is
shown in Figure 2:

Figure 2. The FedRDR algorithm model.

Firstly, the DDQN-based intra-domain routing algorithm is introduced, as shown in
Algorithm 1. Secondly, the FedRDR algorithm is introduced, as shown in Algorithm 2.
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Algorithm 1 Federated reinforcement learning model training process.

Require:
The short-term switch traffic F, the network topology T, and the target network update
frequency ζ

Ensure:
The routing path
Initialize the hyperparameters of the DDQN agent;
Initialize the virtual simulation environment env based on Mininet; initialize the current
state S, the next state S′, the action A, and the reward value R;
Initialize the switch flow table F, link delay, and network topology T;
T < − Obtain the network topology;
P < − Find all candidate nodes from the source node to the destination node according
to T;
F < − Obtain the traffic information from switches j ∈ (1, 2, . . . , m);
for t = 1, 2, 3, . . . , T do

Agent input state < −St:
At < − Agent output action;
According to the action At, the domain controller selects the next hop from the candi-
date node P, changes the corresponding switch flow table, and forwards the data to
the next hop node;
rt,TMP < − The domain controller obtains the network link delay and the switch
flow meter;
St+1 < −(TMP − F), F < −TMP;
St < −St+1;
The agent puts (st, At, rt, St+1) into the experience playback pool;
if Memory == M then

Store the newly obtained result (st, At, rt, St+1) and overwrite the old result using
the FIFO principle;
Select a fixed batch of data from Memory and update the main network parameters
wMain(t) by minimizing the loss function;

end if
if t%ζ == 0 then

Update the target parameters wtarget(t) = wmain(t);
end if
if t%φ == 0 then

The local proxy experience memory is constructed, the proxy experience memory of
each domain controller is uploaded to the server, and the global proxy experience
memory Mp is obtained;
After successfully building the global proxy experience memory, it will be dis-
tributed;
All agents in the domain controller update the local model;
if Mi

global constant then
Federal reinforcement distillation ends;

end if
end if

end for
return Mi

global ;
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Algorithm 2 FedRDR: Federated reinforcement distillation-based routing algorithm

Require:
The main network parameters wmain and target network parameters wtarget in DDQN,
the network parameter update frequency ζ, the federated reinforcement distillation
model update frequency φ, the number of domain controllers n, and the local model for
federated reinforcement distillation Mi

global .
Ensure:

Local decision model
Initialize the local model parameters wi

Main(0)=wi
Target(0) i ∈ {1, 2, . . . , i, . . . , n} Mi

global ;
Set the Memory = M used to store the optimal results;
Set the hyperparameters of DDQN according to Algorithm 1’s description with a time
frame T;
for t = 1, 2, 3, . . . , T do

Perform the following operations on n domain controllers at the same time (take the
domain controller i as an example):
Initialize switch flow table F, link delay, and network topology T;
T < − Obtain network topology;
P < − Find all candidate nodes from source to destination according to T ;
F < − Obtain the traffic information from switches j ∈ (1, 2, . . . , m);
S = F
Agent input state< −St;
At < − Agent output action;
According to the action At, the controller selects the next hop from the candidate node
P, changes the corresponding switch flow table, and forwards the data to the next hop
node;
rt, TMP < − The controller obtains the network link delay and switch flow;
St+1 < −(TMP − F),F < −TMP;
St < −St+1;
The agent puts (st, At, rt, st+1) into the experience playback pool;
if Memory == M then

Store the newly obtained result (st, At, rt, st+1) and overwrite the old result using
the FIFO principle;
Select a fixed batch of data from Memory and update the main network parameters
wMain(t) by minimizing the loss function;

end if
if t%ζ == 0 then

Update the target network parameters wtarget(t) = wMain(t);
end if
if t%φ == 0 then

Update the target network parameters wtarget(t) = wMain(t);
end if

end for

5. Evaluation and Discussion of Results
5.1. Experimental Environment

The simulation system described in this paper was implemented using a Mininet
network simulator and a Ryu controller. The algorithm itself was implemented in Python,
with pytorch serving as the overall framework for the algorithm. The experimental envi-
ronment used in this study is presented in Table 1.
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Table 1. Experimental environment.

