
Citation: Sun, L.; Liu, X.; Tan, W.;

Deng, Y.; Jiao, J.; Zhao, M. Predictive

State Observer-Based Aircraft

Distributed Formation Tracking

Considering Input Delay and

Saturations. Drones 2024, 8, 23.

https://doi.org/10.3390/

drones8010023

Academic Editor: Mostafa

Hassanalian

Received: 23 November 2023

Revised: 10 January 2024

Accepted: 13 January 2024

Published: 17 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Predictive State Observer-Based Aircraft Distributed Formation
Tracking Considering Input Delay and Saturations
Liguo Sun , Xiaoyu Liu , Wenqian Tan *, Yi Deng, Junkai Jiao and Mengjie Zhao

School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China;
l.g.sun@buaa.edu.cn (L.S.) ; liuxiaoyu2016@buaa.edu.cn (X.L.); deng_yi@buaa.edu.cn (Y.D.);
jjk_mail@buaa.edu.cn (J.J.); sy2205415@buaa.edu.cn (M.Z.)
* Correspondence: tanwenqian@buaa.edu.cn; Tel.: +86-188-1074-6402

Abstract: This paper investigates a fully distributed time-varying formation tracking problem for a
group of fixed-wing aircraft. The fixed-wing aircraft formation control system consists of an outer-
loop trajectory control subsystem and an inner-loop attitude control subsystem. For fixed-wing
aircraft, it is crucial to consider the time delay of the engine response, the model uncertainties, the
tracking capability of the attitude commands in the inner loop, and other agility performances of
the aircraft. To address the problems related to the input time delay and model uncertainties, a
predictive extended state observer-based fully distributed time-varying formation tracking control
(PESO-TVFTC) protocol is proposed. To satisfy the constraints set by the attitude tracking quickness
and the trajectory tracking smoothness, the low gain feedback technique is introduced in the protocol
to keep the control inputs for the outer loop within the desired saturation constraints. Through
theoretical analysis, it is proved that the multiple aircraft systems can achieve time-varying formation
tracking consensus under specific initial conditions and feasibility conditions, and it is shown that
the upper bounds of the PESO gains are restricted by the time delay. Numerical simulations are used
to demonstrate the effectiveness of and the improvements in the proposed method.

Keywords: formation tracking control; input time delay; input saturation; consensus method;
distributed control

1. Introduction

With the development of unmanned aerial vehicle (UAV) technology and increas-
ing demand for mission requirements [1–4], aircraft cooperative formation control has
received considerable attention. In the past few decades, researchers have proposed many
methods for cooperative formation including leader–follower, virtual structure, behavior-
based methods, which are applied in the formation control of UAVs [1,2], spacecrafts [5,6],
robotics [7,8], etc. Compared with the above three methods, the consensus method [9] is
more robust and extensible, and is a general framework that contains these methods [10].
Thus, the consensus control method has been a research topic for more than 10 years, and
has been applied in the time-varying formation [11], formation tracking [12,13], obstacle
avoidance formation flight of UAV [14], etc. However, the consensus methods in [11–14]
are not fully distributed.

The fully distributed consensus control protocol is crucial to the improvement of
the robustness and the extensibility of the system. Full distribution means that each
agent in the formation only uses the state information or output information of itself or
its neighbors communicating with it, and requires no global information. As a result,
the number of transmitted signals is reduced, and the robustness and the extensibility
of the system are improved. However, in [11–14], the Laplacian matrix, which is global
information, is used for consensus protocol design, which means that the protocols are not
fully distributed. To solve the above problems, Li proposed a fully distributed consensus
protocol for a general linear system and Lipschitz nonlinear system under undirected
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communication topology [15] and then extended it to a linear multi-agent system (MAS)
with directed communication topology [16]. Based on the above framework, Chen designed
a fully distributed controller in the case of actuators’ failure, realizing the exponential
output consensus for heterogeneous MAS [17]. Jiang designed a controller containing a
fully distributed adaptive observer and Luenberger observer, addressing the time-varying
formation containment problem for a heterogeneous linear MAS [18]. Zhang designed a
fully distributed time-varying formation tracking control protocol based on a finite time
convergent extended state observer, addressing the anti-disturbance formation tracking
problem for a quadrotor formation [19]. Cheng designed a distributed adaptive states and
output feedback protocol, solving the formation control problem of a linear MAS under
event-triggered communications constraints [20].

In reality, time delays are inevitable in fixed-wing aircraft, such as the input time delay
generated by actuators and engines or the time delay caused by information
transmission [21,22]. These delays slow down the response of the aircraft, thus degrading
the rapidity and accuracy of the formation tracking, or even causing state divergence of the
aircraft. However, in studies of consensus-based methods for the formation flight of fixed-
wing aircraft [14,23,24], the time-delay problem has scarcely been investigated. Therefore,
it is necessary to investigate the time-delay problem when designing the time-varying
formation tracking consensus protocol for fixed-wing aircraft. The reported solutions to
the time-delay problem can be classified into the robust analysis manner and the active
compensation manner. The robust analysis manner is to seek a controller parameter range
or a maximal allowable time delay that guarantees the stability of the formation system.
For example, Wang studied an MAS with a steady communication delay, giving the up-
per bound of the time delay that could stabilize the system, and showed that the upper
bound was related to the dynamics of the system and the topology of the communication
network [25]. Zong selected the appropriate control gain according to the time delay and
noise intensities in the measurement term, achieving stochastic consensus of the continuous-
time MAS [26]. Zhang further used absolute velocity and relative position measurements,
achieving consensus control of a continuous-time second-order MAS with time delay and
multiplicative noise by choosing appropriate control gains [27]. Nevertheless, the solution
in [25] can only tolerate relatively short time delays, and global information is needed
in [26,27]. Another solution is the active compensation manner [28], which compensates for
the time delay in the controller actively. One of the most popular compensation methods is
to predict the values of states by a predictor, and to use the predictive values in the design
of the controller. Jiang used Arstein’s model reduction technique [29] to design a state
predictor to convert an MAS with an input delay into a delay-free one [30]. Zhou used a
truncated predictor feedback approach to solve the consensus problem of a high-order MAS
with input and communication delays [31]. Wang designed a cascade structure predictive
observer, achieving consensus control of an MAS with long input delays [32]. However, for
predictor-based approaches, exact dynamic information of the system is required, which is
difficult to obtain in reality due to the unknown dynamics and internal/external distur-
bances. To solve the above problems, the combination of the predictor and the extended
state observer (ESO) in the active disturbance rejection control (ADRC) [33] is an effective
strategy. For the consensus problem of an MAS with input and output time delay under
external disturbances, Wang designed a predictor-based ESO [34]. Considering input time
delays and disturbances, Jiang designed an adaptive predictive ESO to achieve the fully
distributed leader–follower consensus of the linear MAS with an unknown leader [35].
However, it should be noted that in [34,35], the delay time is constant and it is the consen-
sus tracking problem that is solved. In addition, the control protocol in [34] is not fully
distributed. For fixed-wing aircraft with uncertainties and time delays, how to design a
fully distributed time-varying formation tracking control protocol is still open.

Apart from the time delay, in the actual system, there exist many constraints such
as input constraints, state constraints, and output constraints [14,36,37]. For the aircraft
system, considering the attitude tracking quickness, the trajectory tracking smoothness,
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and the feasibility of the attitude commands, the input saturation is the constraint that
cannot be ignored. The low gain feedback (LGF) technology [38] is an efficient solution
to the input saturation problem of the formation system. Su used the LGF method to
solve the input saturation constraints in the consensus control of a linear MAS [39]. Chu
designed the observer-based fully distributed control protocol by using the LGF method,
achieving consensus tracking of a linear MAS. For a heterogeneous MAS [40], Yang used
the LGF method to eliminate the saturation effect of the actuator, achieving its output
consensus [41]. Su further extended the LGF method to the design of the output consensus
protocol for the discrete system [42]. Wang proposed a metamorphic LGF technology to
design the consensus tracking control protocol for an uncertain MAS with input saturation
constraints [43] and extended the result to the protocol design for an MAS with multiple
saturation levels and switching communication topologies [44]. However, for multiple
fixed-wing aircraft with input time delay and saturation constraints, how to design the
formation control protocol with the LGF method while solving the input delay problem is
still open.

Based on the discussion above, to satisfy the performance constraints of the aircraft
engines, the input time-delay problem needs to be addressed. Simultaneously, considering
the attitude tracking quickness, the trajectory tracking smoothness, and the feasibility of
the attitude commands, the input saturation problem also needs to be solved.

