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Abstract: This paper proposes an event-triggered fault-tolerant time-varying formation control
method dedicated to multiple unmanned aerial vehicles (UAVs). We meticulously design a formation-
tracking controller with a predefined tracking performance to accommodate the presence of actuator
faults and external disturbances. Firstly, the formation-tracking controller acquires the desired
heading using the line-of-sight algorithm. Secondly, in the presence of actuator faults and external
disturbances, we introduce the radial basis function neural network (RBFNN) and adaptive law
tracking control to effectively compensate for their effects. Additionally, we design adaptive tracking
controllers and event-triggering conditions to increase the computational frequency. The predefined
tracking performance, implemented via a Lyapunov function, ensures the convergence of the tracking
error over time. Finally, we conduct a thorough analysis of the system’s stability, successfully elimi-
nating the possibility of Zeno behavior. The simulation results thoroughly validate the effectiveness
of the theoretical analysis.

Keywords: multiple UAVs; time-varying formation control; fault-tolerant control; event-triggered
control; external disturbances; predefined tracking performance

1. Introduction

With the increasing complexity of aviation missions and the continuous development
of aircraft control technology, network communication technology, and artificial intelli-
gence, unmanned aerial vehicles (UAVs) have achieved an overall improvement in system
efficiency via the complementary capabilities and coordinated behavior among individual
UAV units. In various complex tasks and scenarios such as collaborative target observation,
area monitoring, cooperative analysis, and decision making, as well as collaborative forma-
tion flying and operations, UAV clusters demonstrate significant advantages. However, as
the number of cluster units increases and functional relationships become more coupled,
the complexity of navigation and communication grows exponentially. The formation
and maintenance of formations in swarm flight missions also face greater challenges. If
the UAV swarm cannot autonomously respond to unexpected failures and external dis-
turbances under extreme weather conditions, it becomes difficult to fully leverage the
advantages of collaborative operations. Therefore, higher requirements are placed on UAV
swarm control, anti-interference capabilities, and fault-tolerant technologies. Formation
control is important for advancing the development of multi-agent systems as it enables
the multi-agent swarm to operate smoothly. For this purpose, different formation control
methods have been proposed like the cooperative control method [1], adaptive control
method [2,3], finite-time control method [4], robust formation method [5,6], and so on.
Formation control is the crucial aspect of cooperative control in UAVs, where multiple
UAVs are grouped together to perform specific tasks like cooperatively observing a specific
area [7], rescue operations [8], and monitoring [9]. In [10], a model predictive control
method was proposed for the formation control of multiple UAVs. In [11], a novel swarm
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intelligence approach was introduced for coordinating the control of multiple drones. In [7],
a multiple-UAV collaborative search and attack method was proposed. In [12], the problem
of perturbation suppression for multiple high-order agent formations with directed graphs
was studied. In addition, there are some classic formation control methods, such as the
leader–follower formation control [13,14]. Researchers associated with control and system
domain have primarily focused on proposing control algorithms for different types of
UAV’s applications like multiple fixed-wing UAVs [15]. In case of actual flight, fixed-
wing UAVs are prone to parametric uncertainties and perturbations in the aerodynamic
environment [16].

Currently, different methods have been proposed to deal with external interference and
disturbances like back-stepping control [17,18], the barrier Lyapunov function (BLF) [19],
neural network control [20,21], sliding mode control [22], and active disturbance rejection
control [23]. In back-stepping control, the “explosion of complexity” problem can be caused
by the repeated differentiation of the virtual control [24], which can make it difficult to find
the optimal solution of the problem, especially in cases of uncertainties and disturbances.
BLF-based adaptive finite-time control was proposed in [25], which guaranteed the robust
response in the presence of uncertainties. Anti-disturbance exact flight control based on
the BLF-based back-stepping technique with the mash-up of a high-order sliding mode ob-
server was proposed for ultra-low-altitude airdrop [26], but it did not consider the actuator
fault. In the field of neural network control, reference [27] proposes an innovative control
strategy, namely observer-based adaptive fuzzy finite-time attitude control. This approach
utilizes an adaptive neural network observer to estimate angular velocity information with
finite-time characteristics. By introducing an adaptive fuzzy logic system (FLS), it success-
fully compensates for lumped disturbance and achieves online adjustment of control gains.
Ref. [28] presents a low-computation learning-based antisaturation fixed-time attitude-
tracking control method. This approach constructs a fixed-time state observer to accurately
estimate the system state. Through the adoption of adaptive neural network technol-
ogy, it effectively overcomes the negative impact of external disturbances and uncertain
parameters on the system. It is noteworthy that the adaptive mechanism in the design
achieves a reduction in the computational burden and structural simplification by online
adjusting a virtual parameter rather than the weight vector of the neural network. Similarly,
a continuous-time non-linear system was proposed [29] which possessed uncertainties
and disturbances, but the drawback was that it did not take fault tolerance into account.
Moreover, a multivariable adaptive control-based consensus flight control method with
parametric uncertainties and unknown external disturbances was proposed for formation
UAVs [30]. These controls have downsides in term that although they take the uncertainties
or disturbances into account [25], they did not consider the actuator faults in the formation
control [24,26]. These methods are using back-stepping control [24], BLF-based adaptive
finite-time control [25], and BLF-based back-stepping control [26] to deal with uncertainties
and disturbances.

In formation control, actuator failure refers to the situation where one or more agents
in a formation experience a malfunction or failure in their actuator, which is a compo-
nent responsible for generating and controlling the motion of the agent. Actuator failure
can have a significant impact on the performance and stability of a formation control
system [31]. In particular, it can cause the affected agent to deviate from the desired forma-
tion and potentially collide with other agents or obstacles in the environment. Moreover,
the failure can propagate to other agents in the formation and lead to a cascading effect,
destabilizing the entire formation. A BLF-based learning control approach in [32] and a
BLF-based adaptive full-state constrained control law in [33] was proposed, considering
the actuator fault. Different machine learning techniques like the neural network is applied
to deal with the uncertainty and non-linearity of the system [34,35]. An event-triggered
extended state observer (ESO) was designed, which only triggered output signals and was
independent of the system states. An event-triggered active disturbance rejection control
(ADRC) strategy was introduced in [36] which did not bound the latest state, disturbance
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estimates, and control signals to rely on any sensor-controlled network transmission until
the violation of the discrete triggered condition. Moreover, for high-order linear multi-agent
systems, fault-tolerant time-varying formation control problems were investigated in the
presence of actuator faults [37]. Limitation of the aforementioned control methods was that
although they considered the actuator faults, they lack the ability to take the uncertainties
into account [37]. If they did so, then they did not bound the disturbance estimates [36].

In recent advances, tasks are becoming more and more complex. In order to ensure
the flight safety of the formation, researchers must consider both external interference
and actuator failure. To remove the problems in prior methods, a composite decentral-
ized fractional-order back-stepping adaptive neural fault-tolerant control (FTC) method,
which was the amalgamation of neural networks, disturbance observers, fractional calcu-
lus, and high-order sliding-mode differentiators, was proposed for the attitude synchro-
nization tracking of multiple UAVs. Its objective was to address the actuator fault and
wind effect problem [38]. Using a distributed sliding-mode estimator, dynamic surface
control architecture, neural networks, and disturbance observers, a distributed adap-
tive fault-tolerant control scheme was proposed in the presence of actuator faults and
wake vortices [22]. Similarly, based on the local information of neighboring UAVs, a fault-
tolerant cooperative controller was designed considering actuator faults, input saturation,
and external disturbances [39]. In [40], a fault-tolerant time-varying elliptical formation
control scheme was proposed by using a fractional-order sliding mode control strategy.
The aim was to monitor the elliptical spread of forest fire using multiple UAVs. Moreover,
the sliding-mode disturbance observer comprising reference systems and sliding-mode
differentiators was proposed to estimate the lumped disturbances caused by the external
disturbances and actuator faults. The problem of actuator faults, input saturation, and the
wake vortex effect was investigated for the safe control of trailing UAV and was estimated
using disturbance observers in [41], and then using estimated disturbance, back-stepping
control laws were developed for longitudinal and lateral-directional dynamics. One of the
key aspects of this control was that it considered the external wake vortex, disturbances,
internal actuator faults, and input saturation at the same time. The above control methods
considered the actuator failure, external interference, and disturbance simultaneously and
used the disturbance observer [22,38,41], fault-tolerant cooperative control [39], and fault-
tolerant time-varying elliptical control [40] for that purpose. To ensure the flight safety in a
complex task environment, there is still room for more and more development.

