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Abstract: We consider an ensemble of drones moving in a two-dimensional domain, each one of
them carrying a communication device, and we investigate the problem of information transfer in
the swarm when the transmission capabilities are short range. The problem is discussed under the
framework of temporal networks, and special attention is paid to the analysis of the transmission
time of messages transported within the swarm. Traditional theoretical methods of graph theory are
extended to tackle the problem of time-varying networks and a numerical analysis of the detection
time statistics is performed in order to evaluate the efficiency of the communication network as a
function of the parameters characterizing the swarm dynamics.
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1. Introduction

A drone swarm is an ensemble of drones that cooperate with a view to achieving a
common goal. An important feature of a swarm is the ability of its members to operate
in a coordinated way while having a wide degree of autonomy [1]. To be able to function
in a fully autonomous way, to perform complex tasks, and to carry out various types of
missions without external intervention, collective, if not intelligent, behavior must emerge
from local interactions between entities [2]. In this respect, the sharing of information
among drones is the key for taking collective decisions [3]. For that, drones must efficiently
communicate with each other while maintaining the security and secrecy of the transmitted
information [4]. Long-range information transfer between drones will certainly maintain
the cohesion and effectiveness of the swarm, but it also makes it vulnerable to remote
listening and cyber attacks [5]. To curb piracy, drones can be equipped with minimal
sensing capacities and a limited communication range. Unfortunately, in some cases, such
limitations, combined with the remoteness and sparseness of the drone population, can
disrupt the entire information flow in the swarm. This implies that communication in the
swarm is critically dependent on drone movements and positions, because drones interact
only with local neighbors. The result is a communication network whose structure is
constantly evolving, with links being added and deleted according to drone displacements.
Such network models are called temporal or dynamical [6,7]. From this perspective, drone
swarms merely reproduce real-world systems whose components interact dynamically, es-
tablishing connections that may appear and disappear over time or simply vary in strength.
In nature, examples of time-varying systems forming networks abound. In biology, for
example, one finds gene-regulatory networks [8–10], protein interaction networks [11], and
brain functional networks [12]; all of these networks are inherently time-varying. New tech-
nologies also provide examples of dynamical networks, e.g., communication networks [13]
and power transmission networks [14], not to mention social networks [15,16]. Clearly,
networks are of primary importance for solving complex problems arising from interacting
individuals. Of particular interest for our purposes here is communication, a specific form
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of interaction that involves the transfer of information between individuals. Knowing how
information is generated and shared is of prime importance to understand cooperation
and consensus problems [17,18]. In this context, understanding the interplay between
the network structure and information flow is crucial; for this reason, numerous studies
have been devoted to studying the impact of network structures on the dynamics taking
place in them [19]. In particular, diffusive processes [20] have been successfully applied in
epidemiology to understand disease dynamics and spread [21].

As noted above, in a temporal network, communication is significantly influenced by
the dynamics of the group members. Widely studied examples of this are the problems
of synchronization in a swarm [22] or in a sensor networks [23] and the problems of
information transfer in a mobile communication network [24] and in the brain network [25].
For the same reason, we are looking in this work at the problem of communication and
information transfer within a swarm of mobile drones. More specifically, our goal is to
assess the efficiency and effectiveness of a communication network built from intermittent
contacts between drones. The focus is very much on information transfer; search and
rescue missions or coordination strategies between complex units are not being addressed
here. Therefore, the simplest microscopic model of drones has been considered: drones are
points that evolve individually, and their motion follows a random walk. Such a level of
abstraction will not affect our findings, since our interest is in the dynamical communication
network, irrespective of its constitutive units.

To assess the efficiency of the communication network, we investigate the transit time
of messages between two points located in the drone operation area (see Figure 1). A key
parameter of the model is the communication range of the drones, rc. According to the
value of rc, the drones will be densely or sparsely connected, which impacts the transfer of
information and, thereby, its travel time. In this work, this issue is analyzed and quantified
by computing the first-passage time probability of messages sent over the communication
network. The first-passage time is one case among many first-passage problems [26]
which has proven to be a reliable tool to explore the dynamics of complex systems [27]
and to characterize interconnections in complex systems. In the field of communication,
in particular, the first-passage method has been extensively used for network security
analyses [28] and for reliability analyses of systems subject to random failure [29]. In
the context of this work, the value of the first-passage formalism lays in the fact that
it provides a link between the parameters of a model and average times often probed
in experiments. In ecology, for example, first-passage times have been used for animal
movement analyses [30,31].





ø











rc

Figure 1. The situation considered in this work. An ensemble of drones, represented by quadcopter
drones, is deployed over a domain. Information is found by a drone in the upper right corner of the
domain. A message containing the information, colored in red, moves with the carrier drone, and
when possible, it is transferred to another drone located at a distance within the transmission range,
here a disk with radius rc. We are interested in the time it takes to transmit the message to a target
drone, here the drone with the red signal located in the lower left corner of the domain.
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In Section 2, our model of drone motion is presented and the theory of single message
transmission in a drone swarm is presented. A generalization of the formalism to tackle
the multiple-message problem is detailed in Section 3. In Section 4, the transmission of
messages in our drone swarm model is studied. Finally, Section 5 contains the concluding
remarks and perspectives.

2. The Swarm and Communication Network Modeling

Consider a set of Nd drones moving independently in a bounded domain. One can
assume that the drones operate at a constant altitude, not necessary the same for all drones,
which allows us to consider their motion as taking place in a two-dimensional domain,
D = [0 , Lx]× [0 , Ly]. The motion of the drones inD is modeled as a correlated random walk,
a stochastic process whose trajectory mimics the displacement of many animals [32–35].
The drones are equipped with sensors to compute distances and a sending and receiving
device that allows them to exchange messages between each other. In the swarm, one drone,
which will be called the target, serves as an access point that collects the messages sent by
the other drones. To clarify the theoretical model, we will consider messages that are sent
when a drone is near the information source located in D. More specifically, we study the
transmission of messages between two fixed locations; the first is where the information is
found and the other is the position of the target drone. This situation represents drones
that are exploring an area, and once information is found, it is transmitted via the swarm to
a ground station. The situation is depicted in Figure 1, showing a message which being
transmitted by a drone from the upper right corner of the domain to the receiving target
drone located in the opposite lower left corner.

