
Citation: Bi, Z.; Guo, X.; Wang, J.; Qin,

S.; Liu, G. Truck-Drone Delivery

Optimization Based on Multi-Agent

Reinforcement Learning. Drones 2024,

8, 27. https://doi.org/10.3390/

drones8010027

Academic Editor: Pablo

Rodríguez-Gonzálvez

Received: 5 December 2023

Revised: 6 January 2024

Accepted: 12 January 2024

Published: 20 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Truck-Drone Delivery Optimization Based on Multi-Agent
Reinforcement Learning
Zhiliang Bi 1 , Xiwang Guo 1,* , Jiacun Wang 2 , Shujin Qin 3 and Guanjun Liu 4

1 School of Information and Control, Liaoning Petrochemical University, Fushun 113001, China;
bizhiliang@stu.lnpu.edu.cn

2 School of Computer Science and Software Engineering, Monmouth University,
West Long Branch, NJ 07764, USA; jwang@monmouth.edu

3 School of Economics and Management, Shangqiu Normal University, Shangqiu 476000, China;
qinshujin@sqnu.edu.cn

4 School of Electronic and Information Engineering, Tongji University, Shangqhai 201804, China;
liuguanjun@tongji.edu.cn

* Correspondence: guoxiwang@lnpu.edu.cn

Abstract: In recent years, the adoption of truck–drone collaborative delivery has emerged as an
innovative approach to enhance transportation efficiency and minimize the depletion of human
resources. Such a model simultaneously addresses the endurance limitations of drones and the
time wastage incurred during the “last-mile” deliveries by trucks. Trucks serve not only as a carrier
platform for drones but also as storage hubs and energy sources for these unmanned aerial vehicles.
Drawing from the distinctive attributes of truck–drone collaborative delivery, this research has
created a multi-drone delivery environment utilizing the MPE library. Furthermore, a spectrum of
optimization techniques has been employed to enhance the algorithm’s efficacy within the truck–
drone distribution system. Finally, a comparative analysis is conducted with other multi-agent
reinforcement learning algorithms within the same environment, thus affirming the rationality of the
problem formulation and highlighting the algorithm’s superior performance.

Keywords: reinforcement learning; drone; multi-agent problem; path planning

1. Introduction

Truck–drone collaborative delivery is a delivery method that uses trucks as the carrier
platform and drones as the main means of transportation. With the advancement of e-
commerce and urbanization in recent years, coupled with technological progress and the
escalating costs associated with human resource utilization, the global logistics industry
has required a more efficient transportation model [1]. Unmanned aerial vehicles (UAV),
or drones, known for their efficiency, speed, and ease of deployment, have garnered
considerable attention. Consequently, the concept of truck–drone joint delivery has been
introduced and received attention from the research society.

As shown in Figure 1, While there have been some algorithms and models that have
explored the feasibility and time efficiency of truck–drone collaborative delivery, including
initial tests and route design by companies such as FedEx, Meituan, and Amazon, most
of them have primarily relied on heuristic algorithms for individual vehicles or treated
the drones as a system parameter issue. There has been limited systematic exploration
in this field, particularly in the context of truck–drone coordination, using reinforcement
learning algorithms. With advancements in logistics network planning, drone positioning
and control technology, the blueprint for truck–drone collaborative delivery projects in
specific urban areas has become increasingly important [2,3].

Reinforcement learning has emerged as a focal point of research in recent years, not
only in the field of control [4] but also in the domain of combinatorial optimization [5].

Drones 2024, 8, 27. https://doi.org/10.3390/drones8010027 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8010027
https://doi.org/10.3390/drones8010027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-7458-3881
https://orcid.org/0000-0002-9142-1251
https://orcid.org/0000-0003-4176-3947
https://orcid.org/0000-0002-4578-2726
https://orcid.org/0000-0002-7523-4827
https://doi.org/10.3390/drones8010027
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8010027?type=check_update&version=4

Drones 2024, 8, 27 2 of 19

Reinforcement learning works by having an agent receive rewards based on its actions
within an environment and subsequently evaluating its behavior patterns. Through it-
erative evaluations and adjustments of states and actions, a sequence based on Markov
decision-making is developed to achieve the ultimate optimal objective. In this study,
we employ reinforcement learning as the foundation to solve a truck–drone collaborative
delivery problem under a multi-vehicle model. We have also made certain improvements
to the algorithm. Furthermore, we compare the final model with different algorithms in
various scenarios, thus validating the effectiveness of the algorithm and the model.

This study addresses the trajectory optimization problem for multiple agents in a fully
cooperative game environment by partitioning the vehicle driving conditions and drone
flight paths. We utilized multi-agent algorithms to achieve this objective. The number
of drones and customers is among other factors as adjustable parameters within the en-
vironment. This approach effectively validates that, within a multi-agent environment,
the partitioning of states and adjusting algorithm parameters can be universally applied to
solve truck–drone delivery optimization problems.

The integration of reinforcement learning with the environment proves instrumental
in effectively adjusting parameters such as the number of vehicles and customer service
points [6]. By configuring different scenarios with varying vehicle and customer counts, we
can simulate and validate the efficiency of the truck–drone delivery model across different
residential density levels. Particularly in the context of multi-drone scenarios, adopting
this fully cooperative mode based on game theory allows us to transform the multi-agent
problem into a single-agent decision-making problem. This approach reduces extensive
learning time and mitigates the challenge of dealing with a large joint action space.

Furthermore, the random exploration process introduced in this study yields optimal
solutions more readily than traditional heuristic algorithms, eliminating the need for an
additional parameter adjustment and encoding-decoding processes.

This paper presents a learning environment based on a real-world delivery model,
considering multiple objectives and time constraints, atop the foundation of multi-truck
and drone mixed delivery scenarios. We approach this problem from a reinforcement
learning perspective, focusing on analyzing the flight trajectories of drones in the context
of truck–drone delivery. The model encompasses attributes such as vehicle starting points,
vehicle count, customer count, vehicle coordinates, and time. To address the challenge of
a vast joint action space and potential conflicts or competition for rewards among agents
introduced by reinforcement learning in multi-agent scenarios, we employ a multi-objective
model. Building upon single-agent algorithms, we partition the vehicle routing problem
into stages within a single simulation, effectively addressing issues inherent to traditional
truck delivery models. The primary objective of this research is to minimize the drone
flight time while maximizing customer service rewards, all while adhering to specified
time constraints. Through reinforcement learning-based route optimization with different
parameter settings within the same environment, we ultimately derive a set of potential
optimal solutions.

Figure 1. Truck–drone joint delivery.

Drones 2024, 8, 27 3 of 19

The practical significance of this study lies in its expansion and optimization of delivery
models and single-agent algorithm solutions for multi-agent cooperation. Traditional
delivery models face challenges such as high labor costs, low efficiency, and the inability
to deploy in urban environments rapidly. Examining the truck–drone delivery problem
from the perspective of multi-agent algorithms reveals several key challenges. Firstly,
adjusting the number of agents, i.e., vehicles and customers, is cumbersome and lacks
flexibility. Secondly, there is the issue of defining joint action functions; in a multi-agent
environment, actions of each agent mutually influence one another, leading to variations
in reward functions and unstable states. Lastly, adopting truck–drone delivery models
can effectively enhance delivery efficiency in urban areas, reducing time wastage and
labor costs. This is especially pertinent in alleviating the labor intensity faced by logistics
industry workers. In line with the multi-tiered site delivery systems currently popular in
many countries’ urban areas, this model reduces intermediary steps and minimizes the
impact within the delivery process. Additionally, truck–drone transportation can benefit
services requiring rapid transport capabilities, such as providing swift and precise services
to shipping companies at ports through truck–drone deliveries [7,8]. In summary, the truck–
drone delivery model represents a significant development direction for the future of the
logistics industry and has the potential to become one of the representative modes of
new-age logistics. It is poised to contribute to economic development and societal progress.