In this paper, we aim to address the fully distributed time-varying formation track-
ing control of fixed-wing aircraft with the simultaneous presence of uncertainties, input
time delay, and input saturation. Inspired by the literature and mainly motivated by the
work in [45], a predictive extended state observer-based fully distributed time-varying
formation tracking control (PESO-TVFTC) protocol designed using the low gain feed-
back (LGF) technology is proposed. Then, the stability of the system is proved through
theoretical analysis, and the effectiveness and improvement of the proposed method are
demonstrated using numerical simulation. The main contributions of this paper are three-
fold: Firstly, the PESO-TVFTC protocol is proposed in this paper, which is suitable for
time-varying formation tracking control of a multiple aircraft system with uncertainties
and time-varying input time delay. Secondly, the input saturation constraints and input
time delay are both considered simultaneously, and the LGF technology is used to design
the proposed PESO-TVFTC protocol. Thirdly, the proposed PESO-TVFTC protocol is fully
distributed, requiring no global information.

It is noted that the consensus control problem of a multi-agent system with input time
delay has also been studied in [30–32,34,35]. However, the work in this paper is different to
theirs. Firstly, compared to [34,35], it is the time-varying formation tracking problem rather
than the classical leader–follower consensus problem that is studied, and compared to [34],
the protocol proposed in this paper is fully distributed. Secondly, compared to [30,32,35],
the system studied in this paper can be nonlinear and has uncertainties, and the input
delay can be time-varying. Lastly, different from [30–32,34,35], this paper not only solves
the input delay problem but also considers the input saturation constraints and embeds the
low-gain feedback technology into the control protocol.

The remainder of this paper is organized as follows. Mathematical preliminaries,
definitions, lemmas, and problem formulation are given in Section 2. In Section 3, the
PESO-TVFTC protocol is proposed and designed using the LGF method, and the theoretical
analysis is given. In Section 4, the numerical simulation of the formation assembly and
the formation change of the fixed-wing aircraft flying through a valley slit is carried out
to demonstrate the effectiveness of and improvements in the proposed method. Finally,
Section 5 concludes this paper.

2. Preliminaries and Problem Statement
2.1. Basic Concepts on Graph Theory

A directed graph G = {V, E, W} is defined to describe the interaction topology
of the multi-aircraft system. The weighted directed graph G consists of a set of nodes
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V = {v1, v2, . . . , vN}, a set of edges E ⊆ {(vi, vj) : vi, vj ∈ V}, and a weighted adjacency
W = [wij] ∈ R2 with nonnegative elements wij. The edge of G is denoted by vij = (vi, vj),
where the node vi is called a neighbor of the node vj. The entries in W are defined
in that wji > 0 if and only if vij ∈ E, otherwise, wji = 0 for all i, j ∈ {1, 2, . . . , N}.
In addition, wii = 0 for all i ∈ {1, 2, . . . , N}. Qi = {vj ∈ V : vji ∈ E} denotes the

neighbor set of the node vi. Let degin(vi) =
N
∑

j=1
wij be the in-degree of the node vi and

D = diag{degin(vi), i = 1, 2, . . . , N} be the degree matrix of G. Then, define the Laplacian
matrix L ∈ RN×N of G as L = D − W . If there is a directed path from one node, which is
called the root to every other node, the directed graph is deemed to have a spanning tree.

2.2. Definitions and Lemmas

The leader and follower are defined as follows.

Definition 1 ([16]). An aircraft is called a leader if its corresponding node in the directed graph
does not have the incoming edge and is called a follower if it has at least one incoming edge.

Considering the actual formation flying of multiple fixed-wing aircraft. There is a
leader in the formation tracking the specific reference trajectory signals, which plays a
leading role in the multiple aircraft systems. The other N − 1 aircraft are followers, who
follow the trajectory of the leader and form a specific formation. Let N be the subscript of
the leader and F̄ = {1, 2, . . . , N − 1} be the subscript set of followers.

Assumption 1 ([19]). The directed graph G contains a spanning tree with the leader as the
root node.

Remark 1. G containing a spanning tree means that there exists at least a path from the leader to
the follower i. In reality, this means that each follower can directly or indirectly receive information
from the leader, which is necessary for formation. The same assumption can be found in [12,19].

In order to express the communication topology of the aircraft formation, the Laplacian
matrix is introduced. Then, the following lemmas are satisfied from Assumption 1, which
is subsequently used to prove the stability of the formation tracking system.

Lemma 1 ([9]). If L is the Laplacian matrix of a directed interaction topology with a spanning
tree, zero is a simple eigenvalue of L associated with the eigenvector 1, and all the other nonzero
eigenvalues are located in the right-half plane of the imaginary axis.

From Definition 1, one can obtain the Laplacian matrix L corresponding to the directed
graph G is as follows:

L =

[
L1 L2

01×(N−1) 0

]
(1)

where L1 ∈ R(N−1)×(N−1) and L2 ∈ R(N−1)×1. From Lemma 1 and Assumption 1, one can
find that all the eigenvalues of L1 have positive real parts. Then, one can obtain that L1 is
nonsingular and is a diagonally dominant M-matrix.

Lemma 2 ([16]). For a diagonally dominant M-matrix, there exists a positive diagonal matrix
R = diag{r1, r2, . . . , rN−1} such that RL1 + LT

1 R ≥ λ0 IN−1, where λ0 denotes the smallest
eigenvalues of RL1 + LT

1 R and r̄ = [r1, r2, . . . , rN−1]
T = (LT

1 )
−11N−1.

Lemma 3. (Young’s inequality) If p and q are nonnegative real numbers and m and n are positive
real numbers satisfying (1/m) + (1/n) = 1, then pq ≤ (pm/m) + (qn/n).



Drones 2024, 8, 23 5 of 25

3. Mathematical Model of Fixed-Wing Aircraft

Before giving the mathematical model of fixed-wing aircraft, the axes used in this
paper are defined.

Definition 2. Letting the initial position of the leader be the origin, the directions of the x, y, and z
axes are parallel to the xk, yk and zk directions of the flight path coordinate system of the ith aircraft,
respectively, where i ∈ F̄.

The dynamics of the outer-loop subsystem of the aircraft are shown as follows:
ṗk

i,j(t) = vk
i,j(t)

v̇k
i,j(t) = ūk

i,j(t − τ(t)) + d̄k
i,j(t)

ūk
i,j(t − τ(t)) = sat(uk

i,j(t − τ(t)))
(2)

where i ∈ {1, 2, . . . , N}, k ∈ F̄, j ∈ {x, y, z}. Superscript k indicates that the reference coordi-
nate system is defined by Definition 2 regarding the kth aircraft. pk

i,j(t), vk
i,j(t), uk

i,j(t − τ(t)),

and d̄k
i,j(t) represent the positions, velocities, control inputs of the outer-loop subsystem,

and synthetic uncertainties of the ith aircraft in the j direction at time t, respectively, where
the control inputs satisfy uk

i,j(t) = 0 for t < 0, and synthetic uncertainties include exter-
nal disturbances and unknown internal dynamics. τ(t) represents an input time delay.
sat(·) : R → R is a saturation function defined as sat(ω) = sgn(ω) · min{|ω|, M̄j}. M̄j > 0
are input saturation constraints, which are mainly determined by the thrust-to-weight ratio,
the lift–drag ratio, the structural strength, and the maximum overload of the aircraft the
pilot can withstand. It should be noted that, unless specified, the input in the remainder of
this paper refers to the control input of the outer-loop subsystem.

The longitudinal and lateral dynamics of the inner-loop subsystem of the ith aircraft
are shown as follows:

˙̄slon = Alon s̄lon + Blonδlon (3)

˙̄slat = Alat s̄lat + Blatδlat (4)

with s̄lon = [V, α, θ, q]T , s̄lat = [β, p, r, ϕ, ψ, χ, µ]T , δlon = [δe, δT ]
T , δlon = [δa, δr]

T , where
Alon ∈ R4×4, Blon ∈ R4×2, Alat ∈ R7×7, Blat ∈ R7×2. V is the airspeed of the aircraft.
ϕ, θ, ψ, µ, α, β, χ are the roll angle, pitch angle, yaw angle, back angle, attack angle, side-slip
angle, and heading angle, respectively. p, q, r are the angular rates of roll, pitch, and yaw,
respectively. δT , δa, δe, δr are the control inputs, namely, the engine power level angle and
the deflections of the aileron, elevator, and rudder, respectively.

The transformation between the outer-loop inputs and inner-loop commands of the
ith aircraft is derived as follows:

T cos α − mg sin γ − FD = mūi
i,x

T sin α sin µ + FL sin µ = mūi
i,y

−T sin α cos µ + mg cos γ − FL cos µ = mūi
i,z

(5)

with
FL = 1/2ρV2S(CL0 + CLα ∆α)
FD = 1/2ρV2S(CD0 + CDα ∆α)
T = T0 + TδT δT
α = α0 + ∆α

where i ∈ F̄ and ρ, S represent the current atmospheric density and wing surface area,
respectively, γ represents the flight path angle and has γ = θ − α, CL0 , CD0 are the current
lift and drag coefficient, respectively, CLα , CDα represent the aerodynamic derivatives, T0
and α0 represent the current thrust and attack angle, TδT represents the thrust generated
by per unit δT , and m, g represent the mass of the aircraft and gravitational acceleration,
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respectively. As shown in the following Figure 1, by using Equation (5), one can solve the
commands of δT , µ, ∆α from ūi

i,x, ūi
i,y, ūi

i,z.