This paper proposes a fault-tolerant time-varying formation control for multiple
UAVs with a predefined tracking performance, taking into consideration the limitations
of the existing literature. The guidance law for formation tracking is designed, and the
performance of the tracking error is pre-determined using a Lyapunov function. An
adaptive tracking controller and speed controller are designed, and the stability of the
system is analyzed. The main contributions of this work, compared with the existing
methodologies, are as follows:

• The guidance rate of formation control is designed using a line-of-sight (LOS) guidance
algorithm, and the performance of the formation-tracking error is realized using a
Lyapunov function. This approach is compared with the method proposed in [36],
and it provides better performance by bounding the convergence error.

• A sampling adaptive tracking controller is proposed for the velocity and yaw angle
loop, in combination with the radial basis function neural network (RBFNN). This
approach performs better in case of actuator failure and external disturbances, with
a reduction in communication and actuation consumption compared to the work
presented in [38].

• A novelty sampling mode with an event-triggering mechanism is designed, which
utilizes only the input information to implement the sampling. This approach avoids
the need for dedicated monitoring devices, as seen in the triggering mode presented
in [29], and reduces the communication burden of the actuation.
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The remaining sections of the paper are organized as follows. Section 2 describes
the modeling and provides some prerequisite knowledge. Section 3 proposes the guid-
ance law design. Section 4 presents comparative simulation results. Finally, Section 5
concludes our work.

2. Problem Statement
2.1. Dynamic Modeling of the Multiple Non-Linear UAVs

The twelve differential equations of the UAV six-degree-of-freedom model are as
follows [42]: 

mV̇ = T cos α − D − mg(cos α sin θ − sin α cos β)
mV β̇ = Y − mV(−p sin α + r cos α)
mVα̇ = −T sin α − L + mVq + mg(sin α sin θ + cos α cos θ)
ϕ̇ = p + (r cos ϕ + q sin ϕ) tan θ
θ̇ = q cos ϕ − r sin ϕ

ψ̇ = 1
cos θ (r cos ϕ + q sin ϕ)

ṗ = (c1r + c2 p)q + c3 L̄ + c4N
q̇ = c5 pr − c6

(
p2 − r2)+ c7M

ṙ = (c8 p − c2r)q + c4 L̄ + c9N
ẋg =u cos θ cos ψ + v(sin ϕ sin θ cos ψ − cos ϕ sin ψ)

+ w(sin ϕ sin ψ + cos ϕ sin θ cos ψ)
ẏg =u cos θ sin ψ + v(sin ϕ sin θ sin ψ + cos ϕ cos ψ)

+ w(− sin ϕ cos ψ + cos ϕ sin θ sin ψ)
ḣ = u sin θ − v sin ϕ cos θ − w cos ϕ cos θ

(1)

where  u
v
w

 = ST
αβ

 V
0
0


wind

=

 V cos α cos β
V sin β

V sin α cos β

 (2)

c1 =

(
Iy − Iz

)
Iz − I2

xz

Σ
, c2 =

(
Ix − Iy + Iz

)
Ixz

Σ
, c3 =

Iz

Σ
, c4 =

Ixz

Σ
, c5 =

Iz − Ix

Iy
,

c6 =
Ixz

Iy
, c7 =

1
Iy

, c8 =
Ix
(

Ix − Iy
)
+ I2

xz

Σ
, c9 =

Ix

Σ
, Σ = Ix Iz − I2

xz

(3)

u, v, w respectively represent the three directions of the UAV in the body coordinate system,
Ix, Iy, Iz are respectively the moment of inertia of UAV around three body axes, and Ixz is
the product of inertia.

Thus, for multiple UAVs, the non-linear mathematical model is described by the
following generalized set of non-linear differential equations:{

ẋ = f (t, x, u)
y = g(t, x, u)

(4)

In the equation, t represents time, x represents the system state, u represents the control
input, and y represents the output. The state variables’ airspeed, angle of attack, sideslip an-
gle, roll angle, pitch angle, heading angle, roll rate, pitch rate, yaw rate, vertical displacement,
lateral displacement, and altitude are represented as x = [V, α, β, ϕ, θ, ψ, p, q, r, xg, yg, h], and
the control variables u = [T, D, Y, L, M, N] represent thrust, drag, side force, rolling mo-
ment, pitching moment, and yawing moment, respectively. These control variables are
functions of aerodynamic coefficients.

In this article, if the formation control of a UAV is only concerned with positions and
velocities, then an inner/outer loop structure can be used to implement the formation
control [43,44]. This is because the trajectory dynamics of the UAV has much larger time
constants than the attitude dynamics. In this configuration, the outer loop is used to drive
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the UAV towards the desired position with the desired velocity, while the inner loop is
used to track the attitude. The focus of this brief is on designing the outer loop.

At the formation control level, a UAV can be approximated as a point–mass system, and
its dynamics can be simplified and described by the following equations referring to [45]:

ẋi = ui cos ψi
ẏi = ui sin ψi
ψ̇i = ri
u̇i = Ti + ϑT,i
ṙi = τi + ϑτ,i

(5)

for i = 1, . . . , n, where pi = [xi, yi]
T is the UAV position, ui and ri are the airspeed and

yaw angle rate of the UAV, respectively, ψi is the yaw angle, Ti is the thrust force, τi is the
yawing moment, and nominal disturbances ϑi = [ϑT,i, ϑτ,i]

T = [∆Ti + du,i, ∆τi + dr,i]
T. ∆Ti

and ∆τi are, separately, the thrust force error and the yawing moment error caused by the
actuator fault. du,i and dr,i are external disturbances. As a general consideration, for all time
k, the nominal disturbance ϑi is bounded by |ϑi(k)| ≤ ϑ0, where ϑ0 is a positive constant.

Some useful lemmas are given:

Lemma 1 ([46]). For any given continuous function f (x) with f (0) = 0 defined on the compact
set Ωx, through the continuous function separation and RBFNNs approximation techniques, f (x)
can be ultimately modeled as

f (x) = AS(x) + ε(x), ∀x ∈ Ωx

where ε(x) is the approximation error satisfying |ε(x)| ≤ ε̄. S(x) = (S1(x), S2(x), . . . , Sl(x))T

denotes the Gaussian basis function vector with Sj(x) = exp
(
− (x−e)T(x−e)

2σ2

)
, j = 1, 2, . . . , l,

where ϱ and σ are the center and width of Gaussian basis function Sj(x), respectively. A is the
optimal weight matrix, where m is the dimension number of the state vector x, and n denotes the
node number of NNs.

A =


ω11 ω12 · · · ω1m
ω21 ω22 · · · ω2m

...
...

. . .
...

ωn1 ωn2 · · · ωnm


Lemma 2 ([47]). For any variable ϱ and positive continuous function ξ(t) with t > 0, we obtain

|ϱ| − ϱ tanh
ϱ

ξ(t)
≤ φξ(t),

where the constant φ > 0.

Lemma 3. For ∀a, b ≥ 0, and p, q > 0, satisfying 1/p + 1/q = 1, the inequality holds as
ab ≤ ap

p + bq

q .

2.2. Description of the Communication Topologies

The graph theory is introduced to illustrate the communication flow of the UAV forma-
tion system. We define a weighted directed graph G = (V ,E ,A) , where V = {vi, i = 1, . . . , n}
denotes the set of vertices, E ⊆ V × V represents the set of edges, A =

[
ai,j
]
∈ Rn×n is the

weighted adjacent matrix of the graph G, with the non-negative entries
{

ai,j
}

, where ai,j = 1
for (i, j) ∈ E and i ̸= j, while ai,j = 0 for the remaining cases, which indicates that the i-th
UAV receives information from the j-th UAV when (i, j) ∈ E . For the j-th UAV, the set of
its neighbors is denoted as nj = {i ∈ V|(i, j) ∈ E}. We define L = D −A as the Laplacian
matrix of the graph G, where the diagonal matrix D = diag

(
din

1 , . . . , din
n
)
, dim

i = ∑n
j=1 ai,j is
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defined as the indegree of vertex p. Here, we discuss the case that the graph is fixed and
strongly connected during the control process, which means a path exists between any pair
of two vertices.

Moreover, we set a fictitious leader as vertex 0; with the command consensus reference
trajectory as yd, the communication is established between at least one UAV and vertex 0.
Thus, the directed graph is extended as Ḡ = (V ∪ {0}, Ē , Ā), where Ē , Ā are respectively
the extended edge set and the extended weighted adjacent matrix.

3. Main Results

In this section, the event-triggering mode is firstly introduced. The tracking controller
for the desired trajectory is designed separately along the x and y axes, taking into account
predefined performance constraints. Based on the given event-triggered mechanism, the
yaw angle and velocity are then controlled using the aperiodic sampling mode. Finally,
the flight control scheme for the attitude stabilization of each agent in the formation
system is presented.