This paper makes the following specific contributions: (1) It investigates the truck–
drone hybrid delivery problem using reinforcement learning, thereby deepening the re-
search in the field of truck–drone delivery models. (2) It optimizes algorithms and environ-
ments for multi-agent scenarios, employing the Monte Carlo Tree Search as an optimization
method. The approach divides the vehicle routing problem into stages, expediting the
determination of truck routes, and employs multi-agent reinforcement learning algorithms
for drone flight trajectories. Regularization techniques are utilized to enhance learning effi-
ciency and stability. (3) Creates a versatile environment based on the truck–drone delivery
model, allowing the adjustment of parameters such as the number of drones and customers.
This environment offers a wealth of case studies for future research in truck–drone delivery.

Related Work

Logistics and distribution have long been a focal point of research in both academia
and industry. In recent years, the growth of the e-commerce and food delivery industries
has prompted numerous companies and research institutions to design and implement
various new delivery models. Currently, most urban deliveries employ a multi-tiered
station-based system, where deliveries are distributed through multiple levels of stations,
starting from higher-level stations and progressing towards lower-level ones, until they
encounter the “last-mile” problem. This results in significant waste of human resources and
the creation of numerous intermediary steps. As is shown in Table 1, While there have been
some studies and projects addressing the “last-mile” and logistics model modifications, it
remains challenging to find a fundamental solution within traditional delivery models.

Table 1. Research direction.

Research [9] [10] [4] [11] This Study

Algorithm Heuristic algorithm MAPPO MARL AC&DQN MAPPO
Model MTSP Nash equilibrium Mean Field FSTSP Hierarchical

Optimization objective Profit Subsidiary communication Multi-UAV systems Delivery Time Profit&Time

With advancements in drone technology and related areas such as batteries, UAVs
have observed widespread applications over the past decade across various industries [12],
including the shipping sector [13,14], safety and security, parcel delivery, 3D modeling,
disaster relief, and military applications. The drone delivery problem can be observed
as an extension of routing problems and aircraft control domains. Compared to tradi-
tional delivery vehicles, drones offer high maneuverability, flight capabilities, and rapid

Drones 2024, 8, 27 4 of 19

deployment, making them an attractive option in the delivery sector. Although they face
challenges related to range and regulatory constraints, these issues have been mitigated to
some extent through government regulations and the use of trucks as carrier platforms [15].
The truck–drone delivery model leverages the strengths of both trucks and drones. Trucks
effectively address drone limitations in terms of range and payload capacity, while drones
complement trucks in the final-mile delivery, especially in urban areas with high-rise build-
ings, reducing time and labor inefficiencies. This makes truck–drone delivery an appealing
solution characterized by speed, cost-effectiveness, and adaptability [16].

Furthermore, truck–drone joint delivery entails different tasks and requirements com-
pared to traditional vehicle delivery models. Notably, in terms of delivery routes, both
trucks and drones must consider the delivery path concurrently. Additionally, the flight
path of drones requires the consideration of numerous parameters, especially factors like
obstacles and distances. When multiple drones are involved, even more variables come
into play, and complex judgments are needed to account for the interactions between the
flight trajectories of different quantities of drones. Beyond these considerations, the use
of reinforcement learning algorithms aids in better decomposing the truck–drone deliv-
ery problem and allows researchers to conduct diverse testing, even in situations where
real-world testing conditions are lacking. However, single-agent algorithms face limita-
tions when dealing with action spaces and state spaces within multi-agent environments.
Therefore, a more intelligent and generalized approach is needed to meet the demands
of multi-drone flight trajectory and truck route planning in the context of truck–drone
joint delivery. In summary, as a novel logistics delivery method, truck–drone hybrid de-
livery requires more experimentation and optimization to achieve commercialization and
practical application.

Taking traditional heuristic algorithms as an example, recent years have observed
significant research into the collaborative delivery of drones in the last mile delivery, such as
the work by Júlia C. Freitas and their team on the truck–drone delivery problem [17]. This
study introduced a novel Mixed-Integer Programming (MIP) formulation and a heuristic
approach to tackle the problem. In all cases, the proposed MIP formulation yielded
better linear relaxation bounds than previously proposed formulations and was capable of
optimally solving several previously unresolved instances from the literature. The research
employed a hybrid heuristic algorithm based on a generalized variable neighborhood
search, combined with the concept of a taboo search, to obtain high-quality solutions for
large instances. Extensive testing across numerous cases demonstrated the effectiveness of
this approach.

In another study involving machine learning and truck–drone delivery by Yong Sik
Chang and Hyun Jung Lee [18], the focus was on finding an efficient transport route
for a truck carrying drones. After an initial K-means clustering and Traveling Salesman
Problem (TSP) modeling, the research aimed to find offset weights for moving cluster
centers, allowing for a wider drone delivery area along shorter truck routes. To validate
the effectiveness of the proposed model with transfer weights, it was compared with
two other delivery route methods. Experimental results using paired t-tests on randomly
generated delivery locations demonstrated that the proposed model outperformed the
other two models.

The study [19,20] combined traditional problems and addressed the TSP with a single
drone and a truck. Mohammad Moshref-Javadi and his team assumed that the truck could
stop at customer locations and release the drone multiple times in a stopped state for
delivery. This extended the Traveling Repairman Problem (TRP), and a hybrid tabu search
simulated annealing algorithm was used to solve the problem.

Under the consideration of policy and weather factors [21], HoYoung Jeong, Byung-
Duk Song, and Seokcheon Lee accounted for the impact of package weight on drone energy
consumption and flight-restricted areas. Particularly, the flight range of drones was highly
affected by load weight, and drones were not allowed to fly over sensitive facilities reg-
ulated by the Federal Aviation Administration (FAA) in the United States, nor were they

Drones 2024, 8, 27 5 of 19

allowed to fly in certain areas temporarily due to weather conditions. The study established
a mathematical model incorporating these factors and proposed a two-stage construc-
tive algorithm and search heuristic algorithm to enhance the computational efficiency for
real-world case problems.

In the realm of reinforcement learning [11], Liu et al. extended the Flexible Service
Technician Scheduling Problem (FSTSP) with stochastic travel times and formulated it as
a Markov Decision Process (MDP). This model was solved using reinforcement learning
algorithms, including Deep Q-Networks (DQN) and Advantage Actor-Critic (A2C) algo-
rithms, to overcome the curse of dimensionality. Testing was conducted using artificially
generated datasets, and the results demonstrated that, even in the absence of stochastic
travel times, reinforcement learning algorithms outperformed approximate optimization
algorithms and performed better than MIP models and local search heuristic algorithms on
the original FSTSP.

The articles mentioned above largely employ traditional heuristic algorithms such
as genetic algorithms to address optimization problems in the context of truck–drone
joint delivery. However, this paper utilizes reinforcement learning and the MPE library to
optimize the truck–drone delivery model in a multi-objective setting based on customer
and vehicle parameters. In contrast to traditional algorithms, the approach proposed in
this paper better considers real-world requirements such as vehicle scheduling and time
coordination. Additionally, by introducing the multi-agent problem, adjustments can be
made for different vehicle quantities, making the results closer to real-world scenarios.

Currently, route problems related to pure truck models with time as the primary metric
are referred to as MLP or TSP. This problem is commonly known as the Customer-Centric
Routing Problem and is typically a single-objective problem aimed at minimizing time.
Considering the unique advantages of drones in achieving faster deliveries, this paper
emphasizes the multi-agent problem, which is addressed through reward mechanisms and
constraint conditions to capture the complexities of real-world scenarios better [22].