Figure 1. The inputs and outputs of the transformation used in Equation (5).

The dynamics of fixed-wing aircraft satisfy the following assumption:

Assumption 2 ([46]). The uk
N,j and u̇k

N,j of the leader are bounded and are unknown to followers.

Remark 2. Due to the constraints of the power and the agility performance of the aircraft, the
thrust, the deflection of the actuator, and their rate of change are limited, so the input uk

N,j and u̇k
N,j

are bounded. Thus, Assumption 2 is reasonable.

Remark 3. The fixed-wing aircraft system consists of an outer-loop subsystem (2) and an inner-loop
subsystem (3) and (4). The trajectories are controlled in the outer-loop subsystem, and the attitudes
are controlled in the inner-loop subsystem. The formation tracking control framework is shown in
Figure 2. To achieve the formation tracking consensus of multiple aircraft systems, this paper mainly
focuses on the control protocol design in the outer-loop subsystem.

Figure 2. Formation tracking control framework for fixed-wing aircraft.

Problem Formulation

Let the piecewise continuously differentiable vector hi,j(t) = [hpi,j
T(t), hvi,j

T(t)]T ∈ R2,
i ∈ F̄, j ∈ {x, y, z} be the time-varying formation command vector of the ith follower in the
j direction, whose physical meaning represents offset values of position or velocity from the
leader aircraft. After that, the formation command vector of the multiple aircraft systems
can be expressed as hj(t) = [h1,j

T , h2,j
T , . . . , hN−1,j

T ]T . Then, the states of ith aircraft in the
j direction are denoted by sk

i,j(t) = [pk
i,j, vk

i,j]
T , i = 1, 2, . . . , N.

Assumption 3. The formation command vectors hi,j(t) and ḣvi,j(t), i ∈ F̄, j ∈ {x, y, z} are
bounded with respect to t.

Remark 4. Assumption 3 is commonly used in the control field and is used to prevent the divergence
caused by excessive commands.

Then, the time-varying formation tracking problem is defined as follows:
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Definition 3. The multiple aircraft systems (2)–(4) are said to achieve time-varying formation
tracking consensus if for any a priori given bounded set Ω0 ∈ R2 and the initial states satisfying
sk

i,j(0) ∈ Ω0, i ∈ {1, 2, . . . , N}, k ∈ F̄, j ∈ {x, y, z}, and the following formula holds

lim
t→∞

(sk
i,j(t)− hi,j(t)− sk

N,j(t)) = O(ε),

i ∈ F̄, k = i, j ∈ {x, y, z}
(6)

where ε is a sufficiently small positive constant.

4. PESO-TVFTC Protocol Design and Analysis

In this section, the PESO is introduced into the TVFTC to deal with the time delay
issue associated with the engine thrust response. As a result, the PESO-TVFTC protocol
is proposed. In order to circumvent the input saturation problem associated with the
trajectory control outer loop, the low gain feedback method is adopted in the design of
the PESO-TVFTC protocol. Then, the time-varying formation tracking consensus of the
multiple aircraft systems with time delay and saturation achieved by the PESO-TVFTC
protocol is proved.

4.1. PESO-TVFTC Protocol Design

Considering the general form of systems with time-varying input delay and input
saturation based on system (2):

˙̄zk
i,k(t) = f0(t, sk

i,j(t), z̄k
i,j(t), d̄k

i,j(t))
ṡk

i,j(t) = Ask
i,j(t) + B[ f (t, sk

i,j(t), z̄k
i,j(t), d̄k

i,j(t)) + ūk
i,j(t − τ(t))]

ȳk
i,j(t) = Csk

i,j(t)
ūk

i,j(t − τ(t)) = sat(uk
i,j(t − τ(t)))

(7)

where i ∈ {1, 2, . . . , N}, k ∈ F̄, j ∈ {x, y, z}, t ≥ 0, sk
i,j(t) = [pk

i,j, vk
i,j]

T , and z̄k
i,j(t) ∈ Rp

represent states [45], ȳk
i,j(t) ∈ R represent measured outputs, and d̄k

i,j(t) ∈ R are external
disturbances. f0(·) : R+ × Rn × Rp × R → Rp and f (·) : R+ × Rn × Rp × R → R are
unknown continuously differentiable functions, and the triple (A, B, C) represents a chain of
integrators satisfying asymptotically null controllable with bounded controls (ANCBC), i.e.,

A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
.

In this paper, the systems (7) with time-varying input delay satisfy the following
assumption:

Assumption 4 ([47]). The time delay τ(t) is continuously differentiable and satisfies 0 ≤ τ(t) ≤ h̄
and τ̇(t) < 1, where h̄ ∈ R+ represents the maximum input delay. In addition, the systems (7) do
not escape to infinity when τ(t) ∈ [0, h̄].

Assumption 5. The external disturbances d̄k
i,j(t) and their derivative ˙̄dk

i,j(t), i, k ∈ {1, 2, . . . , N}, j ∈
{x, y, z} are bounded.

Assumption 6. For ∀(t, sk
i,j, z̄k

i,j, d̄k
i,j) ∈ R+ ×Rn ×Rp ×R, i, k ∈ {1, 2, . . . , N}, j ∈ {x, y, z},

there exists a continuous function ψ̄(·) : Rn ×Rp ×R → R+ such that

max{
∣∣∣ f (t, sk

i,j, z̄k
i,j, d̄k

i,j)
∣∣∣, ∣∣∣ f0(t, sk

i,j, z̄k
i,j, d̄k

i,j)
∣∣∣,∥∥∥∇ f (t, sk

i,j, z̄k
i,j, d̄k

i,j)
∥∥∥,
∥∥∥∇ f0(t, sk

i,j, z̄k
i,j, d̄k

i,j)
∥∥∥}

≤ ψ̄(sk
i,j, z̄k

i,j, d̄k
i,j).
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Assumption 7. For ∀(t, sk
i,j, d̄k

i,j) ∈ R+ ×Rn ×R, i, k ∈ {1, 2, . . . , N}, j ∈ {x, y, z}, there exists
a positive definite function V̄0(·) : Rp → R+ such that

∂V̄0(z̄k
i,j)

∂z̄k
i,j

f0(t, sk
i,j, z̄k

i,j, d̄k
i,j) ≤ 0,

∀z̄k
i,j :

∥∥∥z̄k
i,j

∥∥∥ ≥ l̄(
∥∥∥(sk

i,j, d̄k
i,j)

∥∥∥)
where l̄(·) is a class K∞ function.

Remark 5. Although delays exist in the response of the aircraft engine and the actuators, delays
and their rate of change can not be infinite to ensure the maneuverability of the aircraft. Thus,
Assumption 4 is reasonable. Moreover, since the energy of the external disturbance, such as gust,
is finite naturally, Assumption 5 is reasonable. Moreover, according to Assumption 2, uk

N,j and

u̇k
N,j are both bounded, thus, the synthetic uncertainties are bounded and Assumptions 6 and 7

are reasonable.

Define the delayed time point as ϖ(t) = t − τ(t). Under Assumption 4, ϖ(t) is
continuously differentiable and strictly increasing. Denote the inverse function of ϖ(t)
as ϑ(t) = ϖ−1(t). It can be obtained that ϑ(t) is the prediction time point and ϑ(t)− t
represents the prediction range. From Assumption 4, one can find that ϑ̇(t) ∈ [ϑ1, ϑ2],
where ϑ1 and ϑ2 are both positive constants. Then, one can design the following feedback
control law such that the system (7) is stable:

uk
i,j(t) = uk

0i,j(s
k
i,j(ϑ(t)))

− f (ϑ(t), sk
i,j(ϑ(t)), z̄k

i,j(ϑ(t)), d̄k
i,j(ϑ(t))),

(8)

where uk
0i,j(s

k
i,j(ϑ(t))) represents the control law that can make the system stable after

eliminating the nonlinear term, which needs to be designed. One can see that the control
law shown in Equation (8) relies on the predictions of states and synthetic uncertainties at
the time ϑ(t), which are unavailable. Thus, the PESO is designed to solve this problem.

Denote the extended states of the followers and leader as

ξk
i,j(ϑ(t)) = f (ϑ(t), sk

i,j(ϑ(t)), z̄k
i,j(ϑ(t)), d̄k

i,j(ϑ(t))),

i ∈ {1, 2, . . . , N}, k ∈ F̄, j ∈ {x, y, z}, and

ξk
N,j(ϑ(t)) = f (ϑ(t), sk

N,j(ϑ(t)), z̄k
N,j(ϑ(t)), d̄k

N,j(ϑ(t))) + uk
N,j(t),

respectively. Then, the PESO in [45] is reformulated for the multiple aircraft systems
as follows. 