2.1. The Drone Motion

The motion of the drones is modeled as a succession of directed movements, with
a fixed velocity vd along a selected orientation, interrupted by sudden scatterings that
change the orientation of the velocity. A displacement along any given direction occurs
for a random amount of time, and the lengths of the straight-line segments are assumed
to be independent and identically distributed. To specify the persistence of the velocity
direction, we introduce ψ(t), defined such that ψ(t) dt is the probability of the velocity
having the same direction in the time interval (t , t + dt) [36]. Then, Ψ(t) = ∫

∞
t ψ(τ) dτ is

the probability of a change in orientation after time t. Here, we choose the exponential
ψ(t) = λ exp(−λ t), so that the probability of time ts between successive scatterings is

Ψ(ts) = exp(−λts) , (1)

where λ is the scattering frequency.
Let θ be the angle between a single line segment and the x axis. The succession of the

angles of the segments of the walk is specified by β(θ∣θ′), defined such that β(θ∣θ′) dθ is the
probability that a segment with orientation θ′ is followed by a segment with orientation in
the angular interval (θ , θ + dθ). We will assume that β(θ∣θ′) depends only on the scattering
angle dθ = θ − θ′.

The positions and orientations of the drones are updated at time interval ∆t according to

xi(t +∆t) = xi(t) + vd cos(θi(t))∆t ,

yi(t +∆t) = yi(t) + vd sin(θi(t))∆t , (2)

and
θi(t +∆t) = θi(t) + dθi(t) , (3)

where (xi(t) , yi(t)) are the positions of the drones i = 1, . . . , Nd, in the domain D at time t,
and dθi(t) are random scattering angles. Let us stress that ∆t is not the time increment used
for a numerical integration of the equations of motion; since the velocity vd is constant, the
only restriction on ∆t is ∆t < ts, where ts is the random time interval between two scattering
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events. Equation (2) updates the position of a drone between scatterings. Similarly, the
orientations θi(t) are constant most of the time, and the scattering angles dθi(t) take
non-zero values only at scattering time ts. Most importantly, ∆t should be regarded as a
parameter, integrated into the drone software, that punctuates the drone activity; in practice,
with a frequency (∆t)−1, a drone attempts to modify the orientation of its velocity with a
probability of success p. Then, the probability of maintaining the same orientation k times
is (1− p)k, where k ≥ 0. Since ∑∞k=0(1− p)k = p−1, the normalized probability distribution
for the duration k∆t of a linear trajectory is given by the geometric distribution

Pgeom(k) = p (1− p)k−1 , (4)

where k ≥ 1. Since the drone velocity is constant on each segment line, the length l = k vd∆t
of the segment is also distributed according to Equation (4). When the scattering frequency
is small, one can compute the continuous limit of the time between scatterings, ts = k ∆t.
If p = λ∆t, then the probability of a duration ts is P(ts) = p(ts)∆t, where p(ts) is the
probability density

p(ts) = lim
∆t→0

λ

1− λ∆t
(1− λ∆t)ts/∆t

= λ exp(−λ ts). (5)

Therefore, since ts = l/vd, the density distribution for the segment length l is,

p(l) =
vd
lp

exp(−
vd
lp

l
vd
) = l−1

p exp(−
l
lp
) , (6)

where lp = vd/λ is the average segment length, also called yjr persistence length. Figure 2a
shows a typical drone trajectory, with random segments of length li and scattering angle
dθi. At the boundaries of the domain D, a specific scattering process is implemented such
that the conditions 0 ≤ x(t) ≤ Lx and 0 ≤ y(t) ≤ Ly are satisfied. More specifically, when
the trajectory reaches a boundary of D, the velocity direction is first set perpendicular
to the boundary, i.e., θi = [θW , θE, θD, θU] = [0, π, π/2, 3π/2], for west, east, down, and
up boundaries, and then a random scattering angle is added to θi. Figure 2b illustrates
the boundary scattering process in the case of an east boundary crossing. In this work,
the scattering angle dθi in Equation (3) (see Figure 2) is a random quantity uniformly
distributed in an angular interval, dθ ∈ [−θs, θs]. In the case of an isotropic scattering,
θs = π, and β(θ∣θ′) = 1/2π, so that the successive velocity orientations are independent of
each other.

(a)

l1

l2

l3 dθ1

dθ2

(b)

Lx

dθ1θE = π

Figure 2. The drone motion is modeled by a correlated random walk. (a) The trajectory of a drone is
a succession of line segments with random length li and random changes in orientation dθi. (b) At
the boundary of the domain, the trajectory is reflected. Here, a drone crosses the east boundary of the
domain; the trajectory is first set perpendicular to the frontier, that is, θ = θE = π, and then random
scattering is performed. Here, dθ1 is added to θE.
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2.2. The Communication Network and Message Transportation

Assume the drones are equipped with sensors that allow them to sniff and detect the
presence of other drones in the neighborhood of their location, which is here a circular
domain of radius rc (see Figure 1). When two drones lie within their mutual detection
region, drone-to-drone communication can be established, and information, i.e., a message,
can be transferred between them. The topology of the drone communication system
is modeled by a communication network built from the positions of the drones and the
communication range rc. The communication network is described by an Nd ×Nd adjacency
matrix A, defined as Aij = 1 if drones (i, j) are connected and Aij = 0 otherwise. Since the
drones are in motion, the communication network is not frozen in time; it is a temporal
network constructed from chronologically ordered snapshots of the drone positions taken
in the time interval ∆t. A temporal network is therefore represented by a sequence of
adjacency matrices A[1], A[2],⋯. Here, A[k] is the adjacency matrix of the network at time
t = k ∆t, and k is the number of time intervals elapsed since the initial time. Thereafter,
∆t will be used as the unit of time; time will be measured in time steps and is thus an
integer number.

The dynamic aspect of drone interactions drastically changes the way information is
transferred between drones [37,38]. In order to assess the efficiency of the communication
network, we will address the issue of information transfer from the point of view of a
message and use a random walk process to study how fast a signal propagates from one
point in the domain to another.