The rest of the paper is organized as follows: Section 2 outlines the mathematical
model and the environment of the problem. Section 3 introduces the reinforcement learning
algorithms and key definitions. Section 4 conducts a comparative study of the algorithm’s
performance. Section 5 concludes the paper and presents future prospects.

2. Problem Description

In this section, we will outline the differences between the delivery model designed
in this paper and traditional truck delivery systems. We will also provide a detailed
explanation of the model’s assumptions and clarify the distinctions between multi-agent
and single-agent reinforcement learning in the context of the truck–drone environment.

Truck–drone delivery is a multi-tiered hybrid delivery model typically composed of
multiple trucks, each equipped with a number of drones, as shown in Figure 2. In this
model, drones are employed as delivery tools to replace traditional delivery personnel,
while trucks play multiple roles as storage depots, command centers, maintenance hubs,
launch platforms, and energy replenishment stations. In early drone delivery concepts,
the primary idea was to replace traditional last-mile delivery personnel with drones,
effectively reducing labor costs. However, due to variations in delivery time windows,
significant drone idle time was incurred. Moreover, because of the limited maximum range
of drones, they could only operate within a circular area centered on the delivery center
with the maximum range as the radius. This inadvertently increased the cost of establishing
a delivery network covering urban areas.

In this study, drones are conceptualized as being centered around the trucks, forming
a circular delivery area with the maximum range as the radius. However, this circular area
can move with the trucks, and the trucks themselves serve as multi-functional platforms
to assist drones in delivery. This approach effectively enhances delivery efficiency and
reduces the cost of building a logistics network.

Drones 2024, 8, 27 6 of 19

Figure 2. Simulated environment for a 8 × 8 square mile area.

In this study, the coordination of multiple trucks and drones is planned within a graph-
based environment centered around customer service points, where the service points serve
as nodes to provide services to customers. This approach is based on real-world urban
residential environments and is advantageous for simplifying the mathematical model and
the state space in reinforcement learning.

In this research, multiple trucks are simultaneously engaged in delivery, and the
objective function involves multiple goals. Moreover, the intelligent agents in this model
exhibit a fully cooperative relationship, akin to cooperative game theory. To enhance
the efficiency of the reinforcement learning algorithm, the study promotes individual
action selection through an overarching objective. The training of agents is conducted in
stages, with the trajectory of the previous agent’s training behavior serving as the learning
environment for the next agent. This approach accelerates the learning efficiency of the
reinforcement learning algorithm. Regarding drones, this study simplifies the drone flight
model and abstracts the service points using existing drone route planning software and
satellite imagery. This abstraction simplifies path parameters, particularly in considering
factors such as wind conditions and urban obstacles.

To solve the truck–drone delivery problem in the multi-agent context, this research em-
ploys multi-agent deep reinforcement learning algorithms like Multi-Agent Proximal Policy
Optimization (MAPPO) and Multi-Agent Deep Deterministic Policy Gradient (MADDPG).
Utilizing these multi-agent algorithms, and adopting a centralized processing approach
in a fully cooperative mode, the study successfully simulates and solves the truck–drone
delivery problem using game theory and mathematical modeling.

2.1. Notations and Model

The section presents the optimization model and notations used in the model. This
model incorporates elements from some other algorithmic research related to the TSP [23,24].
However, based on the algorithms and simulation scenarios presented in this paper, we
have extended and modified some of the formulas and definitions to better align with the
delivery problem in the context of truck–drone coordination.

2.1.1. Mathematical Notations

1. P The set of parking points P = {1, 2, . . . , p}.
2. C The set of customers C = {1, 2, . . . , c}.
3. U The set of drones U = {1, 2, . . . , u}.
4. V The set of trucks V = {1, 2, . . . , v}.
5. t Unit time. It can be regarded as a step of the algorithm in this study.
6. vt Truck speed.
7. vd Drone flight speed.
8. Cp The set of internal customer numbers at parking points p, where p ∈ P.

Drones 2024, 8, 27 7 of 19

9. dV
i,j The distance of the truck from parking point i to parking point j, where i, j ∈ P.

10. dU
i,k The distance of the truck from parking point i to customer k, where i ∈ P, k ∈ C.

11. ri,p The reward received from customer i at parking points p, where i ∈ C, p∈ P.
12. tT

i,j = dV
i,j/vt; the travel time of truck from point i to point j, where i, j ∈ P.

13. tD
i,k = 2 ∗dU

i,k/vd; the flight time of the drone from parking point i to customer k, where
i ∈ P , k ∈ Cp .

14. tw
p Total time spent at parking point p, where p ∈ P.

15. Pi If parking point i is visited, Pi = 1; otherwise, Pi = 0. i ∈ P.
16. Ck Total time accumulated before serving customer k, where k ∈ C.
17. Rp Total customer reward at parking point p, where p ∈ P.

2.1.2. Decision Variables

1. Vn
i,j If truck n moves from node i to node j, then Vn

i,j is equal to 1, otherwise it is 0,
∀n ∈ V

2. Un
i,j If drones n moves from customer i to customer j, then Un

i,j is equal to 1, otherwise
it is 0, ∀n ∈ U.

2.1.3. Objective Functions

min Ck Ck = ∑
i∈P

∑
j∈P

(
tT
i,j ∗Vn

i,j

)
+ ∑

i∈P
Pi ∗ (∑

k∈Cp

k−1
i=1 tD

i,k ∗Un
i,j)

max Rp Rp = ∑
i∈P

Pi ∗ ∑
i∈Cp

ri,p

2.1.4. Constraints

(1) To avoid subsequent scheduling issues, the travel time gap between any two trucks
should not exceed 30%.

0.7 ≤ ∑v∈V(t
Tv1
i,j /tTv2

i,j) ≤ 1.3

(2) The order reward will fade to a certain extent over time, but it cannot be less than 0.

ri+1,p = ri,p − f (Ck) ∀ri,p ≥ 0 f (Ck) = Ck −Ck(tw
p /8T)

(3) Each drone can only be used by one truck at a time.

∑n∈U ∑i∈C ∑j∈C Un
i,j ≤ 1 ∀i ∈ C ∀j ∈ C

(4) Each parking point should be visited at least once by a truck.

∑j∈P Vn
i,j = 1 ∀n ∈ V ∀i ∈ P

(5) Ensure consistency between truck and drone movements. If a truck is moving
from parking point i to parking point j, the drone should move from customer i
to customer j

Vn
i,j = Un

i′ ,j′ ∀n ∈ U ∀i, j, p ∈ P ∀i′, j′ ∈ Cp

The objective function (1) is formulated with the aim of minimizing the delivery
time based on the minimization of customer waiting time. The objective function (2) is
associated with the intrinsic value of the customers’ orders or potential rewards, which
can be considered as tips or satisfaction ratings, and it decreases as a function related to
waiting time, but never falls below zero. Together, these two objective functions constitute
the optimization objectives of this study. In this study, based on the real-world model, it is
stipulated that each customer must be visited by a drone, and each truck must stop at every
delivery point to ensure that every customer receives the service they require. Constraint

Drones 2024, 8, 27 8 of 19

(1) is included to address scheduling issues that may arise due to significant disparities in
working hours among trucks, even in cases where multiple trucks are involved in delivery.
Constraint (2) ensures that each delivery point is visited, thus guaranteeing service for
every customer. Constraint (3) defines customer rewards, which are influenced by the order
value and delivery time.

2.2. Reinforcement Learning for Truck–Drone Delivery

In this section, we provide a comprehensive overview of the algorithmic components
and their application in our study to address the truck–drone delivery challenge. We em-
phasize the utilization of reinforcement learning techniques for route optimization within
the framework of truck–drone coordination. Furthermore, we spotlight the incorporation
of multi-agent algorithms for managing drone flight trajectories and elaborate on the inte-
gration of Monte Carlo Tree Search as an exploration strategy for optimizing truck routes.
Additionally, we employ reward environment normalization techniques to enhance the
efficiency and speed of the algorithm in attaining optimal solutions. Moreover, we conduct
comparative assessments involving various algorithms and frameworks to validate the
effectiveness of our model and reinforcement learning algorithms.

