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Abstract: Inspired by the limited battery life of multi-rotor unmanned aerial vehicles (UAVs), this
research investigated hierarchical real-time control of UAVs with the generation of energy-optimal
reference trajectories. The goal was to design a reference generator and controller based on optimal-
control theory that would guarantee energy consumption close to optimal with lower computational
cost. First, a least-squares-estimation-(LSE) algorithm identified the parameters of the UAV mathemat-
ical model. Then, by considering a precise electrical model for the brushless DC motors and rest-to-rest
maneuvers, the extraction of clear rules to compute the optimal mission time and generate ’energetic
trajectories’ was performed. These rules emerged from analyzing the optimal-control strategy results
that minimized the consumption over many simulations. Afterward, a hierarchical controller tracked
those desired energetic trajectories identified as sub-optimal. Numerical experiments compared
the results regarding trajectory tracking, energy performance index, and battery state of charge
(SOC). A co-simulation framework consisting of commercial software tools, Simcenter Amesim for
the physical modeling of the UAV, and Matlab-Simulink executed numerical simulations of the
implemented controller.

Keywords: UAV control; energetic reference generator; optimal control; hierarchical control;
energy consumption

1. Introduction
1.1. Context

In recent years, UAVs have garnered widespread interest across diverse sectors, draw-
ing attention from researchers, law enforcement, delivery firms, search-and-rescue teams,
and agricultural enterprises. Their versatile applications have prompted extensive study
and exploration within these varied industries. Furthermore, UAVs are evolving beyond
their initial role in sensing activities, as highlighted in references such as [1,2], to play a
crucial role in the execution of operational tasks. This shift underscores the expanding
importance of UAVs, not only in data gathering but also in practical implementation opera-
tions. A growing area of research involves integrating manipulators with UAVs, enabling
them to execute tasks like valve operations or collecting and placing objects. This interdisci-
plinary approach holds promise for enhancing the versatility of UAVs in various practical
applications. Researchers emphasize that small UAVs, beyond manipulation capabilities,
hold significant potential to advance research on remote sensing. The agility and accessi-
bility of small UAVs could substantially enhance data collection and analysis in remote
and challenging environments. In the coming years, a noticeable surge in experimental
UAV applications is anticipated. Instances of this escalating interest include a Canadian
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company initiating drone-based payload deliveries [3], an Australian company launching
coffee deliveries via drones [4], and successful tests of the use of drones for transport
of organ transplants [5]. Additionally, UAVs are increasingly employed for transporting
flexible linear objects, such as hoses and goods [6,7], and Swiss Post has utilized UAVs to
transport medical samples, drastically reducing travel time from 45 min by car to just a few
minutes of flight [7]. Furthermore, a recent study highlighted that UAV deliveries have
the potential to contribute to a reduction in greenhouse-gas emissions associated with the
freight industry [8]. This finding underscores the environmental benefits that innovative
UAV applications could bring to the transportation sector.

The increasing demand for UAV applications underscores the need to enhance their
efficiency, as highlighted in [9]. A substantial challenge in various applications is the
constrained energy capacity of batteries or other power sources, even with the utilization
of hybrid configurations. Currently, commercially available battery-powered multirotors
offer an average flight time of 15 to 45 min, severely constraining their practical utility.
This limitation underscores the pressing need for performance improvements in various
aspects of UAV technology. In addition, the energy source must be shared among various
applications, such as the high-consumption processes of video and image processing com-
monly installed on drones [10]. To address this challenge and to enhance overall efficiency,
ongoing efforts are focusing on advancing energy sources, lightening drone components,
optimizing energy utilization, and refining flight paths. Noteworthy measures include
reducing UAV weight through the use of carbon-fiber structures and intelligent designs
with high energy density, as well as improvements in the power-to-weight ratio. These
initiatives are collectively contributing to making UAV systems more efficient and effective.

1.2. Relevant and Related Work

Indeed, power consumption in multirotors is a critical consideration, given their re-
liance on batteries with finite life spans. The heightened power usage primarily stems
from the motors propelling the rotors to generate the thrust necessary for UAV flight [11].
The electrical energy consumed by these motors is contingent on the thrust demands and
encompasses losses related to heat, friction, and the overall efficiency of the propulsion
system. This efficiency factor encompasses losses in both the motors and the electronic
speed controllers, contributing to the overall power-consumption dynamics of multirotor
UAVs. Strategies to optimize power usage and enhance efficiency are crucial for extend-
ing flight times and improving the overall performance of these unmanned systems. In
recent years, numerous research methods have been explored to address energy-saving
challenges in UAVs. This includes investigations into the design of automatic battery
recharging/replacement systems, aimed at enhancing the efficiency of power management.
Additionally, efforts have been directed towards optimizing trajectories and control actions,
seeking to minimize energy consumption during UAV operations. These multifaceted
approaches reflect the ongoing commitment to developing innovative solutions that can
contribute to energy savings, thereby extending the operational capabilities of unmanned
aerial vehicles. The research in [12] introduced a battery-swapping mechanism designed to
efficiently manage the resources and health systems of UAVs while reducing operator work-
load. This system not only facilitates the removal, charging, and installation of batteries but
also incorporates an online algorithm capable of supervising the refueling of multiple UAVs
simultaneously. The algorithm determines when a vehicle requires refueling and ensures
a precision landing on the battery-swap mechanism’s landing pad. Another contribution
in [13] presented the design, testing, and construction of an autonomous ground-based
charging station specifically tailored for battery-powered quadrotor helicopters. Further-
more, studies in the same domain have explored enhanced methods of battery charging
for multi-rotors, such as wireless charging [14,15]. In addition to recharging technologies,
research efforts have focused on two key approaches to addressing energy constraints
in transportation: optimizing the design stage of air transport and reducing energy con-
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sumption through efficient operational planning. These advancements collectively aim to
improve the overall energy efficiency and autonomy of UAVs in various applications.

Energy savings in the design phase of UAVs can be achieved through various strate-
gies, one of which involves minimizing the weight carried by the UAV. For small UAVs,
where batteries can constitute up to 50% of the total mass [16], reducing additional payload
mass becomes crucial for optimizing energy balance. Flying with an optimal mass can
enhance UAV endurance and overall performance [17]. Additionally, hybrid designs, like
the one proposed in [18], allow UAVs to travel on the ground when flight is unnecessary,
contributing to energy conservation. The second approach to energy savings involves
efficient movement planning, a focus of the research presented in this paper. This approach
entails selecting a path with minimal energy consumption from multiple available paths
generated by a route planner, as seen in [19]. The methodology in [19] employed offline
energy-efficient route planning based on the Dijkstra algorithm, offering a systematic way
to enhance the energy efficiency of UAVs during their operational phase. In the context of
controlling paths with minimal energy consumption, the authors in [20] presented a stable
path-following controller based on the simplified kinematic model of a quadrotor. Through
various experiments, they demonstrated the effective performance of this controller under
both constant and variable desired speed profiles. The variable speed profile in this case
was defined by the geometric requirements of the predetermined path. Moreover, signifi-
cant research has delved into the application of real-time-dynamic-programming-(RTDP)
techniques for drones, as highlighted in [21]. The optimization algorithm developed in
this work drew inspiration from a dynamic real-time programming approach introduced
in [22], originally designed for speed optimization to minimize energy consumption in
automobiles. These advancements have contributed to the ongoing efforts to develop effi-
cient and adaptive control strategies for UAVs, particularly in the context of energy-aware
path planning.