The random walk process is defined by a walker, i.e., the message, that is carried by
a drone and that at regular time intervals ∆t attempts to hop to another drone. A central
quantity of our analysis of the problem is the message propagator K(i, ti∣j, tj), which is the
probability density of finding the message at drone i at time ti under the condition it was at
drone j at time tj ≤ ti. Then, the probability of finding the message at drone i at time ti is:

Pti(i) = ∑
j

K(i, ti∣j, tj)Ptj(j). (7)

The propagator K is a time-dependent quantity intertwined with the drone interaction
network; the message hops from drone i to drone j if a connection exists between them at
time k, i.e., A[k]ij ≠ 0. At each time step k, the message hops from a drone j to another drone
i, chosen uniformly at random among the k j drones connected to j. The probability of a
transfer j → i at time step k is:

p[k](j → i) =
1
k j

A[k]ij , (8)

where k j = ∑i A[k]ij . If at time k there are no connections between drone j and the other

drones, the message stays at drone j, which implies that p[k](j → j) = 1. Let us stress that a
message can be trapped on a drone for a while because the connection with other drones
is lost; this situation is in contrast with the problem of a message propagating on a static
network, where a message can always leave the drone from which it came from. However,
even when trapped on a drone, a message will propagate through the carrying drone,
although this propagation is not explicit. The drone dynamics that underlie the message
transfer only emerge through the edges’ temporality; the variability of the matrix element
A[k]ij with time k is the only indication that something happens “behind the scenes”.

Another specificity of temporal networks is that a connection between a pair of
drones (i, j) is possible even if the drones are far apart. In this case, a connection can
be established through a temporal path of length n, which is a time-ordered sequence of n
edges A[k1]

i,s1
A[k2]

s1,s2 ⋯A[kn]
sn−1,j with k1 < k2⋯ < kn. In practice, a long temporal path may contain

very few drones. The path i → 1→ 1→ ⋯→ 1→ j, for example, corresponds to the situation
in which a message is transported from i to j by the single drone 1; in this case, only two
message hops occur, and the duration of the transmission will depend on the distance
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traveled by the carrier drone 1. Thereafter, we will focus on t f , the time required for
information collected by a drone d0 at some location in the domain to reach a target drone
d f , whose position in the domain is fixed. To be specific, we will analyze the statistics of the
first-passage time, t f (d0), of a message transmitted through the communication network
from a drone d0 to another drone d f . Since the message can follow different paths to reach
the target destination from its initial position, the first-passage time is a random quantity
whose probability distribution is P(t f (d0)). To compute P(t f (d0)), it is appropriate the
treat the target drone d f as a trap, absorbing messages, so that the probability of the message
leaving d f is zero, or similarly, that the probability of staying at d f once reached is one.
Therefore, we impose that

p[k](d f → j) = δ f j. (9)

From now on, we will assume that the target is drone one, i.e., d f = 1. The probability
of the message being on drone i at time k obeys the master equation

Pk+1(i) = ∑
j

M(k)ij Pk(j) , (10)

where M(k)ij = K(i, k + 1∣j, k) is the one-step propagator at time k. Using the transition
probabilities (8) and (9) with d f = 1:

M(k) =

1 p1,2 p1,3 · · · p1,Nd

0 p2,2 p2,3 · · · p2,Nd

0 ...
. . . . . .

...
...

...
...

. . .
...

0 pNd,2 pNd,3 · · · pNd,Nd







p1←1

p1←j

pj←1 pi←j (11)

where the transition probabilities pi←j are computed from the drone network configuration
at time k. The first column of the matrix M(k) contains the probability of leaving the target;
since d f is a trap, the transition probabilities of this column are time-independent. The
first row of M(k) contains the probabilities of reaching the target; their values depend
on the number of drones within the detection area of drone 1 at time k. Iterating the
relation (10) gives:

Pk+2(i) = ∑
j
∑

l
M(k+1)

il M(k)l j Pk(j) = ∑
j
(M(k+1)

○M(k))ij Pk(j) , (12)

where (M(k+1) ○M(k)) denotes a matrix that is the product of two successive one-step
propagators. Considering that at the initial time, the probability of the message being at
drone j is P0(j), we can write:

Pn(i) = ∑
j
L
[n]
ij P0(j) , (13)

where

L
[n]
ij = L(i, n∣j, 0) = (

n
∏
k=1

M(k))ij , (14)

is the n−step propagator, defined as the probability of finding the message at drone i at time
n under the condition that the message was at drone j at the initial time. One can observe
that, since for i = d f = 1 the message stays trapped on the drone, the element L[n]1j of the

n−step propagator can only increase with n. Consequently, L[n]1j contains the probability of
a message sent by drone j at time zero being detected by the target at any time up to n. As
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an illustration of this, consider the situation depicted in Figure 3a, where information found
by drone B is transferred to drone C, which will take it to drone A. The temporal network
corresponding to this scenario is displayed in Figure 3b. The one-step message propagators
M(k) at time k = 0, 1, . . . 6 are shown in Figure 3c, together with the n−step propagators L[n]

at time n = 4, 5, 6. The matrix element highlighted in red is L[n]AB, the cumulative probability
of finding the message at the target A at different times. As explained, this probability is
zero for n ≤ 4, while for n ≥ 5, its value is equal to one.

B

A

C

C

C

C

C

C

C

t=0

t=1

t=2

t=3
t=4

t=5

t=6

(a)

t=0-1

A B

C

t=2

A B

C

t=3-4

A B

C

t=5

A B

C

t=6

A B

C

(b)

1 0 0
0 1 0
0 0 1







M (k ̸=2,5)

1 0 0
0 0 1
0 1 0







M (2)

1 0 1
0 1 0
0 0 0







M (5)

1 0 0
0 0 1
0 1 0







L[4]

1 1 0
0 0 1
0 0 0







L[5]

1 1 0
0 0 1
0 0 0







L[6]

(c)

Figure 3. An illustration of the theoretical framework. (a) Consider an ensemble of three drones
denoted by A, B, and C, where only C is moving. The circle around the drones is the interaction area.
During its displacement, C interacts with B (at t = 2) and with A (at t = 5). (b) Interactions between
drones B and C and C and A are expressed as edges in the communication network. (c) The one-step
transition matrices, M(k), and the n−step propagators, L[n], corresponding to the interaction network.
Since the probabilities in the transitions matrices are 0 or 1, the trajectory of a message moving on the
temporal network is deterministic; a message initially on B will jump from B to C at t = 2, then move
with C until t = 5, where it will jump from C to A. The message is trapped at the target drone A.