Reinforcement learning, inspired by behaviorist psychology, serves as a foundational
learning approach aimed at refining an agent’s behavior through interactions with its
environment to maximize cumulative rewards. Within multi-agent settings, reinforcement
learning can be categorized into cooperative and competitive scenarios, each dedicated
to optimizing collective or competitive objectives across multiple agents. Research on
multi-agent reinforcement learning extends to game-theoretic models that consider the
intricate interactions between intelligent agents and employs deep reinforcement learning
techniques, leveraging neural networks to enhance decision-making capabilities. These
research directions seek to empower reinforcement learning systems to collaborate more
effectively in complex environments and optimize their decisions to achieve higher rewards
or accomplish more intricate objectives.

In our study, we introduced an additional element of random exploration through
Monte Carlo Tree Search at the early stages of the reinforcement learning process, specifi-
cally in the context of vehicle routing environments. This augmentation serves to facilitate
the rapid learning of the environment by intelligent agents while preventing them from
becoming trapped in local optima.

The incorporation of neural networks in reinforcement learning, particularly deep
reinforcement learning, provides a means to mitigate the “curse of dimensionality”. In this
investigation, deep reinforcement learning is selected as the primary focus of our testing
efforts. Moreover, this research uses third-party libraries, including the Gym and the MPE
library (built upon Gym), to allow for more comprehensive algorithm testing. The research
environment is intentionally designed with adjustable parameters, enabling testing across
various scenarios to showcase the effectiveness of both the model and the algorithms.

In the environment definition of this study, multiple intelligent agents make decisions
in stages. After the first intelligent agent explores and learns within the environment,
weight evaluations based on action trajectories are performed. This process incorporates
the behavior of the first intelligent agent as part of the new environment. Ultimately, in a
scenario of complete cooperative gameplay, centralized processing is used to address multi-
agent problems. This approach effectively reduces the complexity of establishing joint
action functions and significantly compresses the state space of multi-agents. It also reduces
exploration and learning time, thereby greatly enhancing the feasibility of reinforcement
learning for truck–drone delivery planning within urban areas.

In terms of the mathematical model, this study is based on the Vehicle Routing Problem
(VRP) and adjusts it to accommodate vehicles and service points while introducing drones
as new parameters. This research aims to make the mathematical model more closely
aligned with real-world multi-vehicle logistics scenarios and enhance its versatility to
meet the needs of various practical application areas. While focusing on solving the VRP,

Drones 2024, 8, 27 9 of 19

the introduction of drones as an innovative parameter broadens the scope of applications
for the research community. This model introduction holds significant academic and
practical value for addressing complex supply chain, logistics, and transportation issues in
the real world.

This paper first defines a multi-objective problem based on time constraints regarding
the objective function. From a logistics perspective, both time and efficiency are optimiza-
tion objectives of paramount importance. Additionally, as a replacement for multi-level
distribution systems, we also need to consider customer satisfaction during last-mile de-
liveries. Therefore, we optimize vehicle travel time and customer rewards as the main
objectives, aiming to improve efficiency at the macro level and service quality at the micro
level. Finally, as providers of delivery services, we must serve each customer, necessitating
that vehicles visit every stopping point, which forms the foundation of the TSP. Concerning
vehicle coordination, we consider the need for balanced completion times among vehicles
when serving urban areas, resulting in constraints on the equality of vehicle completion
times. From the perspective of drones, we employ multi-agent reinforcement learning for
drone coordination in delivery and introduce environmental parameters such as collisions
and obstacles.

3. Principle and Application
3.1. Policy-Based Reinforcement Learning and Policy Gradient

This research primarily employs the MAPPO algorithm, which is a variant of deep
reinforcement learning based on the AC framework. AC is a type of deep reinforcement
learning algorithm initially proposed by Barto et al. [25]. In 1983, and it serves as the
foundation for the popular Actor–Critic architecture used today. AC is a policy-based
reinforcement learning method. In AC, the actor is responsible for interacting with the
environment, while the critic acts as an observer and is responsible for updating the
relevant value or policy networks. The update process involves the actor interacting with
the environment, generating data, and calculating gradients. These gradients are then
passed to the critic, which updates its network parameters using methods like SGD-based
backpropagation. Once the parameters are updated, they are synchronized back to the
corresponding actor for further interaction. AC algorithms offer several advantages in most
testing scenarios, including better convergence properties and greater efficiency in high-
dimensional and continuous action spaces. These advantages align well with the objectives
and constraints of this research, facilitating the optimization problem-solving process.

The neural network structure within the AC algorithm framework also enhances
memory and processing capabilities, helping to address the “curse of dimensionality” and
improve the algorithm’s versatility. Below, we will provide a brief introduction to the
principles of the AC algorithm and discuss its potential applications and advantages in this
research. Additionally, AC algorithms have various variants and initial versions, such as
the A3C algorithm or multi-agent MA-A3C algorithms. Many other multi-agent algorithms
also draw inspiration from the AC framework. Using this algorithm as a testbed contributes
to future comparisons with other multi-agent algorithms.

The AC (Actor–Critic) framework is policy-based, and its early incarnation was the
QAC algorithm, which originated from the policy gradient (PG) method. This framework
serves as the prototype for most policy-based reinforcement learning algorithms. The Actor–
Critic algorithm can be divided into two parts. The Actor component, which has its roots
in policy gradient methods, can select appropriate actions in continuous action spaces,
a capability that value-based Q-learning lacks, as it primarily addresses discrete action
spaces. However, the Actor’s learning efficiency is relatively slow because it updates based
on the return of an entire episode. At this point, introducing a value-based algorithm as
the Critic allows for single-step updates using TD methods, effectively trading bias for
variance. This complementary relationship between the two algorithms forms the basis
of the Actor–Critic framework. In the Actor–Critic framework, the Actor selects actions
based on a probability distribution, the Critic evaluates the scores of actions generated by

Drones 2024, 8, 27 10 of 19

the Actor, and the Actor subsequently modifies the probability of selecting actions based
on the Critic’s scores.

Like other reinforcement learning algorithms, AC algorithms utilize basic components
such as time (t), states (s), rewards (r), and actions (a) to define their environment. In policy-
based reinforcement learning and AC algorithms, the learning of policy parameters is often
based on the gradient of some policy performance metric J(θ). Since the objective of these
methods is to maximize this metric, their updates are akin to ascending the gradient of J.

θt+1 = θt + α ̂∇J(θt+1)

In this context, ̂∇J(θt+1) represents an approximate estimate of the gradient of the
performance metric parameter θ.

The introduction of the state–value function allows AC algorithms to perform a
secondary evaluation of action values. In the TD(0) version of the AC model, a differentiable
parameterized policy π(a|s, θ) is used as the input along with a differentiable parameterized
value function v(s, w). The learning process involves iteratively updating the initial policy
parameters θ and the weights w of the state–value function. For each non-terminal state S
in each subsequence, an action A is taken. The transition to the next state S′ after taking
action A is observed, and both the weights w and policy parameters θ are updated. This
process allows for the evaluation of the value of state S.

In the case of continuous problems without subsequence boundaries, the policy is
defined based on the average return at each time step t.