Type Description

Hardware Intel Core i7-8700 CPU @ 3.20 GHz3.19 GHz
Random-access memory 8.00 GB

System type Ubuntu 20.0.4
Development language Python 3

Development tool PyCharm 2019.1.1 (Professional Edition)
Virtual environment Mininet + Ryu

5.2. Simulation System Design

This paper considers a distributed multi-domain data transmission architecture. In or-
der to make the routing decision process efficient, we needed to minimize the amount of
parameters to be transmitted, thus enabling quick generation of decision models. The num-
ber of drones required for the backbone network part does not necessarily have to be very
large. This system was implemented by the design of four modules, as follows:

• Network status monitoring module: The main function of the network status moni-
toring module is to obtain the network status information through echo and LLDP
messages in the controller. The two types of messages interact between the SDN
controller and the switch, obtaining the required states, rewards, and actions for our
DDQN-based intelligent agent—more specifically, the short-term traffic information of
switches, the network topology, and the link latency based on the topology structure.

• Smart routing decision module: The DDQN-based intra-domain routing algorithm
is the core of the decision module. The main function of this module is to make
routing decisions based on the network status. This module can be divided into three
parts: environment perception, the self-learning of intelligent agents, and handling of
experience memory.

• Routing decision execution module: This module is mainly used to guide the switches
to forward traffic according to the routing decisions made by the controller. After the
routing decision module calculates the routing paths, the controller installs the flow
table to the switch. The switch updates its flow table and forwards traffic based on the
new flow table.

• Server processing module: The main task of the server processing module is to
connect to the domain controller and receive the parameters transmitted by the domain
controller. The Update_params function aggregates all the parameters uploaded by
the domain controller and transmits the global parameters to each domain controller
to accelerate the intra-domain training process and iterates this process until the
model converges.

5.3. Performance Evaluation

Setting appropriate hyperparameters, such as the learning rate, batch size, and memory
size for experience replay, during the process of training an intelligent agent can make the
model converge faster. Therefore, we conducted experiments on the hyperparameters of
the intelligent agent to select the optimal parameters.

From Figure 3, it can be seen that when the learning rate is set to 0.1 and 0.01, the intel-
ligent agent shows rapid gradient descent in the early stages, but the convergence effect
of the algorithm is poor in later stages. Compared with learning rates of 0.0001 and 0.001,
the intelligent agent has already converged after 200 iterations with a learning rate of 0.001.
Therefore, we set the parameter learning rate to 0.001.

We set the batch sizes to 16, 32, and 64, and the experimental results are shown in
Figure 4. From the graph, it can be seen that when the batch size is set to 16, the algorithm
cannot converge. Compared with a batch size of 64, the model has better convergence
when the batch size is set to 32. Therefore, we set the batch size to 32.
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Figure 3. The effect of the learning rate on the algorithm.

Figure 4. The impact of the data batch size on the algorithm.

We determined the other hyperparameters of the agent through experiments and fi-
nally set the hyperparameters of the agent as shown in Table 2:

Table 2. Agent model hyperparameters.

Hyperparameters Value

Learning rate 0.001
Batch size 32
Memory 10,000

Reward discount 0.9
Max steps 1000

Network update frequency 100

To verify the performance of the domain-based routing algorithm based on deep
reinforcement learning, after determining the model hyperparameters of the intelligent
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agent, we conducted comparative experiments. The compared algorithms were the depth
first search (DFS) algorithm and the Q-learning-based routing algorithm using reinforce-
ment learning.