3.1. Event-Triggering Mode

The event-triggering mode is derived based on the following sampling errors of the
control input:

ςr(t) = τd,i(t)− τ̄d,i, (6)

ςu(t) = Td,i(t)− T̄d,i, (7)

where ςr(t) and ςu(t) denote the sampling error of the control input τd,i(t) and Td,i(t),
respectively, for the yaw angle loop and velocity loop. By defining ςr, ϕr, γr, γ̄r as positive
constants, γ̄r > γr + ϕr, the triggering mechanism for τd,i(t) is then presented as follows:{

τ̄d,i = τd,i(tk), t ∈ [tk, tk+1)
tk+1 = inf{t ∈ R, |ς(t)| ≥ γr tanh |τd,i|+ ϕr},

(8)

tk is the update time with k being a positive integer. It can be shown that τ̄d,i will not
change in t ∈ [tk, tk+1) and be updated from τd,i(tk) to τd,i(tk+1) at t = tk+1, {tk, k ∈ N} are
represented as the triggering time instants, and the first event occurs at t0 = 0. tk − tk−1,
which denotes the interval of two consecutive instants, is named as the inter-event time,
where it is seen that the sampling error will be reset to 0 at each triggering instant. Similarly,
by defining ςu, ϕu, γu, γ̄u as positive constants, γ̄u > γu + ϕu, ςu(t) = Td,i(t)− T̄d,i, the
triggering mechanism of Td,i(t) is expressed as{

T̄d,i = Td,i(tk), t ∈ [tk, tk+1)
tk+1 = inf{t ∈ R, |ς(t)| ≥ γu tanh |Td,i|+ ϕu},

(9)

One also has that T̄d,i will not change in t ∈ [tk, tk+1) and be updated from Td,i(tk) to
Td,i(tk+1) at t = tk+1.

3.2. Trajectory-Tracking Controller Design with Predefined Performance Constraints

A controller for tracking the formation of UAVs is designed here, achieving the
performance constraints derived from the Lyapunov candidate function, assuming that
member i of the formation is adjacent to member j. The goal of the controller is to obtain
location pi closer to the vector pi,d = [xi,d, yi,d]

T = [xj, yj]
T + [∆xi,j, ∆yi,j]

T representing the
target value.

From Figure 1, [
ex,i
ey,i

]
=

[
cos ψij,d − sin ψij,d
sin ψij,d cos ψij,d

]T

(pi − pi,d) (10)
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where ψij,d = atan 2
(

y′j(t) + ∆x′i,j(t), x′j + ∆y′i,j
)
∈ [−π, π].

Leader

Moving line

Desired location

,P i

i

ex

ey

ov

ov

ov

iv
i

 

Figure 1. Schematic diagram of geometric relationship.

Obviously, the derivative of ey,i can be obtained as

ėy,i = ui sin
(

ψi − ψij,d

)
(11)

Based on the vector field guidance law, the desired yaw angle ψd,i is designed as

ψd,i = ψij,d + arcsin(−
kyb2

y,i

2uiπey,i
sin(

πe2
y,i

b2
y,i

) +
ḃy,i

uiby,i
ey,i) (12)

where ky > 0 is the guidance law parameter.
From Figure 1, the derivative of ex,i can be obtained as

ėx,i = ui cos βi − uj (13)

Then the desired velocity is designed as

ud,i =
1

cos βi
(−

kvb2
x,i

2πex,i
sin(

πe2
x,i

b2
x,i

) +
ḃx,i

bx,i
ex,i + uj) (14)

where βi = ψij,d − ψi, and the predefined performance constraints can be satisfied as
||ex,i|| ≤ bx,i, ||ey,i|| ≤ by,i by,i, by,i and bx,i are respectively the upper bound of ey,i and ex,i.
Detailing analysis is carried out via the derivation of the Lyapunov candidate function, see
after from (A1) to (A4).

3.3. Yaw Angle Controller Design

For the formation member, we define the angle error as

eψ,i = ψi − ψd,i (15)

To deal with the differential explosion of ψd,i, a command filter is introduced as
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Ẋ1 = X2
Ẋ2 = −2ζωnX2 − ωn

2(X1 − ψd,i)

where ζ and ωn are filter parameters, ψd,i is the input, X1 is the estimation of ψd,i, and X2 is
the estimation of the derivative of ψd,i, ˆ̇ψd,i = X2.

The estimate error of this command filter is defined as

˜̇ψd,i=ψ̇d,i − ˆ̇ψd,i (16)

To deal with the estimation error, an adaptive law is designed as

˙̂dψ,i = k1,ψ,i

(
eψ,i − k2,ψ,i d̂ψ,i

)
(17)

with positive parameters k1,ψ,i, k2,ψ,i.
The adaptive tracking controller and the desired yaw angular velocity can be designed

as
rd,i = −k3,ψ,ieψ,i − d̂ψ,i +

ˆ̇ψd,i (18)

Then define the tracking error of the yaw angular velocity as

er,i = ri − rd,i (19)

To deal with the differential explosion of rd,i, a command filter is introduced as

Ẏ1 = Y2
Ẏ2 = −2ζωnY2 − ωn

2(Y1 − rd,i)

where ζ and ωn are filter parameters, rd,i is the input, Y1 is the estimation of rd,i, and Y2 is
the estimation of the derivative of rd,i, ˆ̇ψd,i = Y2.

The estimate error of this command filter is defined as

˜̇rd,i=ṙd,i − ˆ̇rd,i (20)

Differentiating the tracking error of the yaw angular velocity,

ėr,i = ṙi − ṙd,i

= τi + ∆τi + dr,i − ˆ̇rd,i − ˜̇rd,i
(21)

An RBFNN is employed to approximate unknown non-linear functions caused by the
actuator fault. Then,

ėr,i = ri + Ar,iSr,i + εr,i + dr,i − ˆ̇rd,i − ˜̇rd,i

= ri + Ar,iSr,i − ˆ̇rd,i + d̃r,i
(22)

where d̃r,i = εr,i + dr,i − ˜̇rd,i are the total disturbances. Apparently, d̃r,i is bounded, satisfying
d̃r,i ≤ d̄r,i. Ãr,i = Ar,i − Âr,i and Ar,i ≤ Ār,i.

To deal with the unknown non-linear functions caused by the actuator fault, the
adaptive law is designed as

˙̂Ar,i = k1,r,i
(
Sr,ier,i − k2,r,i Âr,i

)
(23)

with positive parameters k1,r,i and k2,r,i.
To deal with the total disturbance, another adaptive law is designed as

˙̂dr,i = k3,r,i

(
er,i − k4,r,i d̂r,i

)
(24)

with positive parameters k3,r,i, k4,r,i.
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The adaptive tracking controller can be designed as

τd,i = −k5,r,ier,i − d̂r,i − Âr,iSr,i + ˆ̇rd,i − γ̄r tanh
(

γ̄rer,i
ξr

)
(25)

Adopting the event-triggering mode, it is known from (A9) that

|τd,i(t)− τ̄d,i| < γr tanh |τ̄d,i|+ ϕr

< γr + ϕr

for t ∈ [tk, tk+1) such that τ̄d,i can be written as

τ̄d,i = τd,i(t)− ρr(t)(γr + ϕr),

where ρr(t) =
τd,i(t)−τ̄d,i

γr+ϕr
is continuous and |ρr(t)| < 1.

3.4. Velocity Controller Design

For the formation member, we define the velocity error as

eu,i = ui − ud,i (26)

To deal with the differential explosion of ud,i, a command filter is introduced as

Ż1 = Z2
Ż2 = −2ζωnZ2 − ωn

2(Z1 − ud,i)

where ζ and ωn are filter parameters, ud,i is the input, Z1 is the estimation of ud,i, and Z2 is
the estimation of the derivative of ud,i, ˆ̇ud,i = Z2.

The estimate error of this command filter is defined as

˜̇ud,i=u̇d,i − ˆ̇ud,i (27)

Differentiating the tracking error of the velocity,

ėu,i = u̇i − u̇d,i

= Ti + ∆Ti + du,i − ˆ̇ud,i − ˜̇ud,i
(28)

An RBFNN is employed to approximate unknown non-linear functions caused by the
actuator fault. Then,

ėu,i = ui + Au,iSu,i + εu,i + du,i − ˆ̇ud,i − ˜̇ud,i

= ui + Au,iSu,i − ˆ̇ud,i + d̃u,i (29)

where d̃u,i = εu,i + du,i − ˜̇ud,i are the total disturbances. Apparently, d̃u,i is bounded,
satisfying d̃u,i ≤ d̄u,i. Ãu,i = Au,i − Âu,i and Au,i ≤ Āu,i.