˙̂pk
i,j(t) = ϑ̇(t)v̂k

i,j(t) + ϑ̇(t)εg1[ȳk
i,j(t)− p̂k

i,j(ϖ(t))]/ε2

˙̂vk
i,j(t) = ϑ̇(t)ξ̂k

i,j(t) + ϑ̇(t)g2[ȳk
i,j(t)− p̂k

i,j(ϖ(t))]/ε2

+ϑ̇(t)uk
i,j(t)

˙̂ξk
i,j(t) = ϑ̇(t)ε−1g3[ȳk

i,j(t)− p̂k
i,j(ϖ(t))]/ε2

(9)


˙̂pk
N,j(t) = ϑ̇(t)v̂k

N,j(t) + ϑ̇(t)εg1[ȳk
i,j(t)− p̂k

N,j(ϖ(t))]/ε2

˙̂vk
N,j(t) = ϑ̇(t)ξ̂k

N,j(t) + ϑ̇(t)g2[ȳk
i,j(t)− p̂k

N,j(ϖ(t))]/ε2

˙̂ξk
N,j(t) = ϑ̇(t)ε−1g3[ȳk

i,j(t)− p̂k
N,j(ϖ(t))]/ε2

(10)

where i, k ∈ F̄, j ∈ {x, y, z}, ŝk
i,j(t) = [ p̂k

i,j(t), v̂k
i,j(t), ξ̂k

i,j(t)]
T , i ∈ {1, 2, . . . , N} is the observer

state with the initial conditions ŝk
i,j(t) = 0, ∀t ∈ [−τ(0), 0]. gi(·) : R → R, i = 1, 2, 3 are
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continuously differentiable functions that can be designed, and ε is a sufficiently small
positive constant. In Equations (9) and (10), the physical meanings of the extended states
are the magnitude of the acceleration.

Remark 6. Different from the ESO in [33,48], the input of the PESOs (9) and (10) is (ȳk
i,j(t)−

p̂k
i,j(ϖ(t)))/ε2 rather than (ȳk

i,j(t) − p̂k
i,j(t))/ε2, and ŝk

i,j(t) is the estimation of

[pk
i,j(ϑ(t)), vk

i,j(ϑ(t)), ξk
i,j(ϑ(t))]

T , which is the prediction of [pk
i,j(t), vk

i,j(t), ξk
i,j(t)]

T in the future.
In addition, since the function gi(·), i = 1, 2, 3 contains the time delay τ(t), the previous analysis
results of ESO in [48] cannot be directly applied to the PESOs in Equations (9) and (10), and the
PESO-TVFTC is analyzed in the remainder of this paper.

Up to now, the control law shown in Equation (8) has been able to be designed to make
the system stable with the prediction of states and synthetic uncertainties. For multiple
aircraft systems (7), the PESO-TVFTC protocol is proposed as follows :

uk
i,j(t) = ci,j(ϑ(t))σi,j(ς

k
i,j

T
(t)Pςk

i,j(t))Kςk
i,j(t)

+ ḣvi,j(ϑ(t)) + ξ̂k
N,j(t)− ξ̂k

i,j(t)
(11)

where
dci,j(ϑ(t))

/
dϑ(t) = ςk

i,j
T
(t)Ξςk

i,j(t),

ςk
i,j(t)

∆
=

N−1

∑
n=1

win[(ŝk
i,j(t)− hi,j(ϑ(t)))− (ŝk

n,j(t)− hn,j(ϑ(t)))]

+wiN(ŝk
i,j(t)− hi,j(ϑ(t))− ŝk

N,j(t))

and i ∈ F̄, j ∈ {x, y, z}, k = i. uk
i,j(t) are the control inputs of the outer-loop of the ith

follower in the j direction of its own flight path coordinate system at time t. σi,j(·) is a
monotonic increasing function satisfying σi,j(ω) ≥ 1 with ω > 0, ci,j(t) being the time-
varying couple weights, ci,j(0) ≥ 1, ŝk

i,j(t), ξ̂k
i,j(t), ξ̂k

N,j(t) the estimation of states, synthetic
uncertainties of followers, and synthetic uncertainties of the leader at time ϑ(t), respectively,
and win and wiN the weight of the directed topology between the ith follower and nth
follower, and between the ith follower and the leader, respectively. P(µ̄) is a unique
positive definite matrix, K ∈ R1×2 is the low gain feedback matrix, and Ξ ∈ R2×2 is a gain
matrix. It should be pointed out that since the input saturation constraints are embedded
in systems (7), the peaking in the transient period of the PESO due to high gains can
be avoided.

Remark 7. The protocol (11) is a type of output feedback control law, which only requires the
position information of the aircraft, and the velocities and the synthetic uncertainties can be estimated
by the PESOs. In addition, compared with the consensus methods in [11–14], the protocol (11)
is designed in a fully distributed fashion, which means that it uses only the position of its own
and the neighboring aircraft without any requirements of global information such as the minimum
eigenvalue of the Laplacian matrix.

Remark 8. Different from the protocol in [19], ŝk
i,j(t) and ŝk

n,j(t) in the protocol (11) are the
estimations of sk

i,j(ϑ(t)) and sk
n,j(ϑ(t)), rather than sk

i,j(t) and sk
n,j(t), which means that control

inputs can respond in advance by using the estimation of states at time ϑ(t), and thus, the problem
of input time delay is addressed.

4.2. Low Gain Feedback Design Algorithm for Formation Tracking Control

To keep the control inputs for the outer loop within the desired saturation constraints,
the following algorithm is proposed based on low gain feedback to determine the parame-
ters of protocol (11):
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Remark 9. Different from the design of the formation tracking control protocols in the existing
literature, such as in [19], the low gain feedback method is embedded in Algorithm 1 to address
the input saturation constraints problem. From Equations (11)–(14), one can select an appropriate
µ̄ to make K and Ξ small, so that the control inputs are within saturation constraints, namely∣∣∣uk

i,j(t)
∣∣∣ < M̄j. The steps to obtain matrices K and Ξ through Algorithm 1 are shown in Figure 3.

Algorithm 1 The parameters of protocol (11) can be specified in 4 steps:
Step 1. For systems (7) satisfying ANCBC, there exist a tuning parameter µ̄ ∈ (0, 1] and a
unique positive definite matrix P(µ̄) satisfying the following algebraic Riccati equation:

P(µ̄)A + ATP(µ̄)− 2P(µ̄)BBTP(µ̄) + µ̄I = 0. (12)

The solution to Equation (12), P(µ̄), is parameterized in µ̄, and P(µ̄) → 0 as µ̄ → 0.
Step 2. The low gain feedback matrix K ∈ R1×2 can be specified by:

K = −BTP(µ̄). (13)

Step 3. The gain matrix Ξ ∈ R2×2 can be specified by:

Ξ = P(µ̄)BBTP(µ̄). (14)

Step 4. The monotonically increasing function σi,j(ω) can be designed as

σi,j(ω) = (1 + ω)Λ (15)

where Λ is a positive constant.

Figure 3. Steps to obtain matrices K and Ξ.

Up to this point, it is worthwhile to mention that by embedding the predictive values
of states and synthetic uncertainties into the protocol (11), and by adjusting the parameter
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µ̄ simultaneously, problems of input delay and input saturation constraint can be handled
in conjunction.

4.3. Stability Analysis

Define the scaled estimation errors of states in PESOs (9) and (10) with:
ηk

pi,j(t) = [pk
i,j(ϑ(t))− p̂k

i,j(t)]/ε2

ηk
vi,j(t) = [vk

i,j(ϑ(t))− v̂k
i,j(t)]/ε

ηk
ξi,j(t) = [ξk

i,j(ϑ(t))− ξ̂k
i,j(t)]

(16)

where i, k ∈ {1, 2, . . . , N}, j ∈ {x, y, z}. When control inputs are within saturation con-
straints, from Equations (9), (10), and (16), the dynamics of these estimation errors satisfy:

εη̇k
pi,j(t) = ϑ̇(t)[ηk

vi,j(t)− g1(η
k
pi,j(ϖ(t)))]

εη̇k
vi,j(t) = ϑ̇(t)[ηk

ξi,j(t)− g2(η
k
pi,j(ϖ(t)))]

εη̇k
ξi,j(t) = ϑ̇(t)[εφ(ϑ(t))− g3(η

k
pi,j(ϖ(t)))]

(17)

where
φ(ϖ(t)) = d( f (ϑ(t), sk

i,j(ϑ(t)), z̄k
i,j(ϑ(t)), d̄k

i,j(ϑ(t))))/dϑ(t)

and i, k ∈ {1, 2, . . . , N}, j ∈ {x, y, z}. Then the estimation errors of the PESO of the ith
aircraft in the j direction can be defined as ηk

i,j(t) = [ηk
pi,j(t), ηk

vi,j(t), ηk
ξi,j(t)]

T ∈ R3, where
i ∈ {1, 2, . . . , N}, k = i and j ∈ {x, y, z}, and the total estimation errors of the multiple air-
craft systems in the j direction can be expressed as ηj(t) = [η1,j

T(t), η2,j
T(t), . . . , ηN,j

T(t)] ∈
R3N(N−1), where i ∈ {1, 2, . . . , N}, k ∈ F̄, j ∈ {x, y, z}, and ηi,j(t) = [η1

i,j
T
(t),

η2
i,j

T
(t), . . . , ηN−1

i,j
T
(t)]T ∈ R3(N−1).