By sending network traffic packets through iperf, three traffic packets were sent from
h11, h12, and h13 to h41, h42, and h43, respectively. The bandwidth requirements for each
stream were set as shown in Equations (18)–(20):

F1 : h11− > h41 : 3 Mbit/s (18)

F2 : h12− > h42 : 2 Mbit/s (19)

F3 : h13− > h43 : 2 Mbit/s (20)

A comparative analysis of the three routing algorithms was conducted under this
network state, and the experimental results are shown in Figure 5. From the graph, we
can see that the delay in the data transmission using the routing strategy designed by the
DFS algorithm is about 130 ms, which is not the optimal forwarding path. However, when
the traffic in the network increases, the DFS algorithm cannot implement the optimal for-
warding strategy. For state-aware intelligent routing algorithms, the final link delay under
the converged state of both is about 25 ms. For the same device, the Q-learning algorithm
requires more time to reach convergence compared to the DDQN routing algorithm.

fedRDR

Q-Learning

routing

DFS

Figure 5. A performance comparison of the three algorithms based on Figure 4.

To demonstrate the advantages of our proposed algorithm, we increased the number
of switches to 8 and the number of flows to be forwarded in the network to 8 and compared
the performance of the three routing algorithms. The experimental results are shown in
Figure 6.

From the graph, it is evident that the routing strategy calculated by the DFS algorithm
still leads to significant network delay. Furthermore, it was discovered in this study that
the Q-learning-based routing algorithm failed to converge within 1000 iterations. When
the number of switches and flows increases, the number of Q-table items also increases
significantly, resulting in slow or even non-convergence of the algorithm. In contrast, our
proposed DDQN-based routing algorithm is capable of quickly converging and guiding
traffic forwarding, even in the presence of a large state space and action space.
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DFS

Q-Learning

routing

fedRDR

Figure 6. Performance comparison of the three algorithms based on 8 switches.

In our approach, we designed a process for uploading the local model parameters
to the server after every 100 iterations in each domain. The server then aggregates the
parameters from the three domains. Based on the aggregated parameters, the server
undergoes an additional 100 iterations of training before distributing the parameters back
to the domain controllers. The domain controllers continue training the model based on
the received parameters, and this process repeats until the model reaches a stable state.
The experimental results of the federated reinforcement learning routing algorithm are
depicted in Figure 7. After receiving the aggregated parameters from the server, the model
of each domain controller achieved convergence after around 20 iterations of training.

Figure 7. Three–domain federation reinforcement learning routing.

When a new task domain emerges, the model parameters that already exist in the
server are sent to the new domain. The new domain does not need to train the local model
from scratch, which saves time when it comes to agent training. We selected one of two
domains with the same task for local training. After local model training is completed,
the model parameters migrate to the other domain controller via the server to verify the
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impact of the model parameters within one domain on the acceleration effect of the agent
in another domain. The experimental results are shown in Figure 8.

Figure 8. The accelerated effect of training based on federated reinforcement learning.

In the experiment, Controller 1 represents an intelligent agent that has not undergone
any parameter assignment training, while Controller 2 represents an intelligent agent
after parameter assignment training. From the graph, it is evident that the intelligent
agent in Controller 1 reaches a convergence state after almost 70 iterations, whereas the
intelligent agent in Controller 2 achieves convergence after approximately 60 iterations.
This experimental result demonstrates that the federated reinforcement learning-based
intelligent routing algorithm can expedite the training process of intelligent agents within a
single domain.

Next, we examined the impact of the number of domains on the convergence of the
global model. We conducted experiments with 3, 5, and 8 domains. The training process
was consistent across all experiments, where parameters were sent from the domain con-
troller to the server every 100 iterations. The server then performed parameter aggregation
and trained for an additional 100 iterations based on the aggregated parameters before
distributing the parameters back to the domain controllers. This communication process
was repeated three times.