To deal with the unknown non-linear functions caused by the actuator fault, the
adaptive law is designed as

˙̂Au,i = k1,u,i
(
Su,ieu,i − k2,u,i Âu,i

)
(30)

with positive parameters k1,u,i and k2,u,i.
To deal with the total disturbance, another adaptive law is designed as

˙̂du,i = k3,u,i

(
eu,i − k4,u,i d̂u,i

)
(31)

with positive parameters k3,u,i, k4,u,i.
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The adaptive tracking controller can be designed as

Td,i = −k5,u,ieu,i − d̂u,i − Âu,iSu,i + ˆ̇ud,i − γ̄u tanh
(

γ̄ueu,i
ξu

)
(32)

With the event-triggered mechanism, it is known from (A9) that

|Td,i(t)− T̄d,i| < γu tanh |T̄d,i|+ ϕu

< γu + ϕu

for t ∈ [Tk, Tk+1) such that T̄d,i can be written as

T̄d,i = Td,i(t)− ρu(t)(γu + ϕu),

where ρu(t) =
Td,i(t)−T̄d,i

γu+ϕu
is continuous and |ρu(t)| < 1.

3.5. Zeno Behavior Analysis

In this subsection, the feasibility of the proposed event-triggering mode is analyzed,
that is, the Zeno behavior is verified to be excluded. For the triggering strategy in the yaw
angle loop, based on ςr(t) = τd,i(t)− τ̄d,i, one has:

ς̇u(t) = τ̇d,i(t)− ˙̄τd,i. (33)

Owing to τ̄d,i being a constant for t ∈ [tk, tk+1), it is observed that

ς̇u(t) = τ̇d,i(t), (34)

which implies ς̇u(t) ≤ |τ̇d,i(t)|.
According to (25), τ̇d,i(t) can be expressed as

τ̇d,i(t) = −k5,r,i ėr,i −
˙̂dr,i − Âr,iṠr,i +

˙̇̂rd,i −
γ̄2

r
(
ėr,iξr + er,iξr

)
ξ2

r cosh2 γrer,i
ξr

. (35)

Obviously, τ̇d,i(t) is continuous and bounded:

|τ̇d,i(t)| ≤ Γ, (36)

where the constant Γ > 0.
Therefore, we obtain∫ Tk+1

Tk

ς̇u(t)dt = ςu(Tk+1)− ςu(Tk)

= γ tanh(|τ̄d,i|) + γr − 0

≤ Γ(Tk+1 − Tk). (37)

It means that

Tk+1 − Tk ≥
γ tanh(|τ̄d,i|) + γr

Γ
≥ γr

Γ
, (38)

which reveals that the Zeno behavior is excluded for the triggering mode in the yaw angle loop.
Similarly, for the velocity loop, we can also obtain the boundedness of Ṫd,i(t) with the

upper bound of |Ṫd,i(t)| ≤ Ξ, where Ξ > 0. Therefore, the triggering interval Tk+1 − Tk for
the velocity loop exists in the lower bound, which is given as

Tk+1 − Tk ≥
γ tanh(|T̄d,i|) + γr

Ξ
≥ γv

Ξ
, (39)

Thus, the Zeno behavior is completely excluded and the feasibility analysis is achieved.
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Remark 1. The entire flight control system of each agent in the formation system is actually
included in the pitch angle control law, pitch rate control law, and the controller for the angle of
attack in the longitude loop as well as the other controller to stabilize the attitude responses in the
lateral loop. The above control laws, which are not mentioned in this paper, actually exist in the
control system for each aircraft, which mainly refers to [17], and are seen as a general design for the
fixed-wing aircraft.

Additionally, Appendix A conducts stability analysis for each control axis.

4. Simulation Results

A formation model consisting of a leader and three followers is established for simulation
purposes to test the effectiveness of the formation-tracking controller proposed in this study.

Four UAVs are created for simulated verification; one leader (AL) and three followers
(AF1, AF2, and AF3) are selected based on the leader–follower technique. Figure 2 depicts
the communication topology diagram between UAVs.
 

AF1

AL

AF2

AF3

 
Figure 2. Communication topology diagram among UAV formations.

According to the directed communication topological graph between UAVs, that is,
Figure 2, the Laplacian matrix can be obtained as:

L =


0 0 0 0
−1 1 0 0
−1 0 1 0
−1 0 0 1


The assumptions for the simulation are as follows:
The external disturbances are set as{

du = 0.3 sin
(
0.1t + π

6
)

dr = 0.2 sin
(
0.2t + π

4
)

The control inputs under fault conditions are set as{
T = Tc + pu(t − Tc)[(lu(t)− 1)Tc + T̄c]
τ = τc + pr(t − Tc)[(lr(t)− 1)τc + τ̄c]

in which u = [T, τ]T are the real control inputs; uc = [Tc, τc]
T are the control inputs

calculated by the controller; l = [lu(t), lr(t)]
T is the effectiveness parameter of the actuator,

satisfying 0 < li(t) < 1 (i = u, r); uc = [T̄c, τ̄c]
T denotes unknown inputs under fault

conditions; and p = [pu, pr]
T is the fault distribution with pi(t − Tc)(i = u, r), which is



Drones 2024, 8, 25 12 of 24

pi(t − Tc) =

{
0 if t < Tc

1 − e−a(t−Tc) if t ≥ Tc

where a > 0, Tc is the instant when the actuator fault occurs.
Using the controller designs presented in Section 3, the following control parameters

are selected:
The guidance law parameters of the followers are kyi = 1.01, kvi = 1.1, i = 1, 2, 3. The

yaw controller parameters are kψ1 = 10, kψ2 = 0.01, kψ3 = 1, kr1 = 1, kr2 = 0.01, kr3 = 3.
The velocity controller parameters are kv1 = 1, kv2 = 0.01, kv3 = 0.1. Meanwhile, in the
neural network parameters, the number of neural network nodes is 301, and the width of
the Gaussian function is 0.1. The adaptive law parameters are kwψ = 8, kwv = 18. The error
limit range is set as xb = 2 + 40e−0.2t, yb = 2 + 40e−0.2t.

Additionally, in this simulation, the expected time-varying trajectory of the leader is:

xd = 20 sin(t/10) + 20 cos(t/5)

yd = 20t

Vxd = 2 cos(t/10)− 4 sin(t/5)

Vyd = 20

ψd = a tan 2
(

Vyd, Vxd

)
Vd =

√
V2

xd + V2
yd

The initial state of each follower and the relative expected position with the leader are
shown in Table 1.

Table 1. Initial states of all UAVs.

UAV (1,2,3) Initial State [x0(m) y0(m) ψ0(rad/s) v0m/s γ0(rad)]T Desired Position with the Leader [xr(m) yr(m)]T

P1 [−15.5 − 26.9 0 0 1]T [−40 − 40]T

P2 [−16.5 50 π/6 0 1]T [−40 − 40]T

P3 [−64.5 20 π/3 0 1]T [−80 0]T

Among them, the unknown disturbance received by each follower is ψid = 0.001 sin(t/10)
and vid = 0.02 sin(t/10).

In this paper, the sampling period is set as h = 0.01 s, and the whole sampling time
is T = 100 s. Under the action of the controller proposed in this paper, four UAVs form a
time-varying formation. The tracking effect of the formation trajectory is shown in Figure 3.
In order to compare the performance of the proposed control algorithm in this paper, we
employed the fixed-time sliding mode control algorithm based on event-triggered control
proposed in reference [48] to achieve formation control. The specific results are shown
in Figure 4.

Through the comparison of simulation results, it can be observed that the control
algorithm proposed in this paper can accurately estimate and compensate for disturbances
via RBFNN, effectively suppressing the adverse effects of disturbances on the precision of
formation control. In contrast, the method provided in reference [48], while suppressing
disturbances to some extent, exhibits a decline in controller performance when the desired
reference trajectory undergoes abrupt changes, leading to oscillations in the formation
flight trajectory of follower UAVs, as indicated by the marked position in the red box
in Figure 4.

The tracking error results in the X and Y directions of the followers, which are shown
in Figures 5 and 6.
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Figure 3. The control algorithm proposed in this paper.

Figure 4. The control algorithm proposed in reference [48].
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Figure 5. Leader -position tracking error.
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Figure 6. Follower-position tracking error.

It can be seen from the simulation results that the controller designed in this paper can
complete the formation task in the presence of external disturbances and actuator failures,
and the following error of the follower in the X and Y directions is always controlled within
the tracking error. The follower’s tracking error in the X-direction converges to zero around
28 s, and in the Y-direction, the tracking error converges to zero approximately at 18 s. The
formation then achieves stable flight over the course of the mission.

During the formation process, the flight speed and heading angle of the leader and
the follower change as shown in Figures 7 and 8.
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Figure 7. Velocity–time graph.
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Figure 8. Variation curve of heading angle.