2.3. The Communication Probability

The transmission probability Ptrans is the probability that a message sent by drone j will
ultimately reach the target drone. This probability is obtained from the n−step propagator as:

Ptrans = lim
n→∞L

[n]
1j . (15)



Drones 2024, 8, 28 8 of 21

As, except for in some specific situations, the transmission probability is equal to one, it
is more informative when comparing different situations to put a limit on the transmission
time and to consider:

Ptrans(nl) = L
[nl]
1j , (16)

instead, where nl is a threshold time beyond which no transmission shall be considered valid.
The probability distribution of the transmission time t f (j) between j and 1 is obtained

from the cumulative distribution L[n]1j as:

Pr(t f = n) ≡ G(1, n∣j, 0) = (L[n] −L[n−1]
)1j , (17)

and the average transmission time is:

⟨t f ⟩j =
∞
∑
n=1

nG[n]1j , (18)

where G[n]1j = G(1, n∣j, 0). The average average transmission time can also be obtained from
the n−step propagator as:

⟨t f ⟩j =
∞
∑
n=1
(1 −L[n−1]

1j ) . (19)

It is important to stress that in this expression, ⟨⋅⟩ represents the average of paths that
a message can take in a single realization of the drone trajectory. The randomness of the
transmission time t f (j) is caused by the unpredictable nature of a message transfer when
a choice between different drones is possible. Because the motion of the drones is also
random, a message sent at a later time will travel on a different temporal network. As
a consequence, ⟨t f ⟩j is itself also a random quantity whose probability depends on the
specific realization of drone motion. The transmission time averaged over the random
motion of the drones is denoted by ⟪t f⟫j. More specifically, ⟪⋅⟫means that an average is
taken over different configurations of the adjacency matrices A[k].

3. The Multiple Message Problem

So far, we have considered the transmission of a unique message over a temporal
network. We shall now consider how to deal with several messages, still with the aim
of computing the detection time at a target. A distinction must be drawn here between
the transmission of information with or without message cloning. In the former case, a
copy of the message is transferred to every drone in contact with the drone carrying the
message. Therefore, the number of messages increases at every contact between carrier and
non-carrier drones. In this case, we will assume that, at the initial time, a unique message
is to be transmitted by a drone d0. In the latter case, there is no message cloning but several
messages can be sent simultaneously at the initial time; each message will perform its own
random walk on the temporal network and the number of messages is constant.

3.1. Transmission with Message Cloning

In the transmission with cloning, when a drone carrying a message interacts with
another drone, the latter receives a copy of the message; in this situation, the message is
like a virus being transmitted in a population. Let nk(i) be the variable that specifies the
state of drone i at time k: nk(i) = 1 if i is carrying a message (infected), otherwise nk(i) = 0
(healthy). We will assume that when there is contact between infected and healthy drones,
the probability of message transmission is equal to one. According to the definition of the
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adjacency matrix, A[k]ij nk−1(j) is the probability that, at time k, i is in contact with an already
infected drone j. Then, the probability that all drones in contact with i are healthy is:

H[k](i) =
Nd

∏
j=1
(1 − A[k]ij nk−1(j)). (20)

Therefore, the drone state nk(i) is the solution of the dynamical equation

nk(j) = 1 + (nk−1(j)− 1)H[k](i). (21)

In other words, a drone is infected unless it and all its contacts are healthy. Note that
nk(i) is also a cumulative probability, whose value is 0 or 1.

3.2. Transmission of Several Messages

In the transmission of several messages without cloning, N messages, belonging to
the same drone at initial time, are sent over the network. Each message performs its own
random walk on the temporal network; our objective is to obtain the counting statistics,
also called the order statistics, for the messages reaching the target [39,40]. More specifically,
we are interested in the distribution function of the arrival time of the first message among
N. Order statistics have been used in wireless communication system analyses, e.g., to
improve the performance of communication [41], where order statistics help to select the
best transmission technique or the best multi-user scheduling technique. In this study,
order statistics are used as a theoretical tool to compute multi-message transmission time
statistics. For this, we assume that at the initial time, N messages are sent by the same
drone d0, and we record ti, i = 1, . . . N, the time of arrival of each message at the target
d f . Since the messages start from the same drone at the initial time, the ti values are

identically distributed random variables with cumulative distribution L[n]1j and probability

distribution G[n]1j . Consider first t1∶N , the time for a message among N to reach the target;
that is, t1∶N is the smallest os the tis, and it is called the 1-order statistic. t1∶N is a random
variable whose cumulative distribution function is [39]:

Pr(t1∶N ≤ n) ≡ F1∶N(1, n ∣ j, 0) = 1 − [1−L[n]1j ]
N , (22)

and its probability distribution is:

f1∶N(1, n∣j, 0) = F1∶N(1, n ∣ j, 0)− F1∶N(1, n − 1 ∣ j, 0)

= N G[n]1j [1−L
[n]
1j ]

N−1. (23)

Simply put, this means that for a first detection time to be equal to n, the first message
must be detected at time n and the others N−1 must arrive later. According to Equation (22),
since L[n]1j ≤ 1, we find that limN→∞ Pr(t1∶N ≤ n) = 1, so that, as expected, the first detection
time decreases when the number of messages sent increases. Usually, it is assumed that the
path took by the fastest message is the shortest path. As we shall see later, this assumption
may be incorrect in the present situation. Again, it is worth stressing that the present
statistic pertains to a single realization of the drone trajectories.

A message can also be split into N messages prior to being sent. In this case, the time
it takes to receive all pieces of the original message is the N-order statistic tN∶N , and its
cumulative distribution is:

FN∶N(1, n ∣ j, 0) = [L[n]1j ]
N . (24)

The probability distribution for the time tN∶N is:

fN∶N(1, n ∣ j, 0) = N G[n]1j [L
[n]
1j ]

N−1. (25)
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These results concerning order statistics are usually applied in static network theory,
i.e., when the one-step propagator M[k] is time-independent. Temporal networks and the
underlying drone motion raise new questions regarding the efficiency of the network. In
particular, the question here is the extent to which changes in the drone motion can result
in a measurable transmission performance gain.