The experimental results are depicted in Figure 9. From the graph, it can be ob-
served that when there are more domains, the model exhibits less fluctuation after nearly
100 iterations and achieves a slight advantage in terms of convergence speed. However,
irrespective of whether 3, 5, or 8 domains participate in the federated reinforcement
learning-based multi-domain joint process, the accuracy of the model is hardly affected.
A smaller number of domains does not lead to inaccurate models in the federated rein-
forcement learning-based multi-domain joint process. However, as the number of domains
increases, the amount of uploaded data also increases, thereby enhancing the generaliz-
ability and applicability of the trained model. The experimental results demonstrate the
significant utility advantages of the federated reinforcement learning-based intelligent
routing algorithm.
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Figure 9. The effect of the number of domains on the model.

Next, we verified the effect of the federated reinforcement learning-based multi-
domain intelligent routing algorithm on reducing the training energy consumption within
a single domain. The results are shown in Figure 10.

Figure 10. The impact of energy consumption based on federated reinforcement learning.

The horizontal axis represents time, with each recording interval being 100 ms. The ver-
tical axis represents energy consumption, measured in milliwatt-hours (mWh). From the
graph, it is evident that the energy consumption of the agents in both controllers is nearly
identical until the 250th recording. However, since we assigned the model parameters
from Controller 1 to Controller 2, the training speed in the second domain controller is
accelerated, leading to faster model convergence. Consequently, the training process can be
terminated once the model converges. As a result, the second controller concludes training
earlier, reducing the energy consumption of the UAV acting as the domain controller due to
reduced computation requirements. The federated reinforcement learning-based intelligent
routing algorithm necessitates interaction and communication between domain controllers
and servers to update the model parameters of intelligent agents. During the communi-
cation between the server and domain controllers, we collected data on the amount of
exchanged data in model parameter interactions between domain controllers and servers,
as illustrated in Figure 11.
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Figure 11. The amount of data communicated between the server and the domain controller.

From the figure, we can observe the specific size of the data volume for each commu-
nication between the domain controllers and the server. The average communication data
volume is approximately 63.6 KB.

In summary, the federated reinforcement learning routing algorithm can expedite the
training process of intelligent agents within domains while reducing the computational
energy consumption of domain controllers. The experimental results provide evidence
of the significant utility advantages of the federated reinforcement learning-based multi-
domain intelligent routing algorithm.

Initially, the experiment validated the effectiveness of the FedRDR algorithm in ac-
celerating the training of intelligent agents within domains. In federated reinforcement
distillation, the agent’s experience memory stored in domain controllers is uploaded to
the server, and intelligent agents from other domains learn from this experience memory.
The comparison results are depicted in Figure 12.

Figure 12. The effects of federated reinforcement distillation on accelerating model training.
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The intelligent agent of domain Controller 1 undergoes local environment training to
generate a local experience memory. Once the experience memory storage is full, it is sent
to domain Controller 2 to observe its effect on accelerating the training of intelligent agents
within the domain. From Figure 12, it can be observed that the model in domain Controller
1 reaches convergence after approximately 70 iterations of training, while the intelligent
agent in domain Controller 2 achieves convergence after around 40 iterations of training.
This indicates that knowledge transfer can enhance the learning speed of intelligent agents.
During the training process in domain Controller 2, the training data are not obtained
through the interaction between the local intelligent agent and the environment; instead,
they are provided by domain Controller 1. This reduction in the interaction process
between the intelligent agent and the environment contributes to the acceleration of training.
Therefore, the proposed federated reinforcement distillation-based intelligent routing
algorithm can expedite the training process of intelligent agents within domains.

Both the federated reinforcement learning routing algorithm and the FedRDR algo-
rithm demonstrate the capability of accelerating the training of intelligent agents within
domains. We compare their effects on accelerating the training of intelligent agents, and the
experimental results are illustrated in Figure 13.

Figure 13. A comparison of the acceleration effects of federated reinforcement learning and federated
reinforcement distillation.