J(θ)=̇r(π)=̇ lim
h→∞

1
h

h

∑
t=1

E[Rt|S0, A0:t−1 ∼ π]

= lim
t→∞

E[Rt|S0, A0:t−1 ∼ π]

= ∑
s

µ(s)∑
a

π(a|s)∑
a

p(s′, r|s, a)r

where µ represents the stationary distribution under policy π, µ(s)=̇ limt→∞ Pr{St =
s|A0:t−1 ∼ π} and it is assumed to exist and be independent of S0. Similar to problems
with subsequence boundaries, in continuous problems, we use the differential return to
define the value function.

∑
s

µ(s)∑
a

π(a|s, θ)p(s′, r|s, a) = θ(s′) ∀s′ ∈ S

At the same time, although in some environments where the sole value is the objective
function, policy-based reinforcement learning may be inferior to value-based reinforce-
ment learning in the final results due to the slow convergence of policy updates; policy
parameterization has an important theoretical advantage over action–value-based methods.
Policy parameterization provides a clear formula to show how the performance metric is
influenced by policy parameters without involving derivatives of state distributions. This
formula serves as a theoretical foundation for all policy gradient methods.

As shown in Figure 3. In the PG algorithm, the Agent is also referred to as the Actor.
Each Actor has its own policy π for a specific task, typically represented by a neural
network with parameters θ. Starting from a particular state and continuing until the end of
the task, which is known as an episode, at each step, a reward r is obtained; the total reward
obtained for completing the task is denoted as R. In this way, an episode with T time steps
involves the agent interacting with the environment, forming a sequence τ, as follows:

τ = (s1, a1, s2, a2,, sT , aT)

Drones 2024, 8, 27 11 of 19

Figure 3. Policy Gradient.

The total reward obtained by the sequence τ is the sum of the rewards obtained at each
stage, denoted as R(τ). Therefore, in the case of the Actor’s policy being π, the expected
reward that can be obtained is:

Rθ = ∑
τ

R(τ)Pθ(τ) = Eτ∼Pθ(τ)
[R(τ)]

The objective of the algorithm is to adjust the Actor’s policy π to maximize the
expected reward. This is achieved through the policy gradient method, which uses the
gradient ascent to update the network parameters θ (i.e., update the policy π). Ultimately,
the focus of the algorithm shifts towards finding the gradients of the parameters.

Under the AC framework, the Trust Region Policy Optimization (TRPO) algorithm was
developed, based on a natural policy gradient optimization, and quickly gained popularity.
While natural policy gradient optimization helps optimize policies in reinforcement learn-
ing algorithms, improving their performance and convergence speed, it still has certain
drawbacks, such as not checking whether updates actually improve the policy [26].

Moreover, the TRPO algorithm itself has certain limitations. For instance, it can be
challenging to determine how to improve performance when TRPO training does not
yield the expected results. TRPO’s actual implementation is constraint-based and involves
computing the Fisher matrix, which significantly slows down the updating process.

3.2. Multi-Agent Proximal Policy Optimization

As a result, in 2017, John Schulman and others introduced the PPO algorithm, building
upon the foundation of the TRPO algorithm [27]. In the PPO algorithm, it alternates be-
tween data sampling through interaction with the environment and optimizing the “agent”
objective function using a stochastic gradient ascent. Unlike standard policy gradient
methods that perform a single gradient update for each data sample, PPO introduces a
new objective function that allows for multi-epoch minibatch updates. PPO inherits some
advantages from TRPO but is much simpler to implement, more general, and exhibits
better sample complexity in practice.

In the context of the problem and environmental characteristics of this study, the PPO
algorithm offers several advantages over other reinforcement learning algorithms: (1) Stability
through Clipping: PPO constrains policy updates within a smaller range by introducing
clipping and probability ratio constraints. This helps prevent drastic fluctuations in gra-
dient updates, enhancing training stability and reliability. (2) Compatibility with Various
Networks: PPO is compatible with various neural network structures and function approx-
imators, including deep neural networks. This makes it more versatile across different
domains and tasks, allowing for easier adjustments of environmental and algorithm pa-
rameters in the context of truck–drone delivery research. (3) Adaptability to Continuous
and High-Dimensional Spaces: PPO is well-suited for addressing problems in continuous

Drones 2024, 8, 27 12 of 19

action spaces and high-dimensional state spaces. This adaptability is particularly valuable
for solving issues related to drone flight trajectories.

These advantages make PPO an attractive choice for solving complex reinforcement
learning problems. However, in the context of this research, which involves multiple
agents in a delivery environment, the original PPO algorithm, although extendable, faces
challenges in handling multi-agent coordination or competition. This is especially relevant
when dealing with multiple drones operating in the same environment. Therefore, this
study employs the MAPPO algorithm, explicitly designed for multi-agent environments
where multiple agents need to make coordinated decisions. As shown in Algorithm 1,
MAPPO introduces the concept of multiple agents to better handle cooperative decision-
making and interactions among multiple intelligent entities.

Algorithm 1 Multi-Agent PPO

Initialize critic Qwu and actor πu with θu,∀u
Initialize the current policies πu

old with θu
old← θu , and the target critic Qwu with wu ← wu

Initialize a memory buffer D
for iteration = 1, 2, . . . , L do

s1 = initiate state
for an episode t = 1, 2, . . . , T do

Each agent u takes action according to πu
old(au

t |zu
t)

Get the reward rt, and the next state st+1
end for
Obtain a trajectory for each UE u : τu = {zu

t , au
t , rt}T

t=1
Compute {Q̂u(st, at)}
Compute advabtages {Au(st, at)}
Into data buffer D
for mini-batch k = 1, . . . , K do

for each-policy i = 1, . . . , n do
b← random mini batch from D for policy i
for each data chunk c in the mini batch b do

Update the RNN hidden states for each timestep in c from the first hidden
state

end for
end for

end for
end for

3.3. Case Description

This research conducted the environment test using Python based on the Gym library
and the MPE library. By modifying the case environment accordingly, this study trans-
formed the multi-agent problem into a single-agent problem for algorithm testing purposes.

Taking into account the real-world scenarios of drone delivery, we conducted per-
formance evaluations based on standards set by Civil Aviation Administration of China
(CAAC) and Federal Aviation Administration of the United States(FAA). These evaluations
were performed using both a flight simulator called Airsim and actual flight data. Addi-
tionally, the study considered drone-specific flight characteristics, incorporated obstacle
information, and had advance knowledge of customer coordinates for route planning [28].

Furthermore, the research investigated the impact of different numbers of drones on
delivery efficiency and the environment, taking into account the collaboration between
vehicles and drones. Below is an outline of the reinforcement learning environment config-
uration in this study relative to the case:

3.3.1. Environment

This article employed Gym and MPE to construct the reinforcement learning environ-
ment. These tools are part of OpenAI’s development toolkit for reinforcement learning

Drones 2024, 8, 27 13 of 19

algorithms. They are compatible with various numerical computing libraries and neural
network frameworks such as TensorFlow or PyTorch.

Gym is a widely-used library for creating general reinforcement learning environments,
while MPE is a prominent framework for building and testing multi-agent environments.
Within this environment, considering the parameters of both drones and vehicles, this
study provided drones with a substantial action space to navigate rapidly toward their
target points. Additionally, the environment accounted for obstacles and collision factors.

In terms of customer generation, the study took into account a customer distribution
system modeled after Geographic Information Systems (GIS). Customers were distributed
within individual stopping points, following a normal distribution based on their distance
from the central point. This approach allows the multi-vehicle and drone delivery system
to better align with real-world commercial models.

3.3.2. State

For different application problems, the definition of states may vary. Based on the
characteristics of the truck–drone delivery model and this study, this article defines states
differently for truck path planning and multi-drone aerial delivery.