4. Results

The theoretical formalism detailed in the previous sections has been applied to com-
pare, with regard to information transfer, two models of drone deployment. In the first
model, the drones are allowed to fly everywhere within the boundaries of the domain
D. In the second model, each drone is confined within a sub-region inside D; the sub-
regions are arranged to form a Nx × Ny = Nd grid pattern. Hereafter, we will refer to
these deployment models as the no-grid and grid models, respectively. Figure 4 displays a
swarm of Nd = 16 drones deployed according to the two deployment models. In the grid
deployment, adjacent sub-regions can overlap to some extent; the parameter lo controls
the overlap by fixing the width of the strip shared by two drones. We have numerically
evaluated the distribution functions of different detection times by considering a swarm
of Nd = 16 drones moving with velocity vd = 1 in domain D within area Lx × Ly = 100× 100.
The time step chosen is ∆t = 1. One should note that units are arbitrary; the values chosen for
the parameters can be converted, if necessary, to specific units without modifying the results
of the study if the relation Lx/vd = 100 ∆t between space and time units is maintained.

(a) (b)

Figure 4. The two models of drone deployment considered in this work. (a) A no-grid model,
where each drone is allowed to move anywhere in the domain D. (b) A grid model, where drones
are confined within sub-regions of D. In this example, the parameter lo = 0, so that sub-regions
do not overlap.

We shall assume that the information to be transmitted by the swarm is found by drone
d0 = Nd in the upper right corner of D at position (Lx − Lx/Nx + rc/2, Ly − Ly/Ny + rc/2),
which is also the position of drone Nd at the initial time; all times will therefore be evaluated
from that instant. The message should be transmitted to the target drone dt = 1, located
in the lower left corner of D at position (Lx/Nx − rc/2, Ly/Ny − rc/2), which is fixed. The
position of the information and that of the target depend on the communication range rc,
to ensure that, in both types of deployment models, the sending and the target drones are
able to communicate with the rest of the swarm.



Drones 2024, 8, 28 11 of 21

At the initial time, the positions of drones i = 2, . . . , Nd − 1, are chosen at random inside
D or inside each drone sub-region. The scattering times ts(i) are initialized at random
according to the distribution Pgeom(k), given by Equation (4), with p = vd ∆t/lp = 1/lp. Here,
the persistence length lp is a parameter of the comparative study. The drones operate
independently of the message transmission. At each time step, the positions (xi(t), yi(t))
are updated according to the equations of motion (2), and the total time t increases by
one time step. Then, if t = ts(i), a scattering event occurs for drone i; the orientation θi is
modified according to Equation (3), with a random scattering angle 0 ≤ dθi ≤ 2π. In this
study, the velocity scattering is chosen to be isotopic. Once scattering is performed, ts(i) is
updated, i.e., ts(i) = t + k, where k is a random waiting time.

A communication network is constructed on top of the drone dynamics; after each
update of the drone positions, the distances dij(k) = ((xi(k)− xj(k))2 + (yi(k)− yj(k))2)

1
2

are evaluated for each pair of drones (i, j), and a link is established when dij ≤ rc, which

translates into A[k]ij = 1 in the network adjacency matrix. From A[k], the transition matrix

M[k] is computed according to Equation (11), and the new n−step propagator is computed
from the previous propagator using L[n] =M[n] ○ L[n−1]. According to Equation (14), the
starting point of this iteration is L[1] =M[1]. Since we assumed the initial position of the
message is drone d0 = Nd and that of the target drone is dt = 1, the main outcome of the
numerical computation is the matrix element L[n]1Nd

, giving the cumulative probability of
detection at the target, that is, Pr(t f ≤ n).

4.1. One-Message Transmission

In this section, we consider a message transmitted by a swarm of Nd = 16 drones. The
motion of the drones is characterized by a persistence length lp = 10, and the communication
range is set to rc = 15. The two models of drone deployment were studied. For the grid
model, we considered two values of the overlap parameter: lo = 0 and lo = 10. Figure 5
(upper panel) shows the cumulative distribution of the detection time, P(t f ≤ n) = L[n]1Nd

,
computed for different types of drone deployment. Jumps in the cumulative distribution
correspond to arrival times at the target that, via Equation (17), translate into peaks in the
detection time distributions, P(t f = n), as shown in Figure 5 (bottom panel), which displays
the corresponding time distribution functions. As mentioned previously, these results
refer to a single configuration of the drone trajectory; each arrival time corresponds to
different paths taken by the random walk of the message. When looking at the cumulative
distribution, one can observe that, with respect to the no-grid situation, t f increases when
the drones are confined in sub-regions and, even at time t = 5000, there is a probability of
1− P(t f ≤ 5000) ≃ 0.06 that a message has not yet been detected.
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Figure 5. Cont.
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Figure 5. Transmission time statistics. (Upper panel) The cumulative distribution P(t f ≤ n) = L[n]1Nd

computed from a single realization of the temporal network. The curves correspond to three types
of drone deployments: a no-grid deployment (black curve), a grid deployment without overlap (red
curve), a grid deployment with overlap lo = 10 (blue curve). (Lower panel) The distribution function
of the transmission time t f corresponding to the cumulative distributions displayed in the upper
panel: (a) the no-grid deployment, (b) the grid deployment without overlap, (c) the grid deployment
with overlap.

Interestingly, the travel times are not evenly distributed in time but rather they tend to
form groups, as can be observed in Figure 5 (bottom panel). The origin of this clustering
is in the contact dynamics between drones, as highlighted in Figure 6, which shows
Ne, the number of contacts between drones within the swarm, as a function of time.
Here, Ne(n) = 1

2 ∑i,j A[n]ij ; the adjacency matrix A[n] was evaluated for the three drone
deployment scenarios considered in Figure 5. One can observe that the number of contacts
increases with the overlap, with an average of ⟨Ne⟩ = (3.5, 5.3, 7.8) contacts per drone
configuration in the swarm when lo = (0, 10, Lx) (the no-grid situation is equivalent to
lo ≃ Lx).
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Figure 6. The number of edges, Ne(n) = 1
2 ∑i,j A[n]ij , as a function of time, for the three types of drone

deployments considered in Figure 5. (a) A no-grid deployment, (b) a grid deployment without overlap,
(c) a grid deployment with overlap lo = 10. In the curves, black areas correspond to successive drone
configurations with very close numbers of edges. These regions where Ne(n) is highly correlated
correspond to bursts. Bursts are more frequent in the no-grid deployment (a), and their frequency
drops when the overlap lo decreases (b,c).