From the graph, it is evident that the federated reinforcement learning model achieves
convergence after approximately 60 iterations of training. On the other hand, the federated
reinforcement distillation model enters the convergence state after about 40 iterations of
training. This indicates that knowledge transfer through federated reinforcement distilla-
tion has a better acceleration effect and reduces the training time for single-domain intelli-
gent agents compared to parameter transfer through federated reinforcement learning.

In the federated reinforcement learning routing algorithm, we also examined the size
of communications between the server and domain controllers during their interactions,
which averaged around 63.6 KB. Additionally, we collected the amount of data transferred
between the five domain controllers and the server during each communication, as depicted
in Figure 14.

According to Figure 15, the intelligent routing algorithm proposed in this paper can
reduce communication volume by 25–33% compared to FRL. The results indicate that
this algorithm reduces the amount of data that needs to be transmitted, improving model
training performance.
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Figure 14. Traffic size based on federated reinforcement distillation.

Figure 15. The communication traffic between FRL and FRD.

The maximum amount of data transferred between each domain controller and the
server during communication was 47.6 KB, whereas in the federated reinforcement learn-
ing routing algorithm, the lowest amount of communication data was 59.3 KB. Federated
reinforcement distillation demonstrates better communication efficiency compared to fed-
erated reinforcement learning. By proxying the state and aggregating the policy of the
states, federated reinforcement distillation reduces the communication overheads between
the server and domain controllers. In the multi-domain framework utilizing federated
reinforcement learning, the average amount of communication between each domain and
the server per iteration is approximately 63.6 KB, while in the multi-domain framework
based on federated reinforcement distillation, it is around 45.3 KB. Compared to parameter
transmission through the federated reinforcement learning algorithm, FedRDR can reduce
the amount of transmitted parameters by approximately 29%. The average communication
amounts are presented in Table 3.

As presented in the above table, the FedRDR algorithm offers a significant reduction
in the transmitted data volume, thereby enhancing the training speed of single-domain
intelligent agents. Additionally, when it comes to federated reinforcement distillation,
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the transmitted data only comprise the training data, irrespective of the intricacy of the
models within each domain.

Table 3. Traffic based on the federated reinforcement learning framework and the federated reinforce-
ment distillation framework.

Algorithm Amount of Communication Data per Round

Federated reinforcement learning 63.6 KB
Federated reinforcement distillation 45.3 KB

In a nutshell, the FedRDR algorithm not only expedites the training process of intelli-
gent agents in individual domains but also diminishes the communication data between
domain controllers and servers. Our empirical findings demonstrate that the efficacy of
the FedRDR algorithm becomes more pronounced when confronted with intricate environ-
ments and tasks.

6. Discussion

In order to achieve the rapid deployment of communication networks in disaster-
stricken areas and transportation hotspots in the Internet of Things (IoT) and to provide
link services for ground nodes, this paper presents a temporary network with drones as
communication nodes. In addition, we propose a hierarchical, multi-domain data transmis-
sion architecture based on SDN. We further divide the control layer of SDN, enhancing the
network control capability and simplifying network management. By utilizing the comput-
ing and communication capabilities of drones, communication devices in the network can
communicate more rapidly. Moreover, when high-performance drones serve as domain
controllers, deploying efficient routing algorithms on them can make the entire IoT system
more flexible and efficient. Therefore, this study focuses on the design of the FedRDR
algorithm and its deployment on high-performance drones. Compared to the federated
reinforcement learning routing algorithm, the FedRDR algorithm reduces approximately
29% of the transmission parameter quantity and further accelerates the convergence speed
of the model. This paper verifies the proposed routing algorithm’s excellent performance in
drone-assisted IoT systems based on the simulation system. It demonstrates the significance
of the proposed architecture and algorithm for temporary networking supported by drones,
thereby resolving the communication transmission obstacles in traditional IoT systems
used in disaster-stricken areas and transportation hotspots. The network architecture and
routing algorithm proposed in this paper are universal and can be well adapted to more
complex networks.
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