The work in [23] introduced a quadratic programming approach for trajectory gen-
eration in aerial manipulators. Although effective, a significant drawback was evident,
in terms of the computational burden and energy consumption, particularly when imple-
mented on board. Similarly, in [24], the determination of the best trajectory for a quadrotor
aerial vehicle between two hover configurations was explored in the context of energy
consumption. The study examined three types of smooth trajectories: minimum snap,
minimum jerk, and minimum acceleration. However, the minimization problem in this
work did not account for a specific model, and estimation of optimal mission time was not
provided, differing from the approach presented in the current work.

In a recent publication [25], a method was introduced for designing a dynamic model
that enables the estimation of energy consumption in quadrotors. This model was specif-
ically developed to analyze the energy efficiency of the quadrotor during different ma-
neuvers. In the domain of fixed-wing UAVs, [26] explored an energy-efficient control
method based on determining flight trajectories using a hexagonal grid. This investigation
contributed to the ongoing efforts to enhance the energy efficiency and autonomy of un-
manned aircraft systems through advanced control strategies. In [27], minimum energy
paths were established for a quadrotor between initial and final states by solving an optimal
control problem using the UAV model. Additionally, a trajectory of minimum time and/or
minimum control effort was computed through the solution of a relative optimal-control
problem. However, the approach outlined in this study was executed offline, and its lack of
feedback made it impractical for certain applications. One potential solution is periodic
utilization, computing optimal trajectory references with feedback. However, this approach,
while less intensive than dynamic programming, still incurs notable energy consumption
and requires instruments with excellent processing capabilities.

In recent years, numerous studies have focused on reference generation, recognizing its
impact on energy consumption. In [28], the researchers investigated a trajectory-planning
algorithm for a UAV, considering constraints on the accuracy of the system positioning.
Another study by [29] formulated trajectory generation as a quadratic-programming prob-
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lem with linear constraints, specifically addressing the challenge of performing aggressive
maneuvers with quadrotors. Additionally, ref. [30] presented a path-planning generation
algorithm that incorporated the evolution of battery performance. This approach involves
computing the battery state of health (SoH) through degradation models and formulating
the path-planning algorithm as a multi-objective optimization problem. The objective is to
find a feasible trajectory between waypoints while minimizing energy consumption and
mission time, accounting for variations in the battery SoH. These investigations have col-
lectively contributed to the ongoing efforts to enhance energy-efficient reference generation
for UAVs. In [31], in order to improve the efficiency of UAVs in transmission-tower in-
spections, a UAV transmission-tower-inspection energy-consumption model was proposed
for the existing research, in which there was no accurate energy-consumption-calculation
method in transmission-tower inspection, and the optimal energy consumption path for
UAV transmission tower inspection was designed in combination with the simulated an-
nealing algorithm. An approach to modeling the full translational dynamics of a quadrotor
UAV by a feedforward neural network was proposed by [32], which was adopted as the
prediction model in a model predictive controller (MPC) for precise position control. Fi-
nally, the aim of [33] was to shed light on the problem of shaping control signals in terms
of energy-optimal flights. The synthesis of a UAV autonomous control system with a
brain-emotional-learning-based intelligent controller (BELBIC) is presented.

1.3. Original Contributions and Organization

It is a valid point that, in many published works, the dual perspective of both energy
efficiency and computational feasibility has not been thoroughly addressed. While setting
the problem as an optimal control problem with diverse objectives is crucial for energy
optimization, practical considerations related to computational efficiency and cost sustain-
ability at the application level are often overlooked. Our research approach, focusing on
both energy and computational aspects, provides a unique and comprehensive viewpoint
that is essential for addressing real-world applications. This dual perspective is likely to
contribute significantly to a more holistic understanding and solution to the challenges
faced in optimizing UAV operations.

Our research contribution, as described, is valuable in providing optimal mission
time and trajectory generation rules for drones that are not only energy-efficient but also
computationally feasible. The emphasis on simplicity in calculations and proximity to
optimal solutions is particularly noteworthy, as it facilitates the implementation of real-time
hierarchical control with low computational demands. This approach addresses the practi-
cal challenges associated with deploying UAVs in real-world scenarios, where both energy
efficiency and computational efficiency are crucial factors. This work has the potential
to significantly impact the field by offering a practical and effective solution for optimiz-
ing UAV operations, in terms of both energy consumption and computational resources.
The methodology adopted in our research is notable, starting with the identification of
unknown quadrotor parameters through the least-squares method applied to experimental
data. Subsequently, the derivation of mission time and trajectory generation rules, close to
optimal in terms of energy consumption, represents a unique and practical approach. The
inspiration drawn from [34], though initially related to the automotive domain, demon-
strates innovative thinking in adapting such methodologies for UAVs. The emphasis on
estimating the optimal mission time without directly solving the optimal control prob-
lem is a noteworthy contribution. This aspect, which is crucial for energy efficiency, has
not been extensively explored in the existing literature. Our work addresses this gap by
providing a novel perspective on the significance of mission time in energy consumption,
offering valuable insights for optimizing UAV operations. The identification of simple
rules for reference generation, once the mission time is selected, adds a practical dimension
to the research, making it applicable in real-time scenarios with reduced computational
demands. The dual emphasis on energy efficiency and computational feasibility enhances
the practical applicability of our work in the realm of UAV operations. The final phase



Drones 2024, 8, 29 5 of 22

of our research, which involved comparing controller performance on trajectory control
using a commercial simulator, added a practical validation aspect to our work. Evaluating
energy consumption in terms of battery state of charge (SOC) and analyzing the energy
functional, chosen for solving the optimal control problem, provided valuable insights
into the real-world applicability and effectiveness of the proposed controllers. The use
of both a commercial physical drone model (Simcenter Amesim) and a simplified model
for controller design showcased the versatility of our approach. The comparison between
these models allowed for a comprehensive assessment of how well the controllers perform
across different levels of system complexity. This type of analysis is crucial for understand-
ing the robustness and adaptability of the proposed controllers in practical applications.
Our research, by integrating theoretical insights, optimal control solutions, and practical
simulations, contributes to a comprehensive understanding of energy-efficient trajectory
control for UAVs. It offers a practical framework that aligns theoretical advancements to
real-world applicability, making it a valuable addition to the field of UAV control systems.