According to Definition 3 and protocol (11), as ηj(t) goes to zero, ςk
i,j(t) can be the

formation tracking errors of ith aircraft in the j direction of its own flight path coordinate
system, where i ∈ F̄, j ∈ {x, y, z}, k = i. Then, the formation tracking errors of the multiple

aircraft systems (7) can be denoted as ςj(t) = [ς1
1,j

T
(t), ς2

2,j
T
(t), . . . ςN−1

N−1,j
T
(t)]T ∈ R2(N−1),

and then

ςj(t) = (L1 ⊗ I2)


ŝ1

1,j(t)− h1,j(ϑ(t))− ŝ1
N,j(t)

ŝ2
2,j(t)− h2,j(ϑ(t))− ŝ2

N,j(t)
...

ŝN−1
N−1,j(t)− hN−1,j(ϑ(t))− ŝN−1

N,j (t)

. (18)

With protocol (11) and Algorithm 1, the PESOs (9) and (10) are designed such that the
following assumptions are satisfied:

Assumption 8 ([45]). The functions gi(·), i = 1, 2, 3 are global Lipschitz with a Lipschitz constant
K̄1 and initial conditions gi(0) = 0. For all ηk

i,j(t) ∈ R3, there exist continuous, positive definite,
and radially unbounded functions V̄1(·), W̄1(·) : R3 → R+ and positive constants c̄11, c̄12, c̄13, c̄14
and N̄1 such that:

c̄11

∥∥∥ηk
i,j(t)

∥∥∥2
≤ V̄1(η

k
i,j(t)) ≤ c̄12

∥∥∥ηk
i,j(t)

∥∥∥2
,

c̄13

∥∥∥ηk
i,j(t)

∥∥∥2
≤ W̄1(η

k
i,j(t)) ≤ c̄14

∥∥∥ηk
i,j(t)

∥∥∥2
,

(ηk
vi,j(t)− g1(η

k
pi,j(t)))

∂V̄1(η
k
i,j(t))

∂ηk
pi,j(t)

+(ηk
ξi,j(t)− g2(η

k
pi,j(t)))

∂V̄1(η
k
i,j(t))

∂ηk
vi,j(t)

−g3(η
k
pi,j(t))

∂V̄1(η
k
i,j(t))

∂ηk
ξi,j(t)

≤ −W̄1(η
k
i,j(t)),



Drones 2024, 8, 23 12 of 25

max

{∣∣∣∣∣∂V̄1(η
k
i,j(t))

∂ηk
pi,j(t)

∣∣∣∣∣,
∣∣∣∣∣∂V̄1(η

k
i,j(t))

∂ηk
vi,j(t)

∣∣∣∣∣,
∣∣∣∣∣∂V̄1(η

k
i,j(t))

∂ηk
ξi,j(t)

∣∣∣∣∣
}

≤ N̄1

∥∥∥ηk
i,j(t)

∥∥∥.

Remark 10. Assumption 8 can be found in [45,48]. This assumption is not restrictive and can be
satisfied by properly designing the PESOs (9) and (10).

Then, we use Theorem 1 to show the stability of the PESO, and use Theorem 2 to show
the stability of multiple aircraft systems with the formation controller. Before that, three
lemmas that are used during the proof of the theorems are given. Lemma 4 is used to show
the control inputs are within input saturation constraints, Lemma 5 is used to prove the
estimation errors of the PESO will converge to a small positive constant, and Lemma 6 is
used to show that ςk

i,j(t) in (11) is uniformly bounded.

Lemma 4. For multiple aircraft systems (7) satisfying the ANCBC and PESO-TVFTC protocol (11),
µ̄∗ ∈ (0, 1] and a bounded initial state set Ω0 exist such that if sk

i,j(0), ŝk
i,j(0) ∈ Ω0, i ∈

{1, 2, . . . , N}, k ∈ F̄, j ∈ {x, y, z}, then for any µ̄ ∈ (0, µ̄∗],

sup
t∈[0,∞),i∈{1,2,...,N},k∈F̄,j∈{x,y,z}

∣∣∣uk
i,j(t)

∣∣∣ < M̄j. (19)

Proof. Let V̄µ̄(ςj(t), ηj(t)) : R2(N−1) ×R3N(N−1) → R+ be the Lyapunov function of the
system consisting of (7), (9), and (10). Since Ω0 is bounded and P(µ̄) → 0 and ci,j(ϑ(t)) →
ci,j(ϑ(0)) as µ̄ → 0, κ1 > 0 exists, satisfying

κ1 ≥ sup
µ̄∈(0,1],sk

i,j(0),ŝ
k
i,j(0)∈Ω0

V̄µ̄(ςj(0), ηj(0)) (20)

where i ∈ {1, 2, . . . , N}, k ∈ F̄, j ∈ {x, y, z}. Let

W̄µ̄(κ1)
∆
= {ςj(t) ∈ R2(N−1), ηj(t) ∈ R3N(N−1)|

V̄µ̄(ςj(t), ηj(t)) ≤ κ1, i ∈ {1, 2, . . . , N},
k ∈ F̄, j ∈ {x, y, z}}.

(21)

For any t ∈ [0, ∞), according to the protocol (11), Algorithm 1, and Assumptions 2–7,
when ςj(t), ηj(t) ∈ W̄µ̄(κ1), since lim

µ̄→0
P(µ̄) = 0, lim

µ̄→0
ci,j(ϑ(t)) = ci,j(ϑ(0)), and system (7)

is ANCBC, µ̄∗ ∈ (0, 1] exists such that for any µ̄ ∈ (0, µ̄∗], Equation (19) holds.

Lemma 5. Suppose Assumptions 8 and Equation (19) hold. If ε-independent positive constants
N̄2 and t∗ exist such that for any t ∈ [0, t∗], |φ(ϑ(t))| ≤ N̄2 holds, then an ε-independent positive
constant κ exists such that for any ε ≥ κh̄ and t ∈ [0, t∗],∥∥∥η̄k

ti,j

∥∥∥
sup

≤
√

c̄22

c̄21

∥∥∥η̄k
0i,j

∥∥∥
sup

e−
c̄23

2c̄22ε t
+

2c̄22 c̄24ϑ2N̄2

c̄21 c̄23
ε (22)

where c̄21, c̄22, c̄23 and c̄24 are positive constants, η̄k
ti,j = ηk

i,j(t+ω), ω ∈ [−h̄, 0], i ∈ {1, 2, . . . , N}, k ∈

F̄, j ∈ {x, y, z}, and
∥∥∥η̄k

ti,j

∥∥∥
sup

= supω∈[−h̄,0]

∥∥∥ηk
i,j(t + ω)

∥∥∥.

Proof. See [45].
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Before giving the next Lemma, two compact sets are defined:

Π0 =
{

ςj(t) ∈ R2(N−1) : V̄2(ςj(t)) ≤ ζ0

}
,

Π1 =
{

ςj(t) ∈ R2(N−1) : V̄2(ςj(t)) ≤ ζ1

}
where j ∈ {x, y, z}, V̄2(·) ∈ R2(N−1) → R+ is a continuous, positive definite, and radially
unbounded function, and ζ0, ζ1 are positive constants satisfying

ζ0 = sup
∥ςj(t)∥≤∥ςj(0)∥

V̄2(ςj(t)) + 1

and ζ1 ∈ (ζ0, ∞).
The feasibility conditions of time-varying formation tracking of multiple aircraft

systems are given as follows:

(hvi,j(t)− ḣpi,j(t)) = 0, i ∈ F̄, j ∈ {x, y, z}. (23)

Lemma 6. For multiple aircraft systems (7), considering PESOs (9) and (10) and the protocol (11)
designed by Algorithm 1, if Assumptions 4–8 hold and Equation (19) and formation tracking
feasibility conditions (23) are satisfied, then for any ςj(0) ∈ Π0, there exist a small positive constant
ε∗1 and an ε-independent positive constant κ , such that if h̄ < ε∗1

/
κ, ςj(t) ∈ Π1 for any ε ∈ (κh̄, ε∗1)

and t > 0.

Proof. See Appendix A.