It can be seen from the figures that the final flight speed and heading angle of the
follower tend to be consistent with the leader, which ensures that the followers are finally
stable at the desired formation position. In comparison to other UAVs, UAV 2 initially has
the furthest distance from the desired position. Therefore, to ensure it catches up with the
expected aircraft trajectory as quickly as possible, at the beginning of the simulation, UAV
2 flies towards the desired trajectory at a faster speed. Approximately 8 s later, the UAV’s
speed matches the desired speed. The heading angle of the UAV aligns with the expected
heading angle around 14 s.

The effect of RBFNN on the estimation of the external uncertain disturbance is shown
in Figures 9 and 10.

Figure 9. The estimated effect of the disturbance.
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Figure 10. The estimated effect of the disturbance.
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From the above results, it can be seen that the RBFNN neural network proposed in
this paper can effectively estimate and compensate for the external uncertain disturbance.

Figures 11 and 12 depict the changing curve of the actual output force (torque) of the
follower actuator.
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Figure 11. Output force (torque) variation curve of actuator for leader.

0 10 20 30 40 50 60 70 80 90 100

Time/s

-500

0

500

1000

1
r(N

)

0 10 20 30 40 50 60 70 80 90 100

Time/s

-100

0

100

200

2
r(N

)

0 10 20 30 40 50 60 70 80 90 100

Time/s

-100

0

100

3
r(N

)

Figure 12. Output force (torque) variation curve of actuator for follower.

It can be seen from the simulation results that the actual output force of the actuator
can be stabilized within 10 s. The method designed in this paper can effectively eliminate
the influence of the actuator failure on the actual output force (torque) and ensure the
formation-tracking effect of the followers.

A statistical analysis of the event-triggered intervals for the heading controller and
speed controller throughout the entire formation process is presented in Table 2.
The minimum trigger interval for the event-triggered controllers is 0.01 s (equivalent to one
simulation timestep), while the maximum trigger interval is in the order of seconds. The
average trigger interval is approximately 0.11 s. Compared to the traditional time-triggered
controllers with a 0.01 s trigger interval, the event-triggered mechanism effectively reduces
the update frequency of the controllers.
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Table 2. Event-triggering times of each UAV.

UAV No.
Heading Angle Control Time Interval Velocity Control Time Interval

Minimum
Time (s)

Maximum
Time (s)

Average Time
(s)

Minimum
Time (s)

Maximum
Time (s)

Average Time
(s)

UAV 1 0.010 0.970 0.124 0.010 2.390 0.118
UAV 2 0.010 1.850 0.120 0.010 2.040 0113
UAV 3 0.010 1.130 0.121 0.010 3.780 0.097

As shown in Figures 13 and 14, they are the event triggering times of the heading
angle control and velocity control, respectively. In the initial stage of simulation, there is
a significant error in the speed and heading angles of the three UAVs compared to the
desired values, leading to frequent activations of the controllers, as indicated by the dense
points in the graph. To ensure that the UAVs promptly track the desired speed and heading
angles, the controllers undergo frequent updates. As analyzed in the preceding text,
approximately after 8 s, the speed of the UAVs successfully aligns with the desired speed,
and thereafter, the trigger frequency of the speed controller begins to decrease. Similarly,
after approximately 14 s, the heading angle of the UAVs matches the desired heading angle,
and subsequently, the trigger frequency of the heading controller gradually decreases.

0 5 10 15 20 25 30

Time(s)

Follower #1

Follower #2

Follower #3

Figure 13. The event triggering times of the heading angle control.
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Follower #1

Follower #2
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Figure 14. The event triggering times of the velocity control.
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As shown in Figure 15, the comparison between the trigger counts of the proposed
event-triggered controllers and the total simulation steps is presented in this paper. The
yellow portion in the graph represents the total simulation steps, which correspond to the
trigger counts of the time-triggered controllers. The red and blue sections, respectively, indi-
cate the trigger counts of the event-triggered heading angle controller and speed controller.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

X-Number of Triggered Times 104

Follower #1

Follower #2

Follower #3

Figure 15. Contrast of triggered times.

As shown in Figure 15, the event-triggered controllers proposed in this paper not only
effectively accomplish time-varying formation-tracking flight but also significantly reduce
the demands on computational resources and communication bandwidth. Specifically, the
computational resource and communication bandwidth requirements for UAVs 1, 2, and 3
account for only 8.2%, 8.6%, and 9.2%, respectively, compared to the time-triggered con-
trollers. Therefore, under the same conditions of flight control computer hardware and
communication resources, the event-triggered controllers proposed in this paper can more
efficiently meet the formation requirements of a larger number of UAVs compared to the
time-triggered controllers. This results in a substantial improvement in the utilization
efficiency of flight control computers.

5. Conclusions

In this study, we propose an event-triggered fault-tolerant time-varying formation
control with a predefined tracking performance for multiple UAVs. This method consid-
ers predefined tracking performance, which ensures that the convergence error remains
within a set bounded limit. We design the guidance law for formation tracking and set
the tracking error performance using a Lyapunov function. Subsequently, we design
an adaptive tracking controller that includes a neural network and adaptive law. The
formation-tracking control is implemented even in the presence of actuator faults and
external disturbances. We also incorporate event-triggered control to further enhance the
efficiency of the controller’s solution. Finally, we conduct simulation experiments under
various conditions to demonstrate that our designed controller can still converge the track-
ing error within our predefined range, even in the presence of external disturbances and
internal actuator failures.

Future work can involve experimental validation of the formation-tracking controller
to assess its effectiveness in real-world scenarios. This includes testing the system under
different environmental conditions, as well as with different types of disturbances and
faults, to verify its robustness and fault tolerance.

In response to the issue of communication delays among UAVs and between UAVs
and ground stations in real-flight environments, subsequent research will employ effective
methods for compensation. For instance, a robust fault-tolerant tracking control scheme
based on a fixed-time disturbance observer is proposed in reference [49]. This scheme
combines Padé approximation and intermediate variable techniques, reducing the complex-
ity of studying quadcopter UAV systems with input delays. The design of the fixed-time
disturbance observer successfully eliminates the effects of compounded disturbances, offer-
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ing a new research direction for addressing communication delay issues. Furthermore, to
enhance the convergence speed of the controller designed in this paper, reference [50] intro-
duces a novel non-singular fast terminal sliding mode surface. The design of this surface
aims to avoid singularities and improve the performance of the controller while achieving
a faster convergence speed. This approach is insightful for improving the convergence
speed of the controller proposed in this paper, providing beneficial insights for enhancing
the system performance.
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Appendix A

In this section, the stability analysis is carried out on each control axis. The design
of controllers is typically analyzed for stability using Lyapunov functions. Refs. [51,52]
conducted stability analysis of controllers in adaptive schemes using non-quadratic Lya-
punov functions. They considered a non-quadratic Lyapunov function denoted as α, and
when α = 1, it reduces to a quadratic Lyapunov function. Through analytical discussions on
the impact of different α values on system response, it was concluded that using multiple
standard α values might result in faster responses compared to α = 1. The adaptive law
in this paper is designed for a second-order system, and therefore, quadratic Lyapunov
functions are employed for stability analysis. Specifically, the predefined performance of
the tracking error is proposed by the design of the proposed Lyapunov candidate function.

A Lyapunov function condition for the constrained tracking performance on the y axis
is given as

V1 =
b2

y,i

π
tan

(
πey,i

2

2b2
y,i

)
(A1)

in which ey,i is the shortest distance between the real position pi of the UAV i and the
moving line of the desired position pi,d.

Differentiating (11),

V̇1 =
ey,i ėy,i

cos2
(

πey,i
2

2b2
y,i

) +
2by,i ḃy,i

π
tan

(
πey,i

2

2b2
y,i

)
−
(

ḃy,i

by,i

)
ey,i

2

cos2
(

πey,i
2

2b2
y,i

) (A2)

Defining kb = sup
∣∣∣∣ ḃy,i

by,i

∣∣∣∣, according to (10), (A2), and (12), (A1) can be obtained as
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V̇1 =
ye,i ẏe,i

cos2
(

πye,i
2

2b2
y,i

) +
2by,i ḃy,i

π
tan

(
πye,i

2

2b2
y,i

)
−
(

ḃy,ic

by,i

)
ye,i

2

cos2
(

πye,i
2

2b2
y,i

)

≤
ye,iui sin

(
ψi − ψij,d

)
cos2

(
πye,i

2

2b2
y,i

) −
(

ḃy,ic

by,i

)
ye,i

2

cos2
(

πye,i
2

2b2
y,i

) +
2kbb2

y,i

π
tan

(
πye,i

2

2b2
y,i

)

≤− (kd − 2kb)
b2

y,i

π
tan

(
πye,i

2

2b2
y,i

)
(A3)

Choosing kd > 2kb,
V̇1 ≤ −σ1V1 (A4)

where σ1 = kd − 2kb.
Similarly, to achieve the predefined tracking performance on the x axis, the following