The structure of the remaining sections of the paper is well organized. Here is a brief summary:

• Section 2: Introduction to the dynamical model of the quadrotor and the electrical
model of a brushless DC motor.

• Section 3: Details on the identification of parameters for the chosen model. This identi-
fication is done with respect to the commercial physical model based on Simcenter
Amesim and provided by Siemens.

• Section 4: Presentation and solution of the optimal control problem, using the identified
model. This section includes an analysis of optimal control results and the derivation of
rules for generating near-optimal time-mission and state-variable references.

• Section 5: Design and implementation of the hierarchical controller.
• Section 6: Assessment of the hierarchical controller’s performance, particularly in

terms of trajectory tracking and energy/battery consumption.
• Section 7: Conclusions drawn from the research findings, and a discussion of potential

future research developments.

This structure provides a clear and logical flow for readers to follow the research
methodology, results, and conclusions. It seems to effectively guide the reader through the
various stages of the work, from modeling to control design and simulation.

2. Modeling the Energetics of UAV Operations

In this section, we provide a concise presentation of the differential and algebraic
equations governing the UAV’s energy dynamics. For detailed equations and a thorough
understanding, we direct readers to the references included in this section, in particular [27].
These references offer comprehensive insights into the mathematical foundations underpin-
ning the UAV’s energy model, serving as a valuable resource for readers seeking in-depth
information.

2.1. Characterizing Brushless-DC-Motor Dynamics in UAVs

This section addresses the brushless-DC-motor model, covering energy dissipation
in resistive and inductive windings, as well as overcoming internal and load friction. The
formulation for the instantaneous current, i(t), is derived from principles outlined in [35].
This comprehensive approach provides a foundation for understanding the intricate energy
dynamics within the brushless DC motor, a critical component in the overall energy model
of unmanned aerial vehicles (UAVs):

i(t) =
1

KT

[
Tf + TL(ω(t)) + D f ω(t) + (Jm + JL)

dω(t)
dt

]
. (1)

In this motor dynamics formulation, key parameters and variables play crucial roles.
The torque constant of the motor, denoted as KT , interfaces with the angular velocity of the
motor shaft, ω(t). Moreover, the dynamics of the motor involve the speed-dependent load
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friction torque, TL(ω(t)), from the propeller drag, the motor friction torque, Tf , the viscous
damping coefficient of the motor, D f , and the motor and load moments of inertia, Jm and
JL respectively. The electrical voltage across the motor, denoted as e(t), is

e(t) = R i(t) + KEω(t) + L
di(t)

dt
, (2)

where R and L denote the resistance and inductance of phase winding, respectively, and
KE represents the voltage constant of the motor. Under steady-state conditions, the current
i(t) is constant, and Equation (2) reduces to

e(t) = R i(t) + KEω(t), (3)

where eg(t) = KE ω(t) is the counter-electromotive force of the motor (the voltage opposing
the change in the current inducing it). In our electrical model, certain simplifications have
been made to streamline the analysis. The effects of the electronic speed controller (ESC)
between the LiPo battery and the brushless motor, as well as the energy losses in the battery
due to inefficiencies, are neglected (refer to Figure 1 in [27]). Furthermore, the assumption
is made that the motor shaft is directly connected to the propeller, eliminating the presence
of a gearbox. These simplifications, often representative of commercial quadrotors like DJI
Phantom 2/3, AscTec Pelican, and Parrot Bebop, contribute to a streamlined model for
comprehending and analyzing the UAV’s energy dynamics.

2.2. Quadrotor Dynamic Model

Consider the position vector (x, y, z)T representing the center of mass of the quadrotor
in relation to the fixed inertial frame E . In the context of the quadrotor, the rotation
angles are represented by (ϕ, θ, ψ)T , with ϕ denoting the roll angle around the x-axis, θ
representing the pitch angle around the y-axis, and ψ indicating the yaw angle around
the z-axis. The quadrotor is equipped with four identical brushless DC motors attached
to its rigid cross airframe. Motors 1 and 3 rotate counterclockwise, while motors 2 and
4 rotate clockwise, with respect to the z-axis of the body frame B, each with an angular
velocity ωj ≥ 0, generating thrust forces f j for j ∈ 1, 2, 3, 4 in free air. For a detailed and
comprehensive dynamic model of the quadrotor, including the equations governing its
motion, please refer to [27,36–39].

The simplified motion equations of the quadrotor, in particular holding for small
attitude angles, are the following:

mẍ = (sin ϕ sin ψ + cos ϕ cos ψ sin θ) uz

mÿ = (cos ϕ sin θ sin ψ − cos ψ sin ϕ) uz

mz̈ = (cos θ cos ϕ) uz − mg

ϕ̈ = uϕ, θ̈ = uθ , ψ̈ = uψ,

(4)

where the virtual inputs uz (the force along the direction of the z-axis of the body frame), uϕ,
uθ , uψ (the torques around the axes x, y, z, respectively) are instantaneous functions of the
velocities, the positions, and the UAV motor:

uz = κb(ω
2
1 + ω2

2 + ω2
3 + ω2

4)

uϕ =
Iy − Iz

Ix
θ̇ψ̇ +

l
Ix

κb(ω
2
2 − ω2

4)−
J
Ix

θ̇(ω1 − ω2 + ω3 − ω4)

uθ =
Iz − Ix

Ix
ϕ̇ψ̇ +

ℓ

Ix
κb(ω

2
3 − ω2

1) +
J
Ix

ϕ̇(ω1 − ω2 + ω3 − ω4)

uψ =
Ix − Iy

Iz
ϕ̇θ̇ + κτ

(ω2
1 + ω2

3 − ω2
2 − ω2

4)

Iz
.

(5)

The equations provided represent the simplified dynamic model of a quadrotor, where:
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• g is the acceleration due to gravity;
• m is the mass of the quadrotor;
• J is the total inertia of a motor;
• I = diag(Ix, Iy, Iz) is the diagonal rotational inertia matrix of the rotorcraft;
• κb and κτ are the thrust and aerodynamic drag factors of the propellers (see [40]),

respectively;
• ℓ is the distance between each motor and the center of mass of the quadrotor.

This equation captures the approximate dynamics of the quadrotor’s motion, including
the effects of gravitational force, the thrust from the propellers, and the aerodynamic drag
(the resisting torque).