From Lemma 6, the Lyapunov function of the formation tracking errors is bounded.
Up to this point, the main results of this paper can be given as follows:

Theorem 1. (Stability of the PESO) For multiple aircraft systems (7) with input time delay
and saturation and the PESOs (9) and (10), if Assumptions 1–8 hold and the initial conditions
sk

i,j(0), ŝk
i,j(0) ∈ Ω0 are satisfied, then for any ςj(ϑ(0)) ∈ Π0, there exist µ̄∗ ∈ (0, 1], a small

positive constant ε∗1, and an ε-independent positive constant κ such that if h̄ < ε∗1
/

κ, for any
µ̄ ∈ (0, µ̄∗], ε ∈ (κh̄, ε∗1), and t ∈ [0, ∞),

sup
t∈[T(ε),∞)

∣∣∣pk
i,j(ϑ(t))− p̂k

i,j(t)
∣∣∣ = O(ε3)

sup
t∈[T(ε),∞)

∣∣∣vk
i,j(ϑ(t))− v̂k

i,j(t)
∣∣∣ = O(ε2)

sup
t∈[T(ε),∞)

∣∣∣ξk
i,j(ϑ(t))− ξ̂k

i,j(t)
∣∣∣ = O(ε)

(24)

where i ∈ {1, 2, . . . , N}, k ∈ F̄, j ∈ {x, y, z}, Ω0 is a bounded initial state set, and T(ε) → 0 holds
if ε → 0.

Proof. Firstly, from Lemma 4, if the initial conditions sk
i,j(0), ŝk

i,j(0) ∈ Ω0 are satisfied, one
can select an appropriate µ̄ such that Equation (19) holds, which means that control inputs
of the outer-loop are within input saturation constraints. Secondly, from Lemma 4, one can
obtain that for any ε ∈ (κh̄, ε∗1) and t ∈ [0, ∞), V̄2(ςj(t)) ∈ Π1 holds. Thus, Equation (A4)
holds for any t ∈ [0, ∞). Lastly, from Equation (A4), by letting T(ε) = −(2c̄22

/
c̄23)ε ln ε3 ,

Equation (24) holds.

Theorem 2. (Stability of the multiple aircraft systems) For multiple aircraft systems (7) with input
time delay and saturation, consider PESOs (9) and (10) and protocol (11) designed by Algorithm 1.
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If Assumptions 1–8 hold and the initial conditions sk
i,j(0), ŝk

i,j(0) ∈ Ω0 are satisfied, then the
feasibility conditions of time-varying formation tracking of multiple aircraft systems are

(hvi,j(t)− ḣpi,j(t)) = 0, i ∈ F̄, j ∈ {x, y, z}

and if the feasibility conditions hold, then for any µ̄ ∈ (0, µ̄∗], ε ∈ (κh̄, ε∗1) and t > 0, the multiple
aircraft systems achieve time-varying formation tracking consensus.

Proof. Firstly, from Lemma 4, if the initial conditions sk
i,j(0), ŝk

i,j(0) ∈ Ω0 are satisfied, one
can select an appropriate µ̄ such that Equation (19) holds, which means that control inputs
of the outer-loop are within input saturation constraints. Secondly, from Lemma 6, one can
obtain that for any ε ∈ (κh̄, ε∗1) and t ∈ [0, ∞), ςj(t) is bounded and V̄2(ςj(t)) ∈ Π1 holds,
which yields Equations (A6) and (A20). Thirdly, from Equations (A6) and (A20), one has

lim
t→∞

∥∥∥ςj(t)
∥∥∥ = O(ε). (25)

Lastly, Equation (25), together with Equations (18) and (A6), shows that Equation (6)
holds. According to Definition 3, the multiple aircraft systems achieve time-varying
formation tracking consensus.

Remark 11. From Equations (24) and (25), it can be obtained that the formation tracking perfor-
mances of multiple aircraft systems (7) under PESO-TVFTC protocol (11) designed by Algorithm 1
depend on ε, and the smaller the ε value, the better the formation tracking performances. In [48],
theoretically, the value of ε can be selected to be arbitrarily small for better performance. However,
from Theorems 1 and 2 one can see that for multiple aircraft systems (7), the lower bound of ε
is restricted by time delay, which provides a guideline for the implementation of PESO-TVFTC
protocols for systems with input time delay.

Remark 12. From the proof of Theorems 1 and 2, one can obtain that V̄2(ςj(t)) ∈ Π1. Thus, it fol-
lows from Equation (A8) that ci,j(ϑ(t)), i ∈ F̄, j ∈ {x, y, z} are bounded. From dci,j(ϑ(t))

/
dϑ(t) >

0, one can see that as ςj(t) converges to ε, ci,j(ϑ(t)) will converge to some finite values. This char-
acteristic is verified in the simulation.

Remark 13. As mentioned in Theorems 1 and 2, the multiple aircraft systems (7) are required to
satisfy initial conditions sk

i,j(0), ŝk
i,j(0) ∈ Ω0, which means that the formation tracking consensus

in this paper is semi-global. Considering the fact that multiple aircraft systems have specific mission
areas, which means that the initial positions and velocities of aircraft are bounded, the requirements
for the initial conditions are reasonable.

Remark 14. As mentioned in Theorem 2, the time-varying formation commands are required to
satisfy feasibility conditions (23). In fact, hpi,j(t) and hvi,j(t) represent formation commands for the
positions and velocities of an aircraft, respectively, which means that hvi,j(t) and the derivative of
hpi,j(t) have the same physical meaning. Thus, feasibility conditions (23) hold naturally.

5. Simulation

In this section, the theoretical results proposed in this paper are applied to formation
tracking flight and the flight through the valley slit of multiple fixed-wing aircraft formation,
which demonstrates the effectiveness and innovations of the theoretical results.

In order to show the cumulative effect of input time delay in the interactive communi-
cation, the 0-1 weighted directed interaction topology G for the multiple fixed-wing aircraft
systems can be designed as Figure 4.
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1 2

5

34

Figure 4. Directed interaction topology G.

The No.5 aircraft is the leader, which is a manned aircraft or unmanned aircraft
tracking a target point, and the No.1 to No.4 aircraft are followers, which are unmanned
and on autopilot.

The fixed-wing aircraft adopted in this paper are F-18 carrier aircraft with position
and rate limits for the actuators and throttle, whose detailed configuration parameters can
be found in [49]. The linear model of the F-18 aircraft is shown as follows:

Alon =

 0 −38.6898 −32.1700 0.0345
0 −0.8562 0 0.9960
0 0 0 1.0000
0 −2.1626 0 −0.3103


Blon =

 4.8634 2.7387
−0.1165 −0.0005

0 0
−8.8696 0



Alat =


−0.1576 0.0481 −0.9982 0 0 0 0.0345
−17.5966 −2.0865 0.4986 0 0 0 0

3.3453 −0.0187 −0.1153 0 0 0 0
0 1.0000 0.0481 0 0 0 0
0 0 1.0012 0 0 0 0

−0.1576 0 0.0006 0 0 0 0.0756
0 0.9988 0.0481 0 0 0 0



Blat =


−0.0043 0.0317
17.6941 2.4841
−0.1946 −2.1643

0 0
0 0

−0.0043 0.0317
0 0


and CL0 = 0.2263, CD0 = 0.0340, CLα = 5.7289, CDα ≈ 0, T0 = 23,785 N, α0 = 0.0481 rad,
TδT = 44,450 N/rad, ρ = 0.4594 kg/m3, S = 37.16 m2, m = 16,220 kg, and g = 9.81 m/s2.

The delay time of the engine thrust is set as 0.1 s, which means that the input time
delays in uk

i,x, uk
N,x, i, k ∈ F̄ are τ = 0.1 s. Considering the attitude tracking quickness

and the trajectory tracking smoothness, the input saturation constraints of the outer-loop
subsystem are M̄x = 6.10, M̄y = 3.05, and M̄z = 1.52.

In the outer-loop subsystem, the PESO-TVFTC protocol (11) designed by Algorithm 1
is adopted to realize time-varying formation tracking consensus. The PESO is designed
with reference to [45] with l1 = 3, l2 = 3, l3 = 0.5, and ε = 0.3. For the parameters in the
protocol (11), Λ in xk, yk and zk directions are 0.0001, 0.00001, and 0.001, respectively. In
the inner-loop subsystem, the incremental backstepping method [50] is adopted to realize
stable attitude tracking.

The initial conditions are designed as follows: in the xk direction, si
i,x(0) = [0, 283.98 m/s]T

and i = 1, 2, 3, 4, 5; in the yk direction, s1
1,y(0) = [−46.10 m, 0]T, s2

2,y(0) = [46.10 m, 0]T,

s3
3,y(0) = [−91.50 m, 0]T, s4

4,y(0) = [91.50 m, 0]T, and s5
5,y(0) = [0, 0]T; and in the zk direc-

tion, si
i,z(0) = [0, 0]T, i = 1, 2, 3, 4, 5. The disturbances force in the xk direction is 1044.80 N.