In the context of truck path planning, discrete time slots are defined as states. The basic
state represents the truck’s movement between nodes, and a Monte Carlo tree is used as
the exploration strategy for an individual vehicle. On the other hand, for multi-drone aerial
delivery, continuous states are used. These states consist of drone coordinates, customer
coordinates, and time. The composition of states is an important distinction. This study
treats entire stopping points as basic state categories, utilizing Euclidean coordinates for
the positions of trucks, drones, and customers. These coordinates are included as part of
the state to facilitate the calculation of distances between points.

SV = (Pi, r, t)

The number of drones is a crucial parameter in the truck–drone delivery problem. This
study treats the number of drones as an adjustable parameter, and it tests and compares
the impact of different drone quantities in various scenarios. Additionally, the MAPPO
algorithm is applied to achieve more stable results in drone flights. A state S is defined as

SU = ((xc1, yc1), (xc2, yc2), . . . , (xC, yC), (xd1, yd1), (xd2, yd2), . . . , (xD, yD), r, t)

The definition provides the components of a state used in the environment, where
(xc, yc) represents the coordinates of customer locations; C is the total number of customers
in the mathematical model and environment parameters; (xd, yd) represents the coordinates
of other drone locations; D is the total number of drones in the environment; s represents
the score; t is the time.

With this state representation, the agents (vehicles or drones) are aware of the coor-
dinates of other agents, which allows them to avoid collisions while efficiently reaching
customer locations. This state representation, which includes customer positions and the
positions of delivery vehicles, aligns more closely with real-world delivery scenarios.

3.3.3. Action

The action of the truck agent is to decide which parking point to move towards.
The action set is as follows:

AV = {P1, P2, . . . , Pp}

For the drones, we utilize the Multi-Agent Particle Environment (MPE) framework,
in which the flight trajectories of multiple drones are treated as continuous actions. Addi-
tionally, the potential collisions between drones and obstacles, as well as collisions between
drones themselves, are considered as part of the action outcomes. The action set for each
drone’s agent is as follows:

Drones 2024, 8, 27 14 of 19

AU = {Froward, Backward, Le f t, Right}

These two action systems are tailored to address the specific requirements of truck
and drone deliveries within the study’s environment.

3.3.4. Reward

In this study, the reward system is structured as follows:
Positive Rewards: Positive rewards are granted to drones upon successful completion

of delivery tasks. These rewards are determined by a base value multiplied by a coefficient
generated based on the number of serviced customers in the area, following a normal
distribution. Importantly, adhering to fundamental delivery principles, only the first drone
to reach a customer’s location is eligible for the reward. To mitigate challenges related
to sparse rewards, which could lead to agents avoiding exploration, drones receive small
rewards each time they approach a customer’s coordinates during their flight trajectory.
This mechanism encourages drones to complete deliveries more rapidly.

Negative Rewards: Negative rewards are introduced for specific scenarios, including
redundant deliveries by drones, flight collisions, and contact with obstacles. These negative
rewards are designed to discourage drones from getting entangled in these situations. The
study dynamically adjusts and fine-tunes the reward settings during the learning process.
As shown in Figure 4a, in the early experimental stages, collision penalties were initially
set too high, inadvertently causing drones to prioritize avoiding each other. Consequently,
the early reward curves predominantly yielded negative values.

Reward Evaluation: Considering the truck–drone cooperative delivery problem as
a fully cooperative game from a game theory perspective, a Critic network is employed
to evaluate all actions and centralize the handling of rewards. This enables the study to
assess the contributions of individual drones to the delivery process. The study further
normalizes each reward signal by subtracting the mean and dividing by the standard
deviation. This normalization process aligns the reward signal distribution with a standard
normal distribution, characterized by a mean of zero and a variance of one. The reward
normalization strategy serves to expedite the learning and convergence process. In multi-
agent environments, reward signals typically exhibit significant volatility, which can lead
to training instability or divergence. Reward normalization helps mitigate this volatility,
thereby enhancing training stability.

(a) (b)

Figure 4. MAPPO reward convergence curve. (a) MAPPO-Drone collision penalty is high;
(b) MAPPO-After collision penalty adjustment.

4. Experiment and Results

In this section, we conducted testing on the Gym environment that we constructed.
Firstly, we examined the learning efficiency and outcomes with and without action con-
straints. Secondly, we performed multiple tests within this model to assess the impact
of different parameters on the results. Finally, we evaluated the effectiveness of the envi-

Drones 2024, 8, 27 15 of 19

ronment and algorithm used, comparing it with the MAPPO algorithm under different
parameter settings to assess the algorithm’s capabilities.

All experiments were conducted using a consistent environment setup. The hardware
environment included a CPU AMD R7-5800H-3.2 GHz, 16 GB DDR4 3200 MHz RAM,
and an RTX3060 8 GB graphics card. The software environment consisted of Python 3.7.12,
Pytorch 1.5.0, and Gym 0.10.5.

This study focused on the truck–drone transportation problem using the MPE frame-
work. We conducted research to investigate the impact of collision penalties, different drone
quantities, and varying customer quantities. We used a baseline scenario with two trucks
working collaboratively and explored scenarios with a small number of drones (fewer
than 5), a medium number of drones (5–12), and a large number of drones (more than 12).
Customer quantities were distributed based on the number of drones, taking into account
drone endurance. The minimum customer quantity was set to be equal to the number of
drones, and the maximum customer quantity was set to three times the number of drones
to simulate real-world conditions more effectively.

In terms of the environment setup, we treated the truck’s path as a discrete problem,
while the drone’s flight trajectory problem was treated as a continuous one. This setting
effectively simplified the action space, enabling solutions to the truck–drone problem at
different levels. In this case, two trucks departed from specific starting points, visited all
stopping points, and reached the final node. The drone’s environment was randomized,
and the customer distribution was based on known information. Drones received penalties
as feedback when flying too close to obstacles or other drones.

Regarding drone flight and configuration in this study, we considered the urban con-
text of truck–drone delivery. Since many cities do not permit heavy trucks to traverse urban
areas, this study only considered medium-sized trucks as drone carriers. The significant
size difference between drones with various payload capacities was also taken into account.
The study prototypes included a 2 kg payload drone, currently used for experimental food
delivery, and a 20-kg payload drone, utilized by some maritime resupply service providers
for rapid ship deliveries. But, we are not looking at a combination of multiple drones right
now. In this context, the minimum number of drones in our experiments was set to 4,
and the maximum was set to 18.

Under the algorithm and environment settings of this study, it was inevitable for
early drones to approach each other. Therefore, we reduced the penalty for drones getting
too close to one another and increased the reward for drones reaching delivery points.
The following image displays reward curves obtained using the MAPPO algorithm under
various parameter configurations:

As shown in Figure 4, adjusting the penalty for drones’ proximity helps achieve better
rewards for reaching the target points. The main difference between Figure 4a,b lies in
whether the penalty for drones getting close to each other is reduced. In Figure 3b, under an
environment with 15 drones, 45 customers, and 6 obstructive buildings, the MAPPO
algorithm ran for 5 million steps. Ultimately, it was found that the MAPPO algorithm can
effectively approach the optimal solution step by step (with the highest reward reaching
around 8000 after initial penalties were reduced).

By examining the reward curves for each game, the comparison in the above figure
clearly shows that the MAPPO algorithm converges rapidly in small-scale drone testing.
Although it appears challenging for MAPPO to converge in large-scale drone testing, this
is due to the exponential increase in the volume of data that agents need to handle in a
large-scale drone environment, resulting in slower learning efficiency.

From Table 2 and the reward curves above, it can be observed that MAPPO demon-
strates a certain advantage when compared with other algorithms. Comparing with the
MADDPG algorithm and the improved Twin Delayed MADDPG (MATD3) algorithm on
top of MADDPG, it is evident that in small-scale testing, both MADDPG and MATD3
converge more slowly than the MAPPO algorithm, and their reward values are also lower.

Drones 2024, 8, 27 16 of 19

Table 2. Algorithm result comparison.