Following [40]:
κb = CTρAr2, κτ = CQρAr3, (6)

where mB is the blade mass, nB is the number of blades of the propeller, ρ is the density air,
ϵ is the offset between the blade root and the motor hub, r and A = πr2 are the radius and
disk area of the propeller, respectively, CT is the non-dimensional thrust coefficient of the
propeller (which depends on the propeller geometry and profile), and CQ = CT

√
CT/2 is

the torque coefficient of the propeller.

2.3. Energy and Motor Efficiency

To quantify the cumulative energy consumed by the quadrotor over the specified
duration, we can use the following expression:

E =
∫ t f

t0

4

∑
j=1

ej(t) ij(t) dt. (7)

As also discussed in [27], to which we refer for further details, this expression repre-
sents the integral of the power, which is the product of voltage and current, with respect to
time over the specified duration. The subscripts 1, 2, 3, and 4 correspond to the four motors
of the quadrotor. The integral provides a measure of the total energy consumed by the
quadrotor’s motors during the given time interval. By combining the dynamical equations
governing the electrical motors, and under the assumption that ωj(t0) = ωj(t f ) for all
j ∈ 1, 2, 3, 4, signifying identical initial and final angular velocities for each motor (which
becomes a constraint in the control problem formulation—see [40]), the energy consumed
by the UAV can be succinctly simplified:

E =
∫ t f

t0

4

∑
j=1

(
c1 + c2ωj(t) + c3ω2

j (t) + c4ω3
j (t) + c5ω4

j (t) + c6ω̇2
j (t)

)
dt, (8)

where ω̇j(t) is the angular acceleration of motor j, and c1, · · · , c6 are constants depending
on the parameters of the motors and on the geometry of the propeller. To compute the
battery-state-of-charge-(SOC) estimation, for t ∈ [t0, t f ] let

idis(t) =

(
4

∑
k=1

(Tf + κτω2
k(t) + D f ωk(t)) + J

4

∑
j=1

αj(t)

)
/KT (9)

be the discharge current of the battery of the quadrotor along the minimum–energy path.
Given idis(t) for t ∈ [t0, t f ], the state of charge of the battery can be estimated via the
following simple “two-well” kinetic battery model (or KiBaM for short—see [41] for
more details):

ẏ1(t) = −idis(t) + k f

(
h2(t)− h1(t)

)
ẏ2(t) = −k f

(
h2(t)− h1(t)

)
.

(10)
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The given equation describes the dynamics of the charge flow in a battery model with
two wells: the available charge well (y1) and the bound charge well (y2). The parameter k f
controls the rate at which the charge flows between these two wells. The initial conditions
specify the amount of charge in each well at the initial time t0. The battery’s overall capacity
is symbolized by C, and γ signifies the proportion of the total capacity assigned to the
available charge well at the start. This model fundamentally depicts the flow of charge
within the battery, taking into account the two wells and their initial conditions. The charge
in the available well is determined by γ times the total capacity, and the charge in the bound
well is determined by the remaining fraction (1 − γ) times the total capacity. The flow of
charge between these wells is influenced by the parameter k f . The battery is considered
empty (fully discharged) when there is no charge left in the available charge well, i.e.,
y1 = 0.

3. Parameter Identification of Quadrotor Model

The mechanical parameters of the quadrotor motion equations in (4)–(5) are known
and are the following: m = 5 kg; g = 9.81 m · s−2; l = 0.3 m; Ix = 0.011521 kg · m2;
Iy = 0.0362132 kg · m2; Iz = 0.029142 kg · m2; J = 0.0003 kg · m2;
κb = 4.5625 · 10−5 N · s2· rad−2; κτ = 1.375 · 10−5 N · s2· rad−2· m. We have, instead,
imperfect information about the electrical part of the model and about the geometry of the
motors, so we do not know exactly the constants ci, i = 1, ..., 6 in the energy functional (8).
Hence, we fit the parameters ci by least-square estimation (LSE), where we minimize the
error between the energy trajectories of the four motors for the commercial physical model
provided by Simcenter Amesim of Siemens (details about the Simcenter Amesim tool will
be given in Section 6.2):

EAME,j(t) =
∫ t

t0

eAME,j(τ) iAME,j(τ) dτ, (11)

where eAME,j(t) and iAME,j(t), j ∈ 1, 2, 3, 4 are the voltages and currents across the motor
measured from the Amesim quadrotor and the corresponding energy trajectories obtained
by the model (4)–(5),

Ej(t) =
∫ t

t0

(
c1 + c2ωj(τ) + c3ω2

j (τ) + c4ω3
j (τ) + c5ω4

j (τ) + c6ω̇2
j (τ)

)
dτ, (12)

for the same maneuver (same input), where we exploited the equivalence between (7) and (8).
The fitting procedure has been implemented in the MATLAB environment by means of
the function lsqnonlin, performing an ordinary least-square minimization of the error
sequence EAME − E, where EAME and E are vectors collecting the samples (measured with
a sampling time equal to 0.01 s) of functions (11) and (12), respectively, for the four motors
along the whole maneuver. The obtained optimal parameters for the energy functional (8)
are ĉ1 = 2.3324, ĉ2 = 0.0420, ĉ3 = 1.7274 · 10−4, ĉ4 = 1.4534 · 10−8, ĉ5 = 1.2520 · 10−9,
ĉ6 = 7.3230 · 10−4. Finally, regarding the battery model in (10), parameters k f and γ
have been taken from [27], while the (known) total battery capacity C of the Simcenter
Amesim battery has been set to C = 9.06136 Ah. Assuming an initial state of charge equal
to 95% of the total capacity (y1(0) + y2(0) = 0.95C), Figure 1 shows perfect agreement
between the battery-discharge behavior in Amesim and that in the quadrotor model cal-
ibrated according to the dynamical parameters in [27] with the modified total capacity.
The battery selected for the UAV relies on LiPo technology with a nominal voltage of
22 V and a discharge rate of 25 C. The battery model was parameterized using Simcen-
ter Amesim’s battery pre-sizing tool. This tool facilitates the generation of tables that
specify the variations in the battery open-circuit voltage, entropic coefficient, and dis-
charge resistance based on the battery state of charge and temperature. These tables are
created by considering three performance targets—battery target voltage, energy, and
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power—alongside a comprehensive database of synthesized battery technologies incorpo-
rated into the tool.

0 2 4 6 8 10 12 14

Time (s)

93.6

93.8
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SOC percentage (AMESIM data)

SOC percentage (quadrotor model)

Figure 1. Battery-state-of-charge-(SOC) trajectory in Simcenter Amesim and in the simplified
quadrotor model.