The observed correlations in the number of contacts over time correspond to periods
of high contact rates, followed by periods of low contact rates. These patterns of temporal
interactions, called bursts, have been observed in the dynamics of many phenomena in
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relation to human activity and, as has been shown, are the reflection of human behavior [42].
Bursts are consequences of the way people organize their activity, prioritizing some tasks in
a queuing process [42,43]. Studies suggest a general relationship between temporal network
bursts and connectivity levels, with bursts often occurring alongside periods of increased
interaction or information exchange within a network [44,45]. For example, network
neuroscience research has documented similar burst-like activity patterns in brain networks
during cognitive tasks [46]. In the swarm, periods of high activity, i.e., when interactions are
numerous, originate from the displacements of drones inside the detection region of another
drone. For large values of rc, drones will spend more time inside the interaction region; this
will increase the number of hops performed by a message, which tends to be correlated,
since when drones start interacting, a message will be transferred as long as the interaction
persists. Let us stress that drones evolve completely independently, which should imply
that their interaction or activity, in the same way as their motion, can be modeled as a
Poisson process. Therefore, the time interval between two consecutive interactions with
the same drone should follow an exponential distribution. The appearance of bursts in
the transmission time of a message indicates that the timing of drone interactions deviates
from the Poisson model. To highlight the non-Poissonian nature of drone activity, Figure 7
(top panel) shows the temporal behavior of Ne(i) = ∑j A[n]ij , the number of interactions
between a single drone i and the group. In the same figure, the waiting time, τ, between
two consecutive interactions is displayed. In the figure, black regions correspond to bursts,
where the waiting time between successive interactions is very small, i.e., τ = 1. Evidence of
the non-Poisson behavior of the activity is shown in Figure 7 (bottom panel), which displays
the probability distribution function of the waiting time, P(τ), plotted on a logarithmic
scale. The departure from the exponential distribution, which corresponds to the red line,
is clearly evident for small waiting times, τ ≤ 25, which are statistically over-represented
in comparison to larger values of τ, whose distribution follows an exponential. This
demonstrates that correlations in the transmission time of a message are directly linked to
the activity of the drones in a swarm; this activity, measured in terms of exchanges between
drones, will be greater if the interaction range, rc, is large.
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Figure 7. (Upper panel) Number of edges between drone i and the group, Ne(i) = ∑j A[n]ij , as a
function of time. The time, τ, between interactions is the waiting time. (Lower panel) The distribution
function of the waiting time P(τ) on a log scale, together with an exponential distribution (red line).
The over-representation of small waiting time values with respect to the Poisson model appears
clearly on the log scale plot.
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4.2. Multiple-Message Transmission

The transmission time statistics presented in the previous section were specific to paths
taken by a message in a single drone trajectory, that is, for a single realization of the temporal
network and associated adjacency matrices A[n]. In practice, such statistics are obtained by
sending several messages at the same time and by performing a statistical analysis of the
ensemble of the transmission times. When messages are sent at consecutive times, each
message will be transmitted via a different temporal network. In this case, the transmission
times are not or poorly correlated; this will depend on the time interval between successive
message sending. Therefore, the distribution of transmission times for messages sent at
different times is an average distribution computed over an ensemble of distributions, each
pertaining to a single drone trajectory. Figure 8 (left panel) displays the transmission time
statistics measured over an ensemble of 104 drone trajectories: Nd = 16, lp = 10, and rc = 15.
The corresponding single drone trajectory distributions are displayed in Figure 5. As a
consequence of the weak correlation between drone trajectories, the transmission times of
messages sent at different instants are distributed according to an exponential distribution,
as shown in Figure 8 (right panel), which displays the transmission time statistics on a
log scale.
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Figure 8. Transmission time statistics averaged over 104 drone trajectories, or temporal network
configurations, for the three types of drone deployments considered in Figure 5: a no-grid deployment,
a grid deployment without overlap, and a grid deployment with overlap lo = 10. The drone swarm
parametrization is the same as in Figure 5. (Left panel): the distribution on a log-linear scale. (Right
panel): the distribution on a log scale.

Now consider the case where N copies of a message are sent at the initial time and one
records the time of the first detection. As explained in Section 3.2, the first-order statistics
can be computed from the one-message statistics according to Equation (23). Another
situation consists of splitting the information into N pieces and sending as many messages;
then, one records the time it takes to receive the N pieces of information. Also, the N-order
statistics are related to the one-message statistics, as shown by Equation (25). It is important
to stress that the basic assumption underpinning relations (23) and (25) is that the detection
times of different messages are identically distributed; their cumulative distribution is F1∶1.
Therefore, these relations are valid only for messages transmitted by the same trajectory of
the drones, i.e., the same temporal network. More specifically, ⟪FN∶N⟫ ≠ ⟪F1∶1⟫N , since in
the situation considered here, the averages, ⟪⋅⟫ and ⟨⋅⟩, do not commute.However, the order
statistics averaged over different temporal networks may still be obtained from ⟪F1∶1⟫ as:

⟪FN∶N⟫ = ⟪FN
1∶1⟫ , (26)
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where F1∶1 is an average pertaining to different message paths in a single realization
of the temporal network. To illustrate this, the trajectory-averaged one-order and N-
order statistics have been computed in the case of N = 5 messages sent simultaneously.
The average was taken over 2 × 104 trajectories of Nd = 16 drones moving in a no-grid
deployment. The motion and interaction parameters are lp = 15, rc = 10. Figure 9 shows the
one-order, ⟪ f1∶5⟫ (red curve), and five-order, ⟪ f5∶5⟫ (blue curve), statistics, together with
the average single-message statistics, ⟪ f1∶1⟫ (black curve).
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Figure 9. Order statistics of the transmission time averaged over 2 × 104 trajectories of Nd = 16
drones deployed according to the no-grid model: the one-order (red curve) and five-order (blue curve)
transmission time statistics when N = 5 messages are sent simultaneously. The black curve shows the
averaged single message transmission time statistics. The parameters of the motion and interaction
are lp = 15, rc = 10.