Lyapunov function condition is given as

V2 =
b2

x,i

π
tan

(
πex,i

2

2b2
x,i

)
(A5)

Differentiating (13),

V̇2 =
xe,i ẋe,i

cos2
(

πxe,i
2

2b2
x,i

) +
2bx,i ḃx,i

π
tan

(
πxe,i

2

2b2
x,i

)
−
(

ḃx,ic

bx,i

)
xe,i

2

cos2
(

πxe,i
2

2b2
x,i

)
≤

xe,i
(
ui cos βi − uj

)
cos2

(
πx2

e,i
2b2

x,i

) −
(

ḃx,i

bx,i

)
xe,i

2

cos2
(

πx2
e,i

2b2
x,i

) +
2kcb2

x,i

π
tan

(
πx2

e,i

2b2
x,i

)

≤ −(kv − 2kc)
b2

x,i

π
tan

(
πx2

e,i

2b2
x,i

)
(A6)

where kc = sup
∣∣∣∣ ḃx,i

bx,i

∣∣∣∣.
Choosing kv > 2kc,

V̇2 ≤ −σ2V2 (A7)

where σ2 = kv − 2kc, which means that the Lyapunov candidate function V2 is stable.
For the yaw angle control, consider the following Lyapunov candidate

V3 =
1
2

e2
ψ,i +

1
2

k−1
1,ψ,i d̂

2
ψ,i +

1
2

e2
r,i +

1
2

k−1
3,r,i d̂

2
r,i +

1
2

k−1
1,r,i Ã

2
r,i (A8)

Then

V̇3 =eψ,i ėψ,i + d̂ψ,i
˙̂dψ,i + er,i ėr,i + d̂r,i

˙̂dr,i + Ãr,i
˙̃Ar,i

≤− k3,ψ,ie2
ψ,i − k2,ψ,i d̂2

ψ,i +
∥∥eψ,i

∥∥∥∥d̄ψ,i
∥∥

− k5,r,ie2
r,i − k4,r,i d̂2

r,i + ∥er,i∥
∥∥d̄r,i

∥∥+ k2,r,i Ãr,i Âr,i

− er,i

(
ρr(t)(γr + ϕr) + γ̄r tanh

(
γ̄rer,i

ξr

))
(A9)
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Based on Lemma 2, it follows that

−er,i

(
ρr(t)(γr + ϕr) + γr tanh

(
γ̄rer,i

ξr

))
≤
(
|γ̄rer,i| − γ̄rer,i tanh

(
γ̄rer,i

ξr

))
≤ φrξr.

where φrξr > 0 is a positive constant.
Then

V̇3 ≤− k3,ψ,ie2
ψ,i − k2,ψ,i d̂2

ψ,i +
∥∥eψ,i

∥∥∥∥d̄ψ,i
∥∥

− k5,r,ie2
r,i − k4,r,i d̂2

r,i + ∥er,i∥
∥∥d̄r,i

∥∥
+ k2,r,i

∥∥Ãr,i
∥∥(Ār,i −

∥∥Ãr,i
∥∥) + φrξr (A10)

where ∥Ar,i∥ ≤ Ār,i.
Using Lemma 3,

∥∥Ãr,i
∥∥(Ār,i −

∥∥Ãr,i
∥∥) ≤ −1

2

∥∥Ãr,i
∥∥2

+
1
2

Ā2
r,i (A11)

∥∥eψ,i
∥∥∥∥d̄ψ,i

∥∥ ≤ 1
2

∥∥eψ,i
∥∥2

+
1
2

d̄2
ψ,i (A12)

∥er,i∥
∥∥d̄r,i

∥∥ ≤ 1
2
∥er,i∥2 +

1
2

d̄2
r,i (A13)

Then

V̇3 ≤− (k3,ψ,i −
1
2
)e2

ψ,i − k2,ψ,i d̂2
ψ,i − (k5,r,i −

1
2
)e2

r,i − k4,r,i d̂2
r,i −

1
2

k2,r,i
∥∥Ãr,i

∥∥2 (A14)

+
1
2

d̄2
ψ,i +

1
2

d̄2
r,i + k2,r,i

1
2

∥∥Ār,i
∥∥2

+ φrξr (A15)

The conclusion can be given that V̇3 ≤ −σ3V3 + ζ1 in which σ3 = min{k3,ψ,i − 1
2 ,

k2,ψ,i, k5,r,i − 1
2 , k4,r,i, k2,r,i} > 0, ζ1 = 1

2 d̄2
r,i + k2,r,i

1
2

∥∥Ār,i
∥∥2

+ φrξr > 0.
The Lyapunov function of the velocity control loop is given as

V4 =
1
2

e2
u,i +

1
2

k−1
3,u,i d̂

2
u,i +

1
2

k−1
1,u,i Ã

2
u,i (A16)

Then

V̇4 =eu,i ėu,i + d̂u,i
˙̂du,i + Ãu,i

˙̃Au,i

≤− k5,r,ie2
u,i − k4,r,i d̂2

u,i + eu,i d̄u,i + k2,r,i Ãu,i Âu,i

− eu,i

(
ρu(t)(γu + ϕu) + γ̄u tanh

(
γ̄ueu,i

ξu

))
(A17)

Based on Lemma 2, it follows that

−eu,i

(
ρu(t)(γu + ϕu) + γu tanh

(
γ̄ueu,i

ξu

))
≤
(
|γ̄ueu,i| − γ̄ueu,i tanh

(
γ̄ueu,i

ξu

))
≤ φuξu.

where φuξu > 0 is a positive constant.
Then

V̇4 ≤− k5,r,ie2
u,i − k4,r,i d̂2

u,i + eu,i d̄u,i + k2,r,i
∥∥Ãu,i

∥∥(Āu,i −
∥∥Ãu,i

∥∥) + φuξu (A18)

where ∥Au,i∥ ≤ Āu,i.
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Using Lemma 3,

∥∥Ãu,i
∥∥(Āu,i −

∥∥Ãu,i
∥∥) ≤ −1

2

∥∥Ãu,i
∥∥2

+
1
2

Ā2
u,i (A19)

eu,i d̄u,i ≤
1
2
∥eu,i∥2 +

1
2

d̄2
u,i (A20)

Then

V̇4 ≤ −(k5,r,i −
1
2
)e2

u,i − k4,r,i d̂2
u,i −

1
2

k2,r,i
∥∥Ãu,i

∥∥2
+

1
2

d̄2
u,i + k2,r,i

1
2

∥∥Āu,i
∥∥2

+ φuξu (A21)

The conclusion can be given that V̇4 ≤ −σ4V4 + ζ2 in which σ4 = min{k5,u,i − 1
2 ,

k4,u,i, k2,u,i} > 0, ζ2 = 1
2 d̄2

u,i + k2,r,i
1
2

∥∥Āu,i
∥∥2

+ φuξu > 0.
Define the Lyapunov function for the entire control system as

V =V1 + V2 + V3 + V4

=
b2

x,i

π
tan

(
πex,i

2

2b2
x,i

)
+

b2
y,i

π
tan

(
πey,i

2

2b2
y,i

)
+

1
2

e2
ψ,i

+
1
2

k−1
1,ψ,i d̂

2
ψ,i +

1
2

e2
r,i +

1
2

k−1
3,r,i d̂

2
r,i +

1
2

k−1
1,r,i Ã

2
r,i

+
1
2

e2
u,i +

1
2

k−1
3,u,i d̂

2
u,i +

1
2

k−1
1,u,i Ã

2
u,i (A22)

The conclusion can be given that V̇ ≤ −σV + ζ in which σ = min{kd − 2kb, kv − 2kc,
k3,ψ,i − 1

2 , k2,ψ,i, k5,r,i − 1
2 , k4,r,i, k2,r,i, k5,u,i − 1

2 , k4,u,i, k2,u,i} > 0, ζ1 = 1
2 d̄2

u,i + k2,u,i
1
2

∥∥Āu,i
∥∥2

+ 1
2 d̄2

ψ,i +
1
2 d̄2

r,i + k2,r,i
1
2

∥∥Ār,i
∥∥2

> 0.

Selecting parameters as kd > 2kb, kv > 2kc ,k5,ψ,i > 1
2 , k5,u,i > 1

2 , k2,ψ,i, k2,u,i, k4,u,i,

k2,r,i, k4,r,i and integrating (A22), we can obtain V ≤
(

V(0)− ζ
σ

)
e−σt + ζ

σ . The conclusion

can be drawn that V is bounded. Moreover,
b2

x,i
π tan

(
πex,i

2

2b2
x,i

)
≤ V ≤

(
V(0)− ζ

σ

)
e−σt + ζ

σ ,

b2
y,i
π tan

(
πey,i

2

2b2
y,i

)
≤ V ≤

(
V(0)− ζ

σ

)
e−σt + ζ

σ , which means ex,i
2 ≤ 2b2

x,i
π tan−1(

π
b2

x,i

((
V(0)− ζ

σ

)
e−σt + ζ

σ

))
< b2

x,i. ey,i
2 ≤

2b2
y,i

π tan−1
(

π
b2

y,i

((
V(0)− ζ

σ

)
e−σt + ζ

σ

))
< b2

y,i.