4. Energetic Rule–Based Reference Generation Based on Optimal Control

In this section, we explore the formulation and resolution of the optimal-control-(OC)
problem, strategically guiding the quadrotor from an initial state to a final state with
a primary focus on minimizing energy consumption. A comprehensive analysis of the
OC results is conducted, extracting valuable insights to determine the optimal energetic
mission time and the references generator. These outcomes stand as essential inputs for the
subsequent integration of feedback control in UAV operations.

4.1. Optimal Control Problem

In this phase, we undergo a revision of the system, transforming it into a state-space
form by introducing a state vector. This strategic enhancement aims to streamline the rep-
resentation of the system, facilitating more effective analysis and control implementation:
x = (x1, · · · , xn)T ∈ Rn, with n = 16, and the input vector α = (α1, α2, α3, α4)

T ∈ Rp,
with p = 4, defined as x1 = x, x2 = ẋ1, x3 = y, x4 = ẋ3, x5 = z, x6 = ẋ5
x7 = ϕ, x8 = ẋ7, x9 = θ, x10 = ẋ9, x11 = ψ, x12 = ẋ11 x13 = ω1, ẋ13 = α1,
x14 = ω2, ẋ14 = α2 x15 = ω3, ẋ15 = α3, x16 = ω4, ẋ16 = α4. The quadrotor model
undergoes enhancement, and the revised set of equations is as follows (see [27])
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ẋ1 = x2,

ẋ2 =
κB
m

(sin x7 sin x11 + cos x7 cos x11 sin x9)
16

∑
k=13

x2
k ,

ẋ3 = x4,

ẋ4 =
κB
m

(cos x7 sin x9 sin x11 − cos x11 sin x7)
16

∑
k=13

x2
k ,

ẋ5 = x6,

ẋ6 =
κB
m

(cos x9 cos x7)
16

∑
k=13

x2
k − g

ẋ7 = x8,

ẋ8 = (
Iy − Iz

Ix
) x10 x12 +

ℓκB
Ix

(x2
14 − x2

16)−
J
Ix

x10(x13+

− x14 + x15 − x16),

ẋ9 = x10,

ẋ10 = (
Iz − Ix

Iy
) x8 x12 +

ℓκB
Iy

(x2
15 − x2

13) +
J
Iy

x8(x13−

+ x14 + x15 − x16),

ẋ11 = x12,

ẋ12 = (
Ix − Iy

Iz
) x8 x10 +

κτ

Iz
(x2

13 − x2
14 + x2

15 − x2
16),

ẋ13 = α1, ẋ14 = α2, ẋ15 = α3, ẋ16 = α4,

(13)

which can be rewritten in the compact input–affine form,

ẋ(t) = f (x(t)) + Bα(t), (14)

where f : R16 → R16 aggregates the state-dependent part of the revised equations

in (13), and B =

(
012×12 012×4
04×12 I4×4

)
, with 0 and I being the zero and the identity matri-

ces, respectively, of the appropriate dimensions. With the energetic cost (7) and system (14)
at hand, we are now in a position to introduce the following optimal control problem:

min
α

E =
∫ t f

t0

(
16

∑
k=13

(c1 + c2xk(t) + c3x2
k(t) + c4x3

k(t) + c5x4
k(t)) + c7

4

∑
j=1

α2
j (t)

)
dt, (15)

with x(t0) = xt0 = x(t f ) = xt f . To prevent the motor angular velocities from surpassing
predefined technological limits (0 ≤ xi ≤ ωmax for i = 13, 14, 15, 16), an appropriate final
time t f is adopted. The Pontryagin minimum principle (PMP) facilitates the determination
of the optimal trajectory and optimal (open-loop) control function by incorporating the
running cost L and the Hamiltonian function H as

L(x(t), α(t)) =
16

∑
k=13

(
c1 + c2xk(t) + c3x2

k(t) + c4x3
k(t) + c5x4

k(t)
)
+ c7

4

∑
j=1

α2
j (t) (16)

H(x(t), α(t), λ(t)) = λT(t)( f (x(t)) + Bα(t)) + L(x(t), α(t)), (17)

with the backward costate equation being satisfied by the vector λ(t) ∈ Rn of the time-
varying multipliers,

−λ̇(t) = λT(t) fx(x⋆(t)) + Lx(x⋆(t), α⋆(t)). (18)



Drones 2024, 8, 29 11 of 22

The equation is related to the formulation of a boundary value problem (BVP) associ-
ated with optimal-control theory. Here is a breakdown of the terms:

• t f : Final time of the process;
• λ(t f ) = 0: The costate λ at the final time is a vector of zeros. The costate is a concept

in optimal-control theory that represents the sensitivity of the cost function to changes
in the state variables;

• x⋆: Optimal state trajectory;
• α⋆: Optimal control function;
• fx and Lx: Jacobian matrices of functions f and L, with respect to the state variable x.

Equations (14) and (18) together define a 2n-dimensional boundary value problem on
the extended state (x, λ). This BVP has n initial conditions and n final conditions on
the state x. Solving this BVP is a common approach in optimal-control theory, to find
the optimal trajectories and controls that minimize a specified cost function over a given
time horizon.

4.2. Rule–Based Energetic Reference Generation

While controllers or reference generators based on empirical rules prove computation-
ally efficient for embedded CPUs, they may deviate significantly from optimality and pose
challenges in calibration. By contrast, optimal solutions provided by the optimal control
(OC) for each mission set in the control-problem formulation yield trajectories that can be
analyzed. From these optimal trajectories, rules can be extrapolated to emulate optimal
behavior. Unlike OC signals, these rules are implementable. The initial phase includes
conducting a comprehensive set of simulations across various mission conditions, gath-
ering optimal trajectories and control strategies. Subsequent analysis aims at identifying
common patterns in optimal decisions, which are then translated into appropriate rules. To
ensure a comprehensive information set, all possible combinations of initial and final states
are systematically considered across the three spatial coordinates. The analysis focuses
on determining an optimal trajectory from an energy perspective, intending to provide a
versatile reference applicable to various controllers. The subsequent subsections detail the
extraction of rules derived from this exhaustive exploration.

4.2.1. Optimal Mission-Time Setting

For a mission defined by initial and final positions (x0, y0, z0) and (x f , y f , z f ), the Eu-

clidean distance d is computed as d =
√
(x f − x0)2 + (y f − y0)2 + (z f − z0)2. This distance

serves as a crucial metric influencing the optimal travel time topt, a parameter intricately
tied to energy consumption. The relationship between topt and d is graphically depicted
in Figure 2, showcasing the interplay between mission distance and the UAV’s physical
constraints, such as the maximum rotation speed of the motors. The specific parameters for
the chosen UAV will be provided in Section 6. Adjusting the UAV characteristics introduces
shifts in the linear fit, represented by an upward (orange straight line) or downward (green
straight line) trend in Figure 2. This adjustment depends on whether a lower- or higher-
performing UAV is utilized. It is advisable to gradually increase the intercept of the line
while maintaining a margin, to avoid operating at the limits of actuator saturation. This
strategic approach ensures optimal performance within the specified UAV characteristics.