As expected, the mean transmission time ⟪t1∶5⟫ is shifted toward smaller values with
respect to the single message mean transmission time ⟪t1∶1⟫. The respective average values
are ⟪t1∶5⟫ = 554 and ⟪t1∶1⟫ = 1290, which agrees with the fact that when the number N of
messages increases, the value of the first arrival time t1∶N decreases. Note that in the limit
N →∞, the first detection time will converge toward a value equal to that corresponding
to the situation where a message is transmitted with cloning. We also point out that in a
static network, in the limit N →∞, t1∶N would give the time taken by a message to join the
sending and receipting locations along the shortest path. In a time-varying network, such
correspondence between the path size and transmission time is lost. Interestingly, for t5∶5,
there is a clear bimodal distribution, i.e., f5∶5(t f ) (blue curve in the figure), with two groups
of arrival times. As shown in the next section, this feature can be explained by the bimodal
nature of the transmission process.

4.3. Impact of Drone Motion on Communication

In order to assess the efficiency of the communication network, we will discuss the
transmission of a message as a function of the factors on which it depends. Communication
inside the swarm can be judged by the average time for a message to reach the target.
However, in some cases, the large transmission time makes such analysis computationally
expensive. To avoid such numerical complications, we computed Ptrans(nl), the proba-
bility of a message being transmitted before time tl = nl∆t, whose expression is given by
Equation (16). The result was averaged over different drone trajectories.

Since the motion of the drones is a persistent random walk, one can assume that a
message can be transferred via two modes of transmission: ballistic motion and diffusion.
A message is transmitted by directly translating a carrier drone in ballistic motion. In
diffusion, message propagation occurs via hopping from drone to drone when drones are
close to each other. Different factors affect these transmission modes: the persistence length
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of the drone motion (lp), the range of the interaction between drones (rc), and the way
drones are deployed (grid versus no-grid).

We computed Ptrans(nl) at time nl = 5× 103 as a function of the persistence length lp,
considering grid and no-grid deployment, for a value of the drone interaction range fixed
at rc = 10. The result is displayed in Figure 10. As it can be observed, for all values of
lp, no-grid deployment (black symbols) gives better results in terms of the transmission
probability than grid deployment (red symbols). It appears that, for all values of rc and all
types of deployment, the transmission probability at a fixed time Ptrans(nl), when evaluated
as a function of lp, can be expressed as:

Ptrans(nl) = a0 + a1 l−1/2
p + a2x l−1

p . (27)

As it can be observed, the data and the analytical expression (27) exhibit a good
quantitative agreement. To explain this agreement, one must remember that two transmis-
sion modes contribute to the propagation of a message by drones to varying degrees; the
linear motion of a carrier drone results in ballistic transportation of the message, while
the hopping of a message between drones gives rise to diffusive transport. Therefore, the
motion of a message is akin to a persistent random walk, whose characteristic feature is
a mean-square displacement that varies as a function of the travel time according to the
relationship [36,47,48]:

⟨r2
(t)⟩ =

4 D
λ
[exp(−λt) + λt − 1 ] , (28)

where the scattering frequency λ = vd/lp, and the diffusion constant D = v2
d/2λ. For λt≪ 1,

one finds ⟨r2(t)⟩ ∼ t2, which corresponds to ballistic motion, while for λt ≫ 1, one finds
⟨r2(t)⟩ ∼ t, which corresponds to diffusive transport. By the same token, the l−1

p and l−1/2
p

terms in Equation (27) can, respectively, be attributed to ballistic and diffusion modes
of transmission. To substantiate this argument, we consider the average time (18), now
defined with an upper limit on the transmission time:

⟨t f (nl)⟩ =
nl

∑
n=1

nG[n]1j , (29)

with similar expressions for ⟨t1∶N(nl)⟩ and ⟨tN∶N(nl)⟩. The time ⟨t f (nl)⟩ can be read as the
expected time needed to reach a given transmission probability Ptrans(nl).
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Figure 10. The transmission probability Ptrans(nl) as a function of the persistence length lp, evaluated
at time limit nl = 5×103 for a message moving in a 16-drone swarm with interaction range rc = 10. The
data displayed pertain to different models of drone deployment: the no-grid model (black symbols)
and the grid model (red symbols). The curves correspond to the analytical expression (27), with
parameters adjusted to fit with the data: (a0, a1, a2) = (0.945, 0.566,−1.56) for no-grid deployment and
(a0, a1, a2) = (0.945, 0.566,−1.56) for grid deployment.
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The trajectory-averaged time ⟪t f (nl)⟫, corresponding to the transmission probabilities
shown Figure 10, that is, with nl = 5× 103, was computed as a function of the persistence
length lp, in the case of an interaction range rc = 10. The results are displayed in the
left panel of Figure 11, together with the analytical expression (27), whose parameters
have been adjusted to fit the numerical data. Once again, there is a clear difference in the
transmission time between the no-grid (black symbols) and the grid (red symbols) types of
deployment. On the right panel of the same figure, the travel time is shown as a function
of l−1/2

p ; it appears that ⟪t f (nl)⟫ increases linearly with l−1/2
p , thus clearly highlighting

that within a swarm of drones interacting within a distance rc = 10, the transmission of a
message is mainly characterized by diffusion. However, the dominance of diffusion over
ballistic motion, as the main transmission mode, is not a characteristic of the model. In
fact, ballistic motion can become the main transmission mode by increasing the interaction
range rc, without changing the motion of the drones. To illustrate this, we repeated the
computation of ⟪t f (nl)⟫, with a larger value of the interaction range, i.e., rc = 20, and the
results are displayed in Figure 12 for the two deployments considered—the color codes are
the same as in Figure 11. On the left panel of the figure, ⟪t f (nl)⟫ is shown as a function of
the persistence length lp for the no-grid and the grid types of deployment, while on the right
panel of the figure, ⟪t f (nl)⟫ is shown as a function of l−1