Therefore, the conclusion can be drawn that ex,i , ey,i are bounded as |ex,i| < |bx,i|,
∣∣ey,i

∣∣
<
∣∣by,i

∣∣ and can be eliminated to a small neighborhood around zero.

References
1. Muslimov, T.Z.; Munasypov, R.A. Consensus-based cooperative control of parallel fixed-wing UAV formations via adaptive

backstepping. Aerosp. Sci. Technol. 2021, 109, 106416. [CrossRef]
2. Muslimov, T.Z.; Munasypov, R.A. Adaptive decentralized flocking control of multi-UAV circular formations based on vector

fields and backstepping. ISA Trans. 2020, 107, 143–159. [CrossRef]
3. Wei, L.; Chen, M.; Li, T. Disturbance-observer-based formation-containment control for UAVs via distributed adaptive

event-triggered mechanisms. J. Frankl. Inst. 2021, 358, 5305–5333. [CrossRef]
4. Zhang, Y.; Li, S.; Wang, S.; Wang, X.; Duan, H. Distributed bearing-based formation maneuver control of fixed-wing UAVs by

finite-time orientation estimation. Aerosp. Sci. Technol. 2023, 136, 108241. [CrossRef]
5. Chen, J.; Yang, W.; Shi, Z.; Zhong, Y. Robust horizontal-plane formation control for small fixed-wing UAVs. Aerosp. Sci. Technol.

2022, 131, 107958. [CrossRef]
6. Yan, D.; Zhang, W.; Chen, H.; Shi, J. Robust control strategy for multi-UAVs system using MPC combined with Kalman-consensus

filter and disturbance observer. ISA Trans. 2023, 135, 35–51. [CrossRef]
7. Zhen, Z.; Zhu, P.; Xue, Y.; Ji, Y. Distributed intelligent self-organized mission planning of multi-UAV for dynamic targets

cooperative search-attack. Chin. J. Aeronaut. 2019, 32, 2706–2716. [CrossRef]
8. Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F. Fault-tolerant cooperative navigation of networked UAV swarms for forest fire

monitoring. Aerosp. Sci. Technol. 2022, 123, 107494. [CrossRef]

http://doi.org/10.1016/j.ast.2020.106416
http://dx.doi.org/10.1016/j.isatra.2020.08.011
http://dx.doi.org/10.1016/j.jfranklin.2021.04.050
http://dx.doi.org/10.1016/j.ast.2023.108241
http://dx.doi.org/10.1016/j.ast.2022.107958
http://dx.doi.org/10.1016/j.isatra.2022.09.021
http://dx.doi.org/10.1016/j.cja.2019.05.012
http://dx.doi.org/10.1016/j.ast.2022.107494


Drones 2024, 8, 25 23 of 24

9. Zhao, Z.; Niu, Y.; Shen, L. Adaptive level of autonomy for human-UAVs collaborative surveillance using situated fuzzy cognitive
maps. Chin. J. Aeronaut. 2020, 33, 2835–2850. [CrossRef]

10. Cai, Z.; Wang, L.; Zhao, J.; Wu, K.; Wang, Y. Virtual target guidance-based distributed model predictive control for formation
control of multiple UAVs. Chin. J. Aeronaut. 2020, 33, 1037–1056. [CrossRef]

11. Wang, Y.; Zhang, T.; Cai, Z.; Zhao, J.; Wu, K. Multi-UAV coordination control by chaotic grey wolf optimization based distributed
MPC with event-triggered strategy. Chin. J. Aeronaut. 2020, 33, 2877–2897. [CrossRef]

12. Guo, S.; Li, Z.; Niu, Y.; Wu, L. Consensus disturbance rejection control of directed multi-agent networks with extended state
observer. Chin. J. Aeronaut. 2020, 33, 1486–1493. [CrossRef]

13. Han, L.; Dong, X.; Li, Q.; Ren, Z. Formation tracking control for time-delayed multi-agent systems with second-order dynamics.
Chin. J. Aeronaut. 2017, 30, 348–357. [CrossRef]

14. Liang, Y.; Dong, Q.; Zhao, Y. Adaptive leader–follower formation control for swarms of unmanned aerial vehicles with motion
constraints and unknown disturbances. Chin. J. Aeronaut. 2020, 33, 2972–2988. [CrossRef]

15. Yang, W.; Chen, J.; Zhang, Z.; Shi, Z.; Zhong, Y. Robust cascaded horizontal-plane trajectory tracking for fixed-wing unmanned
aerial vehicles. J. Frankl. Inst. 2022, 359, 1083–1112. [CrossRef]

16. Zhi, Y.; Liu, L.; Guan, B.; Wang, B.; Cheng, Z.; Fan, H. Distributed robust adaptive formation control of fixed-wing UAVs with
unknown uncertainties and disturbances. Aerosp. Sci. Technol. 2022, 126, 107600. [CrossRef]

17. Lungu, M. Auto-landing of UAVs with variable centre of mass using the backstepping and dynamic inversion control. Aerosp.
Sci. Technol. 2020, 103, 105912. [CrossRef]

18. Sun, R.; Zhou, Z.; Zhu, X. Stability control of a fixed full-wing layout UAV under manipulation constraints. Aerosp. Sci. Technol.
2022, 120, 107263. [CrossRef]

19. Zhang, B.; Sun, X.; Lv, M. Distributed adaptive specified-time synchronization tracking of multiple 6-DOF fixed-wing UAVs with
guaranteed performances. ISA Trans. 2022, 129, 260–272. [CrossRef] [PubMed]

20. Chen, K.; Zhu, S.; Wei, C.; Xu, T.; Zhang, X. Output constrained adaptive neural control for generic hypersonic vehicles suffering
from non-affine aerodynamic characteristics and stochastic disturbances. Aerosp. Sci. Technol. 2021, 111, 106469. [CrossRef]

21. Hu, B.; Guan, Z.H.; Lewis, F.L.; Chen, C.P. Adaptive Tracking Control of Cooperative Robot Manipulators With Markovian
Switched Couplings. IEEE Trans. Ind. Electron. 2021, 68, 2427–2436. [CrossRef]

22. Yu, Z.; Zhang, Y.; Jiang, B.; Yu, X.; Fu, J.; Jin, Y.; Chai, T. Distributed adaptive fault-tolerant close formation flight control of
multiple trailing fixed-wing UAVs. ISA Trans. 2020, 106, 181–199. [CrossRef] [PubMed]

23. Chen, S.; Chen, Z. On Active Disturbance Rejection Control for a Class of Uncertain Systems With Measurement Uncertainty.
IEEE Trans. Ind. Electron. 2021, 68, 1475–1485. [CrossRef]

24. Wang, X.; Guo, J.; Tang, S.; Qi, S. Fixed-time disturbance observer based fixed-time back-stepping control for an air-breathing
hypersonic vehicle. ISA Trans. 2019, 88, 233–245. [CrossRef] [PubMed]

25. Dong, C.; Liu, Y.; Wang, Q. Barrier Lyapunov function based adaptive finite-time control for hypersonic flight vehicles with state
constraints. ISA Trans. 2020, 96, 163–176. [CrossRef] [PubMed]

26. Su, Z.; Li, C.; Wang, H. Barrier Lyapunov function-based robust flight control for the ultra-low altitude airdrop under airflow
disturbances. Aerosp. Sci. Technol. 2019, 84, 375–386. [CrossRef]

27. Liu, K.; Yang, P.; Wang, R.; Jiao, L.; Li, T.; Zhang, J. Observer-based adaptive fuzzy finite-time attitude control for quadrotor
UAVs. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 8637–8654. [CrossRef]

28. Liu, K.; Yang, P.; Jiao, L.; Wang, R.; Yuan, Z.; Dong, S. Antisaturation fixed-time attitude tracking control based low-computation
learning for uncertain quadrotor UAVs with external disturbances. Aerosp. Sci. Technol. 2023, 142, 108668. [CrossRef]

29. Huang, Y.; Wang, J.; Shi, D.; Shi, L. Toward Event-Triggered Extended State Observer. IEEE Trans. Autom. Control 2018,
63, 1842–1849. [CrossRef]

30. Zhen, Z.; Tao, G.; Xu, Y.; Song, G. Multivariable adaptive control based consensus flight control system for UAVs formation.
Aerosp. Sci. Technol. 2019, 93, 105336. [CrossRef]