4.2.2. Optimal Trajectory References

Given topt, the solution to the optimal control problem outlined in Section 4.1 is scruti-
nized, to derive sub-optimal profiles for position and speed along the three reference axes.
Figure 3 showcases the optimal trends for positions and velocities across four randomly
selected maneuvers from a diverse set of simulated missions. The first column illustrates
the trends of xopt, yopt, and zopt, while the second column presents ẋopt, ẏopt, and żopt. The
missions are initialized from the origin for generality, and the final position points are as
follows: [6, 6, 3], [8, 6, 10], [17, 8, 5], [10, 10, 10]. Each mission exhibits a distinct optimal time,
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intricately tied to the distance and approximated through the regression line calculated
in Section 4.2.1. For each mission, the optimal reference velocities are approximated with
parabolas, and their features are influenced by the optimal mission time (topt), the mission
distance (d), and the final positions. This approach allows the generation of near-optimal
energetic reference trajectories for velocity along the three axes without solving the opti-
mal control problem repeatedly. Parabolic approximations for optimal-energetic-velocity
profiles are defined for each axis:

kref(t) = at2 + bt + c, t ∈ [0, topt]. (19)

In this expression, the coefficients a, b, c and the tuning parameter kM determine the
shape of the parabola, with k0 being the starting point and kref representing the reference
velocity for the specific axis considered. The tuning parameter kM influences the maximum
of the parabola and is computed based on the final value k f of the considered axis and
kopt(d), a tuning parameter of the reference trajectories generator that depends on d:

kM = kopt(d) k f . (20)

Following the parabolic approximations of the optimal reference velocities along
the three axes, the next step involves their integration, to compute the position reference
trajectories. This seamless integration ensures a cohesive and synchronized represen-
tation of the optimal path for the UAV. Given the initial condition γref(0) = γ0 with
γref ∈ {xref, yref, zref}, we obtain

γref(t) =
a
3

t3 +
b
2

t2 − k0t + γref(0), (21)

Which constitutes the approximated optimal positions trajectory. Analyzing the
patterns in optimal position reference trajectories indicates that cubic curves are effective
in approximating these functions. Similarly, the optimal energetic yaw-rate trajectory and
its derivative can be calculated and approximated using a cubic function and a parabola,
respectively. In summary, the generation of near-optimal energetic reference trajectories
becomes feasible without the need to solve any optimal control problem, offering instant
tracking possibilities for positions, yaw rate, and their derivatives.

Figure 2. Dependence of the optimal mission time on distance d. In blue the optimal times as a
function of the distance derived from the solution of the optimal control problem, and in red a linear
approximation of the data. The orange and green straight lines correspond to shifts in the linear fit
due to adjustments of the UAV characteristics.
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Figure 3. Optimal trajectories reference for some selected test simulations with final position states
equal to [6 6 3], [8 6 10], [17 8 5], [10 10 10]: (a) Optimal position trends along the x-axis. (b) Optimal
position trends along the y-axis. (c) Optimal position trends along the z-axis. (d) Optimal velocity
trends along the x-axis. (e) Optimal velocity trends along the y-axis. (f) Optimal velocity trends along
the z-axis.

5. Hierarchical Real–Time Control

Reiterating, the (open-loop) optimal control outlined in Section 4.1 is computed offline,
serving the exclusive purpose of generating energetic reference trajectories and bench-
marking controller performance. For UAV control, a nonlinear-feedback-control approach,
derived from the classical hierarchical control elucidated in [37], is employed instead. This
approach ensures real-time adaptability and responsiveness in guiding the UAV along
its trajectory. The controller is implemented in a digital mode by maintaining the virtual
control functions uz, uϕ, uθ , uψ in (4) constant within each time interval [ti, ti+1), where
ti+1 − ti = ∆t for i = 0, · · · , imax − 1 and timax = t f . This discrete-time approach ensures
stability and facilitates precise control within specified intervals, contributing to the overall
effectiveness of the UAV control system. To streamline the design process, the motor
dynamics ωi, i = 1, 2, 3, 4 are initially ignored in the control design. These dynamics are
introduced in the final step through digital approximation and Equation (5). The initial
focus is on establishing the desired closed-loop dynamics for the vertical position and
velocity. This simplification aids in isolating and addressing specific control aspects before
incorporating the complexities introduced by the motor dynamics:

z̈(t) = z̈ref(t)− kpz(z(t)− zref(t))− kdz(ż(t)− żref(t)), (22)

with kpz, kdz > 0, zref(t) = x⋆5(t), żref(t) = x⋆6(t), and x⋆ being the known optimal trajectory
(see Section 4.1), and where z̈ref(t) can be computed by numerical differentiation. By
comparing (22) to the third equation in (4), one obtains the linearizing controller,

uz(t) = m
z̈ref(t)− kpzez(t)− kdz ėz(t) + g

cos θ cos ϕ
, (23)
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having defined ez(t) = z(t)− zref(t). By choosing a linearizing controller that incorporates
gains kpz and kdz for the vertical position and velocity pair (z, ż), it is observed that this
selection linearizes this pair into a chain of integrators. The gains kpz and kdz contribute
to exponentially stable error dynamics. Following a similar procedure, the linearizing
controller is applied, to achieve the desired closed-loop dynamics for the yaw position and
velocity. This strategic approach ensures stability and enforces the desired dynamics in the
controlled variables:

uψ(t) = ψ̈(t) = ψ̈ref(t)− kpψeψ(t)− kdψ ėψ(t), (24)

with kpψ, kdψ > 0, having defined eψ(t) = ψ(t)− ψref(t), ψref(t) = x⋆11(t), ψ̇ref(t) = x⋆12(t).
Substituting (23) into (4), and omitting the time dependencies, one obtains

ẍ =

(
tan ϕ sin ψ

cos θ
+cos ψ tan θ

)
(z̈ref−kpzez−kdz ėz + g)

ÿ =

(
tan θ sin ψ− cos ψ tan ϕ

cos θ

)
(z̈ref−kpzez−kdz ėz + g).