Algorithm-
SCALE

Number of
Drones

Number of
Customers

Number of
Obstacles

Number of
Episodes

Number of Steps
in a Episode Average Reward

MAPPO-L 15 45 6 100 1000 1372.61
MAPPO-M 8 12 4 100 200 173.24
MAPPO-S 4 6 3 100 100 68.96

MATD3-L 15 45 6 100 1000 1134.82
MATD3-M 8 12 4 100 200 168.19
MATD3-S 4 6 3 100 100 56.83

MADDPG-L 15 45 6 100 1000 965.71
MADDPG-M 8 12 4 100 200 121.53
MADDPG-S 4 6 3 100 100 37.52

Scale: L = Large, M = Medium, and S = Small.

From Figure 5, it is evident that a set of box plots, derived from randomly selected
single trial results, showcases the superior performance of the MAPPO algorithm when
compared to the MATD3 algorithm and the MADDPG algorithm. Even in the case of the
medium-scale tests depicted in Figure 5b, while the mean performance of the MAPPO
algorithm slightly trails behind that of MATD3, it surprisingly outperforms MATD3 in
terms of the highest achieved performance values. Notably, MAPPO exhibits a considerably
more stable result distribution when compared to the other two algorithms.

(a) (b) (c)

Figure 5. Result of a single run. (a) Test-L; (b) Test-M; (c) Test-S.

Specifically, as shown in Figure 6, from the reward curves, it is apparent that the
MAPPO algorithm exhibits a faster and more stable upward trend in the environment
of this study. The algorithm’s computational efficiency also confirms this, as MAPPO
shows a smoother increase, whereas the MADDPG algorithm not only takes more time
but also exhibits greater reward curve fluctuations compared to the MAPPO algorithm.
Furthermore, the MADDPG algorithm consumes more memory space than MAPPO.

Therefore, it can be concluded that the MAPPO algorithm holds advantages in terms
of time efficiency, space efficiency, and results when solving the multi-agent truck–drone
delivery problem. MAPPO can help achieve better results in the multi-agent environment
of truck–drone delivery.

In summary, the experimental results in this case demonstrate that using the MAPPO
algorithm for vehicle–drone intelligent delivery offers significant advantages. Furthermore,
adjusting parameters and employing techniques such as reward normalization can further
enhance the algorithm’s learning efficiency and performance. Multiple experiments were
conducted with varying numbers of agents and different parameters. These experimental
findings hold valuable insights for the future development and optimization of vehicle–
drone intelligent delivery systems [29].

Drones 2024, 8, 27 17 of 19

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Algorithm reward graph. (a) MAPPO-Large case; (b) MAPPO-Medium case; (c) MAPPO-
Small case; (d) MTD3-Large case; (e) MTD3-Medium case; (f) MTD3-Small case; (g) MADDPG-Large
case; (h) MADDPG-Medium case; (i) MADDPG-Small case.

5. Conclusions and Future Research

In this paper, we addressed the truck–drone delivery optimization problem with
multi-agent reinforcement learning. We employed the MPE framework and the MAPPO
algorithm to tackle this complex problem, considering both truck routing and drone flight
trajectories with multiple objectives. Leveraging the characteristics of truck–drone delivery,
we adopted a hierarchical approach, utilizing Monte Carlo Tree Search (MCTS) and reward
normalization techniques to accelerate training and enhance result convergence. This
approach not only improved the speed of solving the problem but also expanded the
methods for addressing vehicle–drone delivery.

In particular, in the fields of multi-agent systems and drones, we obtained significant
insights through comparative experiments. We analyzed the performance of the MAPPO
algorithm under different parameters, assessing its impact on training results and speed.
After multiple experiments, we concluded that for practical applications of vehicle–drone
delivery, it is advisable to minimize the number of customer points assigned to each drone,
encouraging drones to consider only a single customer during flight [30]. Furthermore, we
demonstrated that in the multi-agent environment of vehicle–drone delivery, the MAPPO
algorithm outperforms the MADDPG algorithm in terms of time, space, convergence speed,
and results. Thus, further research on various metrics of vehicle–drone delivery and the
application of the multi-agent algorithm MAPPO to drone flight trajectories and service
methods is valuable.

Regarding experiments, the use of reinforcement learning in the MPE environment
allows for more versatile testing of different algorithms and simplifies comparative analysis
and adjustments of reward functions. With the continuous technological advancements in e-
commerce and logistics industries, the vehicle–drone delivery model becomes increasingly

Drones 2024, 8, 27 18 of 19

research-worthy. Based on the research approach outlined in this paper, future research
directions and improvements for vehicle–drone delivery models may include: Exploring the
application of more multi-agent algorithms for testing and optimizing the reward function.
Considering the use of advanced simulators like AirSim, based on game engines, to simulate
real-world scenarios in 3D environments [10,31]. Conducting real-world experiments using
actual drones for flight control or point-to-point delivery to expedite the application of
drones in the logistics sector [32,33].

Author Contributions: Formal analysis, J.W.; Data curation, S.Q. and G.L.; Writing—original draft,
Z.B. and X.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicle
DQN Deep Q-Network
MLP Minimum latency problem
TRP Traveling repair problem
TSP Traveling Salesman Problem
TRPO Trust Region Policy Optimization
MADDPG Multi-Agent Deep Deterministic Policy Gradient
MAPPO Multi-Agent Proximal Policy Optimization
MPE Multi-Agent Particle Environment

References
1. Erdelj, M.; Natalizio, E. UAV-assisted disaster management: Applications and open issues. In Proceedings of the 2016

International Conference on Computing, Networking and Communications (ICNC), Kauai, HI, USA, 15–18 February 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 1–5.

2. Sajid, M.; Mittal, H.; Pare, S.; Prasad, M. Routing and scheduling optimization for UAV assisted delivery system: A hybrid
approach. Appl. Soft Comput. 2022, 126, 109225. [CrossRef]

3. Cheng, N.; Wu, S.; Wang, X.; Yin, Z.; Li, C.; Chen, W.; Chen, F. AI for UAV-Assisted IoT Applications: A Comprehensive Review.
IEEE Internet Things J. 2023, 10, 14438–14461. [CrossRef]

4. Yang, M.; Liu, G.; Zhou, Z.; Wang, J. Partially Observable Mean Field Multi-Agent Reinforcement Learning Based on Graph
Attention Network for UAV Swarms. Drones 2023, 7, 476. [CrossRef]

5. Gu, J.; Wang, J.; Guo, X.; Liu, G.; Qin, S.; Bi, Z. A metaverse-based teaching building evacuation training system with deep
reinforcement learning. IEEE Trans. Syst. Man, Cybern. Syst. 2023, 53, 2209–2219. [CrossRef]

6. Bi, Z.; Guo, X.; Wang, J.; Qin, S.; Liu, G. Deep Reinforcement Learning for Truck-Drone Delivery Problem. Drones 2023, 7, 445.
[CrossRef]

7. Jung, S.; Kim, J. Adaptive and stabilized real-time super-resolution control for UAV-assisted smart harbor surveillance platforms.
J.-Real-Time Image Process. 2021, 18, 1815–1825. [CrossRef]

8. Hu, B.; Wang, J. Deep learning based hand gesture recognition and UAV flight controls. Int. J. Autom. Comput. 2020, 17, 17–29.
[CrossRef]

9. Wang, C.; Lan, H.; Saldanha-da Gama, F.; Chen, Y. On optimizing a multi-mode last-mile parcel delivery system with vans, truck
and drone. Electronics 2021, 10, 2510. [CrossRef]

10. Feng, Z.; Huang, M.; Wu, D.; Wu, E.Q.; Yuen, C. Multi-Agent Reinforcement Learning With Policy Clipping and Average
Evaluation for UAV-Assisted Communication Markov Game. IEEE Trans. Intell. Transp. Syst. 2023, 24, 14281–14293. [CrossRef]