The tracking target flies along the xk direction of the leader at a speed of 290.17 m/s.
For t ∈ [0, 10], the formation is assembling; for t ∈ (10, 120], aircraft are forming a triangle
formation; for t ∈ (120, 200], the triangle formation is changing to a column formation; and
for t ∈ (200, 300], the formation is flying through a valley slit. In addition, the proposed
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method in the paper is mainly tested through the changing of velocity in the xk direction;
thus, hpi,z can be set as 0, i = 1, 2, 3, 4. The formation commands can be designed as follows:

hp1,x(t) =

{ −24.53, t ∈ [0, 120]
−0.31t + 12.67, t ∈ (120, 200]
−49.33, t ∈ (200, 300]

hp2,x(t) =

{ −30.62, t ∈ [0, 120]
−0.88t + 74.98, t ∈ (120, 200]
−101.02, t ∈ (200, 300]

hp3,x(t) =

{ −24.53, t ∈ [0, 120]
−1.56t + 162.67, t ∈ (120, 200]
−149.33, t ∈ (200, 300]

hp4,x(t) =

{ −30.00, t ∈ [0, 120]
−2.13t + 225.60, t ∈ (120, 200]
−200.40, t ∈ (200, 300]

hp1,y(t) =


1.57t − 46.10, t ∈ [0, 10]
−30.40, t ∈ (10, 120]
0.38t − 76.00, t ∈ (120, 200]
0, t ∈ (200, 300]

hp2,y(t) =


−1.57t + 46.10, t ∈ [0, 10]
30.40, t ∈ (10, 120]
−0.38t + 76.00, t ∈ (120, 200]
0, t ∈ (200, 300]

hp3,y(t) =


3.15t − 91.50, t ∈ [0, 10]
−60.00, t ∈ (10, 120]
0.75t − 150.00, t ∈ (120, 200]
0, t ∈ (200, 300]

hp4,y(t) =


−3.15t + 91.50, t ∈ [0, 10]
60.00, t ∈ (10, 120]
−0.75t + 150.00, t ∈ (120, 200]
0, t ∈ (200, 300]

hpi,z(t) = 0, t ∈ [0, 300], i = 1, 2, 3, 4.

Since input time delays mainly appear in uk
i,x, uk

N,x, i, k ∈ F̄, this paper mainly shows
the simulation results in the xk direction.

From Figure 5, one can see that the formation change of the multiple aircraft systems
from a triangle to a column formation has been completed, so that the multiple aircraft
systems can fly through a valley slit. Moreover, according to simulation experiments, in the
process of the formation’s assembly and change, the total formation tracking errors of the
multiple aircraft systems in both yk and zk directions converge to zero.

Figure 5. Formation change in flight at 100–220 s. (Subscript g represents the earth coordinate
system).

Figures 6 and 7 show the position formation errors and the velocity responses of the
aircraft in the xk direction. Figures 6a and 7a show that the position formation errors and
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the velocities oscillate when PESO-TVFTC is not used. The oscillations of the position
formation errors and velocities are caused by input time delay. Specifically, due to the
cumulative effect of delays in the directed interaction topology G, the oscillations of No.3
and No.4 aircraft that are in the third and fourth layers of the G, respectively, are more
serious. However, when PESO-TVFTC is used, Figures 6b and 7b show that during the
formation assembly and formation change, the position formation errors converge to the
steady-state value at around t = 75 s and t = 250 s, respectively, and the velocities converge
to the steady-state value at around t = 55 s and t = 240 s, respectively. In summary, due to
the use of predictive information when using PESO-TVFTC, the negative effects of input
time delays can be eliminated, and the accurate formation tracking of the multiple aircraft
systems can be realized.

(a) (b)

Figure 6. Position formation tracking errors of all follows in the xk direction. (a) Formation tracking
errors of ESO-TVFTC; (b) formation tracking errors of PESO-TVFTC.

(a) (b)

Figure 7. Velocities of all aircraft in the in the xk direction. (a) Velocities of ESO-TVFTC; (b) velocities
of PESO-TVFTC.

Figures 8 and 9 show the total formation tracking errors of the multiple aircraft systems
and the estimation errors of PESO and ESO in the xk direction, respectively. From Figure 8,
the root mean square of the total formation tracking errors within 280–300 s is 0.0018
using PESO-TVFTC and 3.2698 using ESO-TVFTC. Thus compared with ESO-TVFTC, the
total number of formation tracking errors using PESO-TVFTC is significantly smaller and
converges to a sufficiently small positive constant, which demonstrates the effectiveness
of the proposed method. According to Figure 9, the estimation errors of the PESO are
significantly smaller than those of the ESO, and converge to a sufficiently small positive
constant. The results in Figures 8 and 9 verify Theorems 1 and 2.
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Figure 10 shows that the coupling weights of all followers, which are controlled by
the PESO-TVFTC protocol in the xk direction will converge to positive constants; that is,
Remark 12 is verified.

Figure 11 illustrates the outer-loop control inputs of all followers controlled by the
PESO-TVFTC protocol in the xk direction. It shows that the control inputs are all within
the input saturation constraints. In addition, if the low gain feedback technology is not
adopted, the control input given by Equation (11) may exceed the agility constraints of the
aircraft, which can cause the aircraft to enter a stall or spin, resulting in the divergence of
the multiple aircraft systems. Thus, the effectiveness of low gain feedback in Algorithm 1
is verified.

Figure 8. The total formation tracking errors of the multiple aircraft system in the xk direction.

Figure 9. The estimation errors of PESO and ESO of the aircraft in the xk direction (taking No.3
aircraft for example).

Figure 10. The coupling weights of all followers as in Equation (11) in the xk direction controlled by
the PESO-TVFTC protocol.
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Figure 11. The outer-loop control inputs of all followers in the xk direction controlled by the PESO-
TVFTC protocol, with M̄x = 6.10.

Remark 15. It is worth mentioning that the PESO-TVFTC method proposed in this paper is also
theoretically applicable to solving the formation tracking control problem subject to time-varying
input delay given that the time delay information is known, e.g., time delay values or their derivatives
are known. This conclusion can be deduced from Equations (9) and (10).

6. Conclusions

In this paper, the predictive extended state observer-based fully distributed time-
varying formation tracking control (PESO-TVFTC) protocol designed by using the low gain
feedback technique is proposed to realize the fully distributed formation tracking consensus
of multiple fixed-wing aircraft systems considering input time delay and saturation. It is
shown that by using the proposed PESO-TVFTC protocol, the convergence of the formation
tracking errors of multiple aircraft systems with uncertainties and input time delays can be
guaranteed, and the lower bound of the PESO parameter ε can be determined by the time
delay. By applying the low gain feedback technique to design the proposed PESO-TVFTC
protocol, the input saturation constraints in the outer-loop of the fixed-wing aircraft can
be satisfied. Formation tracking flight scenarios are designed to simulate the formation
assembly and formation change for multiple fixed-wing aircraft. According to simulation
results, the PESO-TVFTC method can effectively address the engine time delay effects
within the input saturation constraints when compared to the classical ESO-TVFTC method.

In future work, further improvement of the proposed method for solving the parameter
drift problem caused by measurement noise is recommended. In addition, a potential field
method and geometric method can be combined with the control law proposed in this
paper to solve the obstacle avoidance problem of the whole formation system and the
collision avoidance problem between aircraft.
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Appendix A. Proof of Lemma 6

Proof. Lemma 6 is proved by contradiction. Due to Equation (19), ūk
i,j(t) = uk

i,j(t) is

satisfied. Since ςj(0) is an interior point of Π0, control inputs uk
i,j(t) are bounded by M̄j,

and Assumptions 4–7 hold, and there exists an ε-independent t0 > 0 such that for any
t ∈ [0, t0], ςj(t) ∈ Π0 holds. Supposing that Lemma 6 is false, then t2 > t1 > t0 exists such
that 

V̄2(ςj(t1)) = ζ0

V̄2(ςj(t2)) = ζ1

ζ0 ≤ V̄2(ςj(t)) ≤ ζ1, t ∈ [t1, t2]

V̄2(ςj(t)) ≤ ζ1, t ∈ [0, t2].

(A1)

Moreover, the term φ(ϑ(t)) in Equation (17) can be specified as:

φ(ϑ(t)) = ∂ f (·)
∂ϑ(t) + vk

i,j(ϑ(t))
∂ f (·)

∂pk
i,j(ϑ(t))

+(ξk
i,j(ϑ(t)) + uk

i,j(t))
∂ f (·)

∂vk
i,j(ϑ(t))

+ f0(ϑ(t), sk
i,j(ϑ(t)), z̄k

i,j(ϑ(t)), d̄k
i,j(ϑ(t)))

∂ f (·)
∂z̄k

i,j(ϑ(t))

+
d(d̄k

i,j(ϑ(t)))
dϑ(t)

∂ f (·)
∂d̄k

i,j(ϑ(t))
.