31. Yu, Z.; Zhang, Y.; Liu, Z.; Qu, Y.; Su, C.; Jiang, B. Decentralized finite-time adaptive fault-tolerant synchronization tracking control
for multiple UAVs with prescribed performance. J. Frankl. Inst. 2020, 357, 11830–11862. [CrossRef]

32. Xu, B.; Shi, Z.; Sun, F.; He, W. Barrier Lyapunov Function Based Learning Control of Hypersonic Flight Vehicle with AOA
Constraint and Actuator Faults. IEEE Trans. Cybern. 2019, 49, 1047–1057. [CrossRef] [PubMed]

33. Yuan, Y.; Wang, Z.; Guo, L.; Liu, H. Barrier Lyapunov Functions-Based Adaptive Fault Tolerant Control for Flexible Hypersonic
Flight Vehicles With Full State Constraints. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 3391–3400. [CrossRef]

34. Zhou, W.; Li, J.; Liu, Z.; Shen, L. Improving multi-target cooperative tracking guidance for UAV swarms using multi-agent
reinforcement learning. Chin. J. Aeronaut. 2022, 35, 100–112. [CrossRef]

35. Abbaspour, A.; Yen, K.K.; Forouzannezhad, P.; Sargolzaei, A. A Neural Adaptive Approach for Active Fault-Tolerant Control
Design in UAV. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 3401–3411. [CrossRef]

36. Sun, J.; Yang, J.; Li, S.; Zheng, W.X. Sampled-Data-Based Event-Triggered Active Disturbance Rejection Control for Disturbed
Systems in Networked Environment. IEEE Trans. Cybern. 2019, 49, 556–566. [CrossRef] [PubMed]

37. Hua, Y.; Dong, X.; Li, Q.; Ren, Z. Distributed fault-tolerant time-varying formation control for high-order linear multi-agent
systems with actuator failures. ISA Trans. 2017, 71, 40–50. [CrossRef]

http://dx.doi.org/10.1016/j.cja.2020.03.031
http://dx.doi.org/10.1016/j.cja.2019.07.016
http://dx.doi.org/10.1016/j.cja.2020.04.028
http://dx.doi.org/10.1016/j.cja.2019.07.018
http://dx.doi.org/10.1016/j.cja.2016.10.019
http://dx.doi.org/10.1016/j.cja.2020.03.020
http://dx.doi.org/10.1016/j.jfranklin.2021.12.021
http://dx.doi.org/10.1016/j.ast.2022.107600
http://dx.doi.org/10.1016/j.ast.2020.105912
http://dx.doi.org/10.1016/j.ast.2021.107263
http://dx.doi.org/10.1016/j.isatra.2022.01.006
http://www.ncbi.nlm.nih.gov/pubmed/35120740
http://dx.doi.org/10.1016/j.ast.2020.106469
http://dx.doi.org/10.1109/TIE.2020.2972451
http://dx.doi.org/10.1016/j.isatra.2020.07.005
http://www.ncbi.nlm.nih.gov/pubmed/32680604
http://dx.doi.org/10.1109/TIE.2020.2970623
http://dx.doi.org/10.1016/j.isatra.2018.12.013
http://www.ncbi.nlm.nih.gov/pubmed/30583955
http://dx.doi.org/10.1016/j.isatra.2019.06.011
http://www.ncbi.nlm.nih.gov/pubmed/31280884
http://dx.doi.org/10.1016/j.ast.2018.10.008
http://dx.doi.org/10.1109/TAES.2023.3308552
http://dx.doi.org/10.1016/j.ast.2023.108668
http://dx.doi.org/10.1109/TAC.2017.2754340
http://dx.doi.org/10.1016/j.ast.2019.105336
http://dx.doi.org/10.1016/j.jfranklin.2019.11.056
http://dx.doi.org/10.1109/TCYB.2018.2794972
http://www.ncbi.nlm.nih.gov/pubmed/29994461
http://dx.doi.org/10.1109/TSMC.2018.2837378
http://dx.doi.org/10.1016/j.cja.2021.09.008
http://dx.doi.org/10.1109/TSMC.2018.2850701
http://dx.doi.org/10.1109/TCYB.2017.2780625
http://www.ncbi.nlm.nih.gov/pubmed/29990275
http://dx.doi.org/10.1016/j.isatra.2017.06.018


Drones 2024, 8, 25 24 of 24

38. Yu, Z.; Zhang, Y.; Jiang, B.; Su, C.; Fu, J.; Jin, Y.; Chai, T. Decentralized fractional-order backstepping fault-tolerant control of
multi-UAVs against actuator faults and wind effects. Aerosp. Sci. Technol. 2020, 104, 105939. [CrossRef]

39. Yu, Z.; Qu, Y.; Zhang, Y. Distributed Fault-Tolerant Cooperative Control for Multi-UAVs Under Actuator Fault and Input
Saturation. IEEE Trans. Control Syst. Technol. 2019, 27, 2417–2429. [CrossRef]

40. Yu, Z.; Zhang, Y.; Jiang, B.; Yu, X. Fault-Tolerant Time-Varying Elliptical Formation Control of Multiple Fixed-Wing UAVs for
Cooperative Forest Fire Monitoring. J. Intell. Robot. Syst. 2021, 101, 1–15. [CrossRef]

41. Yu, Z.; Qu, Y.; Zhang, Y. Safe control of trailing UAV in close formation flight against actuator fault and wake vortex effect. Aerosp.
Sci. Technol. 2018, 77, 189–205. [CrossRef]

42. Administration, F.A. Pilot’s Handbook of Aeronautical Knowledge; Skyhorse Publishing Inc.: New York, NY, USA, 2009.
43. Bayezit, I.; Fidan, B. Distributed cohesive motion control of flight vehicle formations. IEEE Trans. Ind. Electron. 2012, 60, 5763–5772.

[CrossRef]
44. Karimoddini, A.; Lin, H.; Chen, B.M.; Lee, T.H. Hybrid three-dimensional formation control for unmanned helicopters. Automatica

2013, 49, 424–433. [CrossRef]
45. Wang, Y.; Wang, D.; Zhu, S. Cooperative moving path following for multiple fixed-wing unmanned aerial vehicles with speed

constraints. Automatica 2019, 100, 82–89. [CrossRef]
46. Broomhead, D.; Lowe, D. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks; Royal Signals and

Radar Establishment Malvern: Worcestershire, UK, 1988.
47. Cruz-Zavala, E.; Moreno, J.A.; Fridman, L.M. Uniform robust exact differentiator. IEEE Trans. Autom. Control 2011, 56, 2727–2733.

[CrossRef]
48. Su, B.; Wang, H.; Wang, Y.; Gao, J. Event-triggered formation control for AUVs with fixed-time sliding mode disturbance observer.

Control Decis. 2022, 37, 1116–1126. [CrossRef]
49. Liu, K.; Wang, R.; Zheng, S.; Dong, S.; Sun, G. Fixed-time disturbance observer-based robust fault-tolerant tracking control for

uncertain quadrotor UAV subject to input delay. Nonlinear Dyn. 2022, 107, 2363–2390. [CrossRef]
50. Liu, K.; Wang, R. Antisaturation adaptive fixed-time sliding mode controller design to achieve faster convergence rate and its

application. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 3555–3559. [CrossRef]
51. Hosseinzadeh, M.; Yazdanpanah, M.J. Performance enhanced model reference adaptive control through switching non-quadratic

Lyapunov functions. Syst. Control Lett. 2015, 76, 47–55. [CrossRef]
52. Tao, G. Model reference adaptive control with L1+α tracking. Int. J. Control 1996, 64, 859–870. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ast.2020.105939
http://dx.doi.org/10.1109/TCST.2018.2868038
http://dx.doi.org/10.1007/s10846-021-01320-6
http://dx.doi.org/10.1016/j.ast.2018.01.028
http://dx.doi.org/10.1109/TIE.2012.2235391
http://dx.doi.org/10.1016/j.automatica.2012.10.008
http://dx.doi.org/10.1016/j.automatica.2018.11.004
http://dx.doi.org/10.1109/TAC.2011.2160030
http://dx.doi.org/10.1016/j.oceaneng.2021.109893
http://dx.doi.org/10.1007/s11071-021-07080-0
http://dx.doi.org/10.1109/TCSII.2022.3167532
http://dx.doi.org/10.1016/j.sysconle.2014.12.001
http://dx.doi.org/10.1080/00207179608921661

	Introduction
	Problem Statement
	Dynamic Modeling of the Multiple Non-Linear UAVs
	Description of the Communication Topologies

	Main Results
	Event-Triggering Mode
	Trajectory-Tracking Controller Design with Predefined Performance Constraints
	Yaw Angle Controller Design
	Velocity Controller Design
	Zeno Behavior Analysis

	Simulation Results
	Conclusions
	Appendix A
	References