11. Liu, Z.; Li, X.; Khojandi, A. The flying sidekick traveling salesman problem with stochastic travel time: A reinforcement learning
approach. Transp. Res. Part E Logist. Transp. Rev. 2022, 164, 102816. [CrossRef]

12. Dai, M.; Huang, N.; Wu, Y.; Gao, J.; Su, Z. Unmanned-Aerial-Vehicle-Assisted Wireless Networks: Advancements, Challenges,
and Solutions. IEEE Internet Things J. 2022, 10, 4117–4147. [CrossRef]

http://doi.org/10.1016/j.asoc.2022.109225
http://dx.doi.org/10.1109/JIOT.2023.3268316
http://dx.doi.org/10.3390/drones7070476
http://dx.doi.org/10.1109/TSMC.2022.3231299
http://dx.doi.org/10.3390/drones7070445
http://dx.doi.org/10.1007/s11554-021-01163-2
http://dx.doi.org/10.1007/s11633-019-1194-7
http://dx.doi.org/10.3390/electronics10202510
http://dx.doi.org/10.1109/TITS.2023.3296769
http://dx.doi.org/10.1016/j.tre.2022.102816
http://dx.doi.org/10.1109/JIOT.2022.3230786

Drones 2024, 8, 27 19 of 19

13. Xu, G.; Zhang, Y.; Ji, S.; Cheng, Y.; Tian, Y. Research on computer vision-based for UAV autonomous landing on a ship. Pattern
Recognit. Lett. 2009, 30, 600–605. [CrossRef]

14. Meng, Y.; Wang, W.; Han, H.; Ban, J. A visual/inertial integrated landing guidance method for UAV landing on the ship. Aerosp.
Sci. Technol. 2019, 85, 474–480. [CrossRef]

15. Wang, J.; Li, D. Resource oriented workflow nets and workflow resource requirement analysis. Int. J. Softw. Eng. Knowl. Eng.
2013, 23, 677–693. [CrossRef]

16. Wang, Y.; Gao, Z.; Zhang, J.; Cao, X.; Zheng, D.; Gao, Y.; Ng, D.W.K.; Renzo, M.D. Trajectory Design for UAV-Based Internet of
Things Data Collection: A Deep Reinforcement Learning Approach. IEEE Internet Things J. 2022, 9, 3899–3912. [CrossRef]

17. Freitas, J.C.; Penna, P.H.V.; Toffolo, T.A. Exact and heuristic approaches to Truck-Drone Delivery Problems. EURO J. Transp.
Logist. 2022, 12, 100094. [CrossRef]

18. Chang, Y.S.; Lee, H.J. Optimal delivery routing with wider drone-delivery areas along a shorter truck-route. Expert Syst. Appl.
2018, 104, 307–317. [CrossRef]

19. Kitjacharoenchai, P.; Ventresca, M.; Moshref-Javadi, M.; Lee, S.; Tanchoco, J.M.; Brunese, P.A. Multiple traveling salesman problem
with drones: Mathematical model and heuristic approach. Comput. Ind. Eng. 2019, 129, 14–30. [CrossRef]

20. Moshref-Javadi, M.; Lee, S.; Winkenbach, M. Design and evaluation of a multi-trip delivery model with truck and drones. Transp.
Res. Part E Logist. Transp. Rev. 2020, 136, 101887. [CrossRef]

21. Jeong, H.Y.; Song, B.D.; Lee, S. Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones. Int. J. Prod.
Econ. 2019, 214, 220–233. [CrossRef]

22. Goyal, A.; Kumar, N.; Dua, A.; Kumar, N.; Rodrigues, J.J.P.C.; Jayakody, D.N.K. An Efficient Scheme for Path Planning in Internet
of Drones. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Big Island, HI, USA, 9–13
December 2019; pp. 1–7. [CrossRef]

23. Poikonen, S.; Golden, B.; Wasil, E.A. A branch-and-bound approach to the traveling salesman problem with a drone. INFORMS J.
Comput. 2019, 31, 335–346. [CrossRef]

24. Tang, Z.; Hoeve, W.J.V.; Shaw, P. A study on the traveling salesman problem with a drone. In Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, Proceedings of the 16th International Conference, CPAIOR 2019, Thessaloniki, Greece, 4–7
June 2019; Proceedings 16; Springer: Berlin/Heidelberg, Germany, 2019; pp. 557–564.

25. Barto, A.G.; Sutton, R.S.; Anderson, C.W. Neuronlike adaptive elements that can solve difficult learning control problems. IEEE
Trans. Syst. Man Cybern. 1983, SMC-13, 834–846. [CrossRef]

26. Engstrom, L.; Ilyas, A.; Santurkar, S.; Tsipras, D.; Janoos, F.; Rudolph, L.; Madry, A. Implementation matters in deep rl: A case
study on ppo and trpo. In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9
May 2019.

27. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

28. Mbiadou Saleu, R.G.; Deroussi, L.; Feillet, D.; Grangeon, N.; Quilliot, A. An iterative two-step heuristic for the parallel drone
scheduling traveling salesman problem. Networks 2018, 72, 459–474. [CrossRef]

29. Canese, L.; Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Re, M.; Spanò, S. Multi-agent reinforcement learning: A
review of challenges and applications. Appl. Sci. 2021, 11, 4948. [CrossRef]

30. Hammami, S.E.; Afifi, H.; Moungla, H.; Kamel, A. Drone-assisted cellular networks: A multi-agent reinforcement learning
approach. In Proceedings of the ICC 2019–2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24
May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

31. Xue, Z.; Gonsalves, T. Vision based drone obstacle avoidance by deep reinforcement learning. AI 2021, 2, 366–380. [CrossRef]
32. Cui, J.; Liu, Y.; Nallanathan, A. Multi-agent reinforcement learning-based resource allocation for UAV networks. IEEE Trans.

Wirel. Commun. 2019, 19, 729–743. [CrossRef]
33. Song, Y.; Romero, A.; Müller, M.; Koltun, V.; Scaramuzza, D. Reaching the limit in autonomous racing: Optimal control versus

reinforcement learning. Sci. Robot. 2023, 8, eadg1462. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.patrec.2008.12.011
http://dx.doi.org/10.1016/j.ast.2018.12.030
http://dx.doi.org/10.1142/S0218194013400135
http://dx.doi.org/10.1109/JIOT.2021.3102185
http://dx.doi.org/10.1016/j.ejtl.2022.100094
http://dx.doi.org/10.1016/j.eswa.2018.03.032
http://dx.doi.org/10.1016/j.cie.2019.01.020
http://dx.doi.org/10.1016/j.tre.2020.101887
http://dx.doi.org/10.1016/j.ijpe.2019.01.010
http://dx.doi.org/10.1109/GLOBECOM38437.2019.9014305
http://dx.doi.org/10.1287/ijoc.2018.0826
http://dx.doi.org/10.1109/TSMC.1983.6313077
http://dx.doi.org/10.1002/net.21846
http://dx.doi.org/10.3390/app11114948
http://dx.doi.org/10.3390/ai2030023
http://dx.doi.org/10.1109/TWC.2019.2935201
http://dx.doi.org/10.1126/scirobotics.adg1462

	Introduction
	Problem Description
	Notations and Model
	 Mathematical Notations
	 Decision Variables
	 Objective Functions
	 Constraints

	Reinforcement Learning for Truck–Drone Delivery

	Principle and Application
	Policy-Based Reinforcement Learning and Policy Gradient
	Multi-Agent Proximal Policy Optimization
	Case Description
	Environment
	State
	Action
	Reward

	Experiment and Results
	Conclusions and Future Research
	References