p . Clearly, there is a change in the
transmission mode of the message, which is now mainly dominated by ballistic transport,
since ⟪t f (nl)⟫ ∼ l−1

p . Interestingly, the interaction range also impacts the efficiency of
drone deployment, since now, when lp ≤ 7, grid deployment of the drones results in faster
transmission of messages. The reason for this transition is that the range of ballistic motion
is determined by the persistence length, while a message can hop over a distance similar to
the interaction range rc. Therefore, grid deployment, where the message is allowed to hop
between sub-regions, is more efficient when the value of lp is small and, at the same time,
the interaction range rc is large.
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Figure 11. Averaged transmission time ⟪t f (nl)⟫ corresponding to the transmission probabilities
shown Figure 10, that is, with nl = 5× 103, for the no-grid (black symbols) and the grid (red symbols)
deployment models. In the left panel, ⟪t f ⟫ is shown as a function of lp; the curves correspond to the
analytical expression (27) with the parameters adjusted to fit the data: (a0, a1, a2) = (66.67, 4531.8, 844)
for no-grid deployment and (a0, a1, a2) = (1977, 3225, 262) for grid deployment. In the right panel,
⟪t f ⟫ is shown as a function of (lp)−1/2, which highlights the diffusive nature of the transmission.

In a persistent random walk, the ballistic or diffusive nature of motion refers to the
average displacement of the walker (see Equation (28)). However, in an ensemble of
displacements, there are trajectories of both types, even when diffusion dominates the
motion as a whole. This also applies in the situation detailed above, where the interaction
range rc = 10 coincides with transport dominated by diffusion. Here, there are also some
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trajectories that are more representative of a ballistic transmission mode. Interestingly,
these minority displacements can be probed by sending several messages simultaneously
and then recording the transmission time of the fastest message, that is, t1∶N . We have
computed the one-order statistics of the transmission time when N = 5 messages are sent at
the initial time, i.e., ⟪t1∶5⟫, under the same conditions as those used to produce Figure 11.
The result is displayed in Figure 13. In the left panel, one sees that, compared to the same
panel in Figure 11, ⟪t1∶5⟫≪ ⟪t f⟫. In the right panel, the one-order transmission time shown
as a function of l−1

p highlights the change in transmission mode, which is now dominated
by ballistic motion, in clear contrast with ⟪t f⟫ shown in Figure 11 (right panel).
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Figure 12. Averaged transmission time ⟪t f (nl)⟫ computed with the same conditions as in Figure 11,
apart from the interaction range, the value of which is now rc = 20. The data shown pertain to
a no-grid (black symbols) and a grid (red symbols) deployment model. In the left panel, ⟪t f ⟫ is
shown as a function of lp; the curves correspond to the analytical expression (27) with the parameters
adjusted to fit the data: (a0, a1, a2) = (390.186, 205.23, 2011.15) for the no-grid deployment, and
(a0, a1, a2) = (622.9,−302.1, 1699.5) for the grid deployment. In the right panel, ⟪t f ⟫ is shown as a
function of (lp)−1, which highlights the ballistic nature of the transmission. The main differences
between the results shown here and the results shown in Figure 11 are: (i) a change in the most
efficient deployment model at lp ∼ 7, and (ii) a transition toward the ballistic transmission mode.
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Figure 13. Averaged one-order transmission time ⟪t1∶5(nl)⟫ computed with the same conditions as in
Figure 11. The data shown pertain to a no-grid (black symbols) and a grid (red symbols) deployment
model. In the left panel, ⟪t1∶5⟫ is shown as a function of lp; the curves correspond to the analytical
expression (27), with parameters adjusted to fit with the data: (a0, a1, a2) = (417.8,−691.3, 4696.5) for
the no-grid deployment, and (a0, a1, a2) = (1268.8, 843.3, 3800) for the grid deployment. In the right
panel, ⟪t1∶5⟫ is shown as a function of (lp)−1, which highlights the ballistic nature of motion of the
fastest message, although the average transmission mode is diffusion.
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5. Conclusions

A theoretical framework to compute the transmission time of messages sent over a
drone swarm is presented. It is shown how the first passage time formalism, developed
for static networks, can be extended to tackle time-varying networks. To demonstrate the
practical relevance of the theory, we compute the statistics of the transmission time of the
message when transferred by drones between two locations inside a domain. Two models
of drone deployment are discussed: a no-grid model, without constraints on the drone
motion, and a grid model, where each drone is constrained to move within its sub-region of
the domain. A comparative analysis of the efficiency of these models, assessed in terms
of transmission time, has been performed according to the parameters characterizing the
motion, the interaction, and the deployment of the drones. Based on the results of this
analysis, we can conclude that the no-grid deployment model is the most efficient, mainly
because this kind of deployment allows direct transfers of messages between two distant
locations without any message exchange. Let us stress that the fast transfer of information
is most often executed to the detriment of the drones’ search mission. This conclusion
is supported by the fact that the fastest messages are transferred by drones moving bal-
listically, while slower messages are carried by drones whose motion is dominated by
diffusion. Diffusion and its associated random walk are known for their efficiency in space
exploration missions [49,50].

To demonstrate the link between transmission efficiency and a particular type of
message motion, we computed the statistics of the transmission time in terms of the
persistence length, a quantity that characterizes the motion of the drones. The results
confirm this relationship and, in addition, provide a method to control the importance of
the various transmission modes.

The presented results call for a more thorough analysis of the transmission time in
terms of the parameters controlling the swarm, e.g., the number of drones, the ratio between
the size of the domain and the interaction range, and the overlap between sub-regions.
This work is focused on the transmission of messages without cloning, while the theory of
transmission with cloning has been mentioned but not investigated. We must stress that
these two types of message transmission are not mutually exclusive but overlap and are
complementary; in transmission with message cloning, the tagging and tracing of some
messages can provide a lot of information about the interaction between drones. In this
respect, it should be emphasized that the theory of the transmission time detailed in this
paper can be recast in terms of the numbers of hops, instead of the number of time steps.

Finally, the theory presented here should be useful to tackle more complex situations;
synchronization dynamics [51], the selection of good search methods, and the control of
collective behavior are particularly good examples.
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