(25)

The hierarchical-control approach employs high gains kpz, kdz, kpψ, kdψ to impose
rapid yaw and vertical dynamics. By choosing sufficiently high gains, the position and
velocity errors for yaw and vertical dynamics rapidly converge to zero within each interval
[ti, ti+1). This allows for a simplified approximation in which these errors are effectively
reduced to zero during each interval, facilitating efficient control implementation:

ẍ =

(
tan ϕ sin ψ

cos θ
+ cos ψ tan θ

)
(z̈ref + g) (26)

ÿ =

(
tan θ sin ψ − cos ψ tan ϕ

cos θ

)
(z̈ref + g). (27)

The desired closed–loop dynamics for the (x, y) positions and velocities is expressed by

ẍ(t) = ẍref(t)− kpxex(t)− kdx ėx(t) (28)

ÿ(t) = ÿref(t)− kpyey(t)− kdy ėy(t), (29)

with kpx, kdx, kpy, kdy > 0, ex(t) = x(t) − xref(t), ey(t) = y(t) − yref(t), xref(t) = x⋆1(t),
ẋref(t) = x⋆2(t), yref(t) = x⋆3(t), ẏref(t) = x⋆4(t). By comparing (26) and (27) to (28)
and (29), and by utilizing the small angle condition cos θ ≈ 1 in the denominator of (26), ex-
plicit approximate expressions for the reference angles (ϕ, θ) are derived. These expressions
effectively impose the desired dynamics in (28) and (29). This analytical approach enhances
the understanding and implementation of the desired control dynamics for the UAV:

ϕref = arctan

(
sin θ tan ψ −

cos θ(ÿref − kpyey − kdy ėy)

(z̈ref + g) cos ψ

)
(30)

θref = arctan
(

ẍref − kpxex − kdx ėx

(z̈ref + g) cos ψ
− tan ϕ tan ψ

)
(31)

To ensure the rapid convergence of the (ϕ, θ) dynamics to the reference values (ϕref, θref),
additional constraints are imposed. These constraints contribute to the overall stability
and precision of the control system, ensuring that the UAV quickly converges to the
desired orientation:

uϕ(t) = ϕ̈(t) = −kpϕ(ϕ(t)− ϕref)− kdϕϕ̇(t) (32)

uθ(t) = θ̈(t) = −kpθ(θ(t)− θref)− kdθ θ̇(t), (33)
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with sufficiently high gains kpϕ, kdϕ, kpθ , kdθ > 0. As pointed out at the beginning of this
section, a digital implementation of the control laws uz, uψ, uϕ, uθ in (22) and (23), (32)
and (33) consists in sampling the right-hand sides of these equations at each time ti and
holding the inputs uz(ti), uψ(ti), uϕ(ti), uθ(ti) within each interval [ti, ti+1). As a terminal
step, the computation of concrete inputs αj(ti), j = 1, 2, 3, 4, i.e., the four motor accelerations,
to plug into Equation (14) is required. To this end, from the knowledge of the angle velocities
ϕ(ti), θ(ti), ψ(ti) and the virtual inputs uz(ti), uψ(ti), uϕ(ti), uθ(ti), we progress with the
partial inversion of (5) to calculate the demanded motor velocities ωj(ti), j = 1, 2, 3, 4, so
that the digital actuations are obtained, by first-order discretization of the last equations
in (14), as

αj(ti) =
ωj(ti)− ωj(ti−1)

∆t
j = 1, 2, 3, 4. (34)

6. Simulation Results

This section delves into the performance evaluation of the proposed controller. The
simulation environment is initially described, followed by the presentation of the results
obtained by the controller on the Simcenter Amesim Drone model. The section concludes
with final considerations on the energy aspects, providing a comprehensive assessment of
the controller’s effectiveness and impact on UAV dynamics.

6.1. Co-Simulation Environment with Matlab and Simcenter Amesim

The interest in introducing numerical simulation in this study lies in the possibility of
assessing the controllers’ behavior when integrated with a plant model or virtual prototype
of the UAV. System simulation is particularly convenient for this purpose as it enables the
creation of a dynamic and multi-physics performance model of the UAV with a fidelity
sufficiently high to effectively support the continuous development of sophisticated control
algorithms, including their virtual verification and validation (V&V) (see [42]). The tools
selected for this analysis were Matlab Simulink for the modeling and simulation of the
controllers and Simcenter Amesim as the dynamic, multi-physics system simulation tool
(see [43] for more details). Edited by Siemens Digital Industries Software, Simcenter
Amesim provides off-the-shelf components available in libraries, covering several physical
(fluids, mechanical, electrical, thermal) and application (aerospace, automotive, gas tur-
bines) domains. These are well suited to modeling different subsystems of the UAV, such as
energy storage (e.g., lithium-ion batteries), propulsion (e.g., electric motors and propellers),
and flight dynamics. As discussed in [42], models of UAV subsystems built with this tool
have been favorably compared against experimental data provided by manufacturers or
found in the scientific literature. This co-simulation approach leverages the best capabilities
of the two tools selected in their respective fields, allowing to investigate the behavior of
the controllers under the large variety of operating conditions to be expected during the
UAV mission, including failures.

The Simcenter Amesim plant model is more complex with respect to the reference
mathematical model considered for the design of the controller presented in Section 2, as
it contains additional phenomena as well as time-varying parameters. For this reason, it
is also regarded as a valid test bed for the controller. Consequently, the parameters used
in the model-based controller had to be identified, as done in Section 3. For example, the
propellers’ aerodynamic properties, such as the thrust and drag coefficients, play an impor-
tant role in the design of the controller. Several studies have shown that these coefficients
depend on the propellers’ operating conditions. Both in the physical models used in the ad-
vanced and realistic simulator described in this paper (see [42]) and in experimental studies
they are determined by multi-variable functions (see [44,45]) depending on the propeller
orientation, angular velocity, and total velocity as well as the geometric characteristics.

The results presented in Section 6.2 have been simulated in a co-simulation framework
whose purpose is to couple the physical Simcenter Amesim model, representative of the
UAV and its subsystems performance, to the hierarchical control algorithm designed in
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Matlab Simulink. The approach used in this paper, conceptualized in Figure 4, connects
Matlab Simulink through a dedicated interface with Simcenter tools.

MATLAB-SIMULINK

Hierarchical controller

Simcenter Amesim

UAV dynamics and 

performance

Motors commands

States

Figure 4. The co-simulation framework.

In this study, these parameters were identified statically for the controller design,
even though they were time-varying during the simulation. To account for this simplifica-
tion, and increase the controllers robustness, variations in the propulsion level were also
considered in the disturbance term.

The drone simulation parameters used in the model-based design controller are
presented in Table 1.