(A2)

From Assumptions 5–7 and Equations (19) and (A1), one can obtain that for any
t ∈ [0, t2], all terms in Equation (A2) are bounded. Thus, an ε-independent positive
constant N̄2 exists such that

|φ(ϑ(t))| ≤ N̄2, ∀t ∈ [0, t2]. (A3)

Next, we prove that a small positive constant ε1 exists such that for any ε ∈ (κh̄, ε1),∥∥∥ηk
i,j(t)

∥∥∥ converges to a sufficiently small positive constant in the time interval [t0, t2]. From
Equation (A3) and Lemma 5, it can be obtained that for any t ∈ [0, t2],∥∥∥η̄k

ti,j

∥∥∥
sup

≤
√

c̄22

c̄21

∥∥∥η̄k
0i,j

∥∥∥
sup

e−
c̄23

2c̄22ε t
+

2c̄22 c̄24ϑ2N̄2

c̄21 c̄23
ε. (A4)

Based on Equation (A4), one can see that for any t ∈ [t0, t2],∥∥∥η̄k
ti,j

∥∥∥
sup

≤
√

c̄22

c̄21

∥∥∥η̄k
0i,j

∥∥∥
sup

e−
c̄23

2c̄22ε t0 +
2c̄22 c̄24ϑ2N̄2

c̄21 c̄23
ε. (A5)

From Equation (A5), one can obtain that a small positive constant ε1 exists such that
for any ε ∈ [κh̄, ε1] and t ∈ [t0, t2], ∥∥∥η̄k

ti,j

∥∥∥
sup

= O(ε) (A6)

which means that
∥∥∥ηk

i,j(t)
∥∥∥ converges to a small positive constant ε in the time interval

[t0, t2].
Next, Equation (A1) is proved to be false for any t ∈ [t1, t2].
Let ξ j(t) = [ξ1

1,j(t), ξ2
2,j(t), . . . , ξN−1

N−1,j(t)]
T , and ξ̂ j(t) = [ξ̂1

1,j(t), ξ̂2
2,j(t), . . . , ξ̂N−1

N−1,j(t)]
T ,

j ∈ {x, y, z}. From Equations (7), (9)–(11) and (19), one can obtain that

ς̇j(t) = ϑ̇(t)(IN−1 ⊗ A + L1C̃ jσ̃ j ⊗ BK)ςj(t)+
ϑ̇(t)(L1 ⊗ I2)Γj + ϑ̇(t)(L1 ⊗ B)(ξ j(ϑ(t))− ξ̂ j(t))+
ϑ̇(t)(L2 ⊗ B)(ξ i

N,j(ϑ(t))− ξ̂ i
N,j(t)).

(A7)
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For simplicity and convenience, denote ςj(t) as ςj, ςk
i,j(t) as ςk

i,j, ci,j(ϑ(t)) as ci,j, and
P(µ̄) as P. In Equation (A7), j ∈ {x, y, z} and

C̃ j
∆
= diag{c1,j, c2,j, . . . , cN−1,j},

σ̃ j
∆
= diag{σ1,j(ς

1
1,j

TPς1
1,j), σ2,j(ς

2
2,j

TPς2
2,j), . . . ,

σN−1,j(ς
N−1
N−1,j

T
PςN−1

N−1,j)},

Γj
∆
= [hv1,j(ϑ(t)), 0, hv2,j(ϑ(t)), 0, . . . , hvN−1,j(ϑ(t)), 0]T

−[ḣp1,j(ϑ(t)), 0, ḣp2,j(ϑ(t)), 0, . . . , ḣpN−1,j(ϑ(t)), 0]T.

Consider the following Lyapunov function candidate:

V̄2(ςj) =
N−1

∑
i=1

ci,jri

ςiT
i,jPςi

i,j∫
0

σi,j(ω)dω +
λ̄0

m̄

N−1

∑
i=1

c̄2
i,j (A8)

where i ∈ F̄, j ∈ {x, y, z}, c̄i,j = ci,j − ῡ1, m̄ > 3, and ῡ1 > 0, which will be determined
later. λ̄0 is a positive constant. From the properties of ci,j(·) and σi,j(·), one can see that
V̄2(ςj) > 0 and is continuous and radially unbounded.

If the feasibility condition (23) is satisfied in the time interval t ∈ [t1, t2], one can see
Γj = 0. From the properties of ci,j(·), σi,j(·), R, L1 and the fact that P and BBT are not zero
matrixes, one has

ςT
j (C̃ jσ̃ jRL1 ⊗ P)Γj

≤ 1
2 ςT

j (C̃ jσ̃ j(RL1 + LT
1 R)C̃ jσ̃ j ⊗ PBBTP)ς j

− 1
2 ςT

j (C̃ jσ̃ j(
3
m̄ λ̄0 IN−1)C̃ jσ̃ j ⊗ PBBTP)ςj.

(A9)

The derivative of V̄2(ςj) with respect to t can be obtained as follows:

˙̄V2(ςj) =
N−1
∑

i=1
ci,jriσi,j(ς

iT
i,jPςi

i,j)ς
iT
i,jPς̇i

i,j

+
N−1
∑

i=1
ci,jriσi,j(ς

iT
i,jPςi

i,j)ς̇
iT
i,jPςi

i,j

+
N−1
∑

i=1
ϑ̇(t)

dci,j
dϑ(t) ri

ςiT
i,jPςi

i,j∫
0

σi,j(ω)dω

+ λ̄0
m̄

N−1
∑

i=1
ϑ̇(t)2c̄i,jς

iT
i,jPBBTPςi

i,j.

(A10)

From Equations (A7) and (A9), and Algorithm 1, it can be obtained that

N−1
∑

i=1
ci,jriσi,j(ς

iT
i,jPςi

i,j)ς
iT
i,jPς̇i

i,j

+
N−1
∑

i=1
ci,jriσi,j(ς

iT
i,jPςi

i,j)ς̇
iT
i,jPςi

i,j

= ςT
j (C̃ jσ̃ jR ⊗ P)ς̇j + ς̇T

j (C̃ jσ̃ jR ⊗ P)ςj

≤ ϑ̇(t)ςT
j (C̃ jσ̃ jR ⊗ (ATP + PA)

− 3
m̄ λ̄0C̃2

j σ̃ j
2 ⊗ PBBTP)ςj

+4ϑ̇(t)ςT
j (C̃ jσ̃ jRL1 ⊗ PB)1N−1

∥∥∥η̄i
ti,j

∥∥∥
sup

(A11)
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where i ∈ F̄, j ∈ {x, y, z}. From the properties of ci,j(·), σi,j(·), and Lemma 3, one can
obtain that

N−1
∑

i=1
ϑ̇(t)

dci,j
dϑ(t) ri

ςiT
i,jPςi

i,j∫
0

σi,j(ω)dω

≤
N−1
∑

i=1
ϑ̇(t)

dci,j
dϑ(t) riσi,j(ς

iT
i,jPςi

i,j)ς
iT
i,jPςi

i,j

≤
N−1
∑

i=1
ϑ̇(t)

dci,j
dϑ(t) (

ri
3

3λ̄2
0
+ 2

3 λ̄0σ1.5
i,j (ς

iT
i,jPςi

i,j)(ς
iT
i,jPςi

i,j)
1.5
)

≤
N−1
∑

i=1
ϑ̇(t)

dci,j
dϑ(t) (

ri
3

3λ̄2
0
+ 2

3 λ̄0σ1.5
i,j (ς

iT
i,jPςi

i,j)(1 + ςiT
i,jPςi

i,j)
1.5
)

=
N−1
∑

i=1
ϑ̇(t)( ri

3

3λ̄2
0
+ 2

3 λ̄0σ
1.5+ 1.5

Λ
i,j (ςiT

i,jPςi
i,j))ς

iT
i,jPBBTPςi

i,j.

(A12)

Substituting Equations (A11) and (A12) into Equation (A10) yields

˙̄V2(ςj) ≤ ϑ̇(t)ςT
j (C̃ jσ̃ jR ⊗ (ATP + PA))ςj

+4ϑ̇(t)ςT
j (C̃ jσ̃ jRL1 ⊗ PB)1N−1

∥∥∥η̄i
ti,j

∥∥∥
sup

−ϑ̇(t)
N−1
∑

i=1

(
3
m̄ λ̄0c2

i,jσ
2
i,j(ς

iT
i,jPςi

i,j)−
2
m̄ λ̄0ci,j

)
×ςiT

i,jPBBTPςi
i,j

−ϑ̇(t)
N−1
∑

i=1

(
2
m̄ λ̄0ῡ1 − ri

3

3λ̄2
0
− 2

3 λ̄0σ
1.5+ 1.5

Λ
i,j (ςiT

i,jPςi
i,j)

)
×ςiT

i,jPBBTPςi
i,j.

(A13)

From Equation (A1), one can see that V̄2(ςj) is bounded for any t ∈ [t1, t2]. Thus, ῡ1
can be set as

ῡ1