Table 1. Nominal quadrotor parameters.

m Mass of the Airframe 5 kg

l Distance of the center of mass to the rotor shaft 0.3 m

J1 Inertia in the x-axis 0.011521 kg · m2

J2 Inertia in the y-axis 0.0362132 kg · m2

J3 Inertia in the z-axis 0.029142 kg · m2

Jp Inertia of the propellers 0.0003 kg · m2

g Gravity acceleration 9.81 m · s−2

b Trust factor 4.5625 · 10−5 N ·s2· rad−2

c Drag factor 1.375 · 10−5 N s2· rad−2· m

6.2. Simulation Results in Simulink and Simcenter Amesim Co-Simulation Platform

In the test mission shown, we considered rest-to-rest maneuvers of the Simcenter
Amesim quadrotor with an initial state [x y z ψ] = [0 0 0 0] and [x y z ψ] = [10 20 30 π/4]
as the desired final state. In fact, we assumed zero linear and angular velocity of the UAV
at the boundary states, with zero body orientation at time t = 0. The gains values of the
controller used in the simulations shown are reported in the Table 2. Figures 5–9 show the
main profiles that characterize the considered simulation. Figure 5 shows the references
and controlled Simcenter Amesim drone position, both along the x-axis (a) and along
the y-axis (b), while in (c) and (d) the subplots refer to the respective errors. Due to the
unmodeled dynamics and the uncertainty of some parameters, the error is not exactly
negligible, but it is still limited.

Table 2. Parameters of Controller.

kpx = kpy = 4 kdx = kdy = 1 kpz = 50 kdz = 5

kpθ = kpϕ = kpψ = 5 kdθ = 0.5 kdϕ = 0.5 kdψ = 0.5

Figure 6 shows the references and controlled drone position along the z-axis (a) and
with respect to the yaw angle (b). Sub-figures (c) and (d) show the respective errors, which
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are limited. At the level of the desired three-dimensional trajectory, shown in Figure 7, it is
tracked well and the error that is committed is negligible, considering the complexity of
the model that one tries to control.

Figure 8 shows the angular speeds of the four drone propellers, which never reached
saturation (set at approximately 6.400 rpm), indicating that the simulation time chosen
at the reference generation level according to the logic obtained in Section 2 was correct.
Finally, Figure 9 shows the state of charge of the drone battery: approximately 1.2% was
consumed in the considered maneuver.

Figure 5. (a) Longitudinal motion of the UAV: the reference xre f (black) and the controlled x (blue).
(b) Latitudinal motion of the UAV: the reference yre f (black) and the controlled y (blue). (c) Longi-
tudinal error motion of the controlled UAV (x-axis). (d) Latitudinal error motion of the controlled
UAV (y-axis).

Table 3 presents a comparison of the energy consumptions between the optimal control
(OC), the hierarchical control applied to the simplified model (SM), and the hierarchical
control applied to the Simcenter Amesim model (AM). The comparison is made in terms of
the chosen cost functional J defined in Equation (8) and the state of charge (SOC) at the end
of the selected maneuvers. Remarkably, the proposed rule-based strategy with hierarchical
control closely aligns with the optimal open-loop solution in both energy and battery terms.
Additionally, the values of the two performance criteria are consistently very close for the
controller applied to both the simplified model and the Simcenter Amesim model, suggest-
ing that the chosen cost functional J serves as an effective measure of real battery consump-
tion. The proposed control scheme exhibits notable strength, in terms of computational
efficiency. Leveraging linear interpolation and algebraic operations, it achieves quicker
computation compared to the optimal strategy, where a minimization process is necessary.
However, the optimal control strategy demands less calibration and offers ease of tuning for
various missions or different UAVs. This trade-off highlights the efficiency and adaptability
aspects of the proposed control approach, catering to diverse application scenarios and
mission requirements.
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Figure 6. (a) Quadrotor’s altitude motion: the reference zre f (black) and the controlled z (blue).
(b) Quadrotor yaw angle: the reference ψre f (black) and the controlled ψ (blue). (c) Altitude error
motion of the UAV (z-axis). (d) Yaw angle error of the controlled UAV.
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Figure 7. 3D drone trajectory: reference (black), robust control (blue). The circle and the cross indicate,
respectively, the starting and ending point of the 3D reference trajectory.
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Figure 8. Propulsion angular velocities of the proposed controller: ω1 (a), ω2 (b), ω3 (c), ω4 (d).
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Figure 9. SOC of the battery profile during considered simulation.
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Table 3. Comparison of optimal control (OC), SMC (simplified model control), and SAC (Simcenter
Amesim control) to rule-based energetic references generator over various heterogeneous missions.
EC stands for energy consumption J. BC stands for battery consumption.

EC J BC

Final Point OC SMC SAC OC SMC SAC

[10,20,30] 100 101.52 101.43 100 101.31 101.27

[12,10,−40] 100 102.23 102.3 100 102.09 102.14

[8,10,6] 100 101.1 100.71 100 100.92 100.54

[−30,40,50] 100 102.3 101.9 100 102.11 101.78

[20,−20,−40] 100 102.17 102.02 102 102.21 101.95

7. Conclusions

The solution to the quadrotor mission control problem, aiming for the minimum
achievable energy consumption along a mission, can be addressed through the optimal-
control theory. However, implementing this approach onboard in real time poses challenges,
due to limited computational and memory resources. On the other hand, a rule-based
approach is better suited to online implementation, even though it necessitates a demand-
ing calibration process. The strategy explored in this work involves analyzing decisions
made by the optimal-control theory, to identify common patterns in optimal travel mis-
sion time and reference generation. The calibration parameters in the reference generator
need to be tuned, to ensure that rule-based references closely match optimal trajectories.
The hierarchical controller designed for this purpose, which effectively tracks reference
trajectories and energy consumption, both in terms of the functional defined in the optimal
control problem and battery consumption, closely aligns with the optimal solution. It is
crucial to emphasize that the reference generator and optimal mission time are contingent
on the type of UAV and its specific characteristics. Any variations in these parameters
would require a redesign. A prospective investigation could involve observing the different
trajectories chosen by the optimal controller as the drone parameters, energy sources, and
architecture undergo changes. The proposed controller’s results were validated through
numerical experiments, and comparisons were made in terms of trajectory tracking, energy
performance index, and battery consumption using the Simcenter Amesim physical model
in a co-simulation framework with Matlab-Simulink. This comprehensive approach pro-
vided insights into the practicality and effectiveness of the proposed rule-based strategy in
real-world UAV applications.

In future investigations, a significant enhancement will entail integrating a distur-
bance estimator into the controller, similar to the approach presented in [46]. While the
current study focuses on the energy and control aspects within a commercial simulator,
external disturbances—such as wind—were not taken into account. The inclusion of a
disturbance estimator is intended to improve the robustness of the control action, reducing
errors attributed to non-modeled dynamics and time-varying parameters. This measure
is essential, to ensure the efficacy and dependability of the control strategy in real-world
scenarios, where external factors can influence the performance of UAVs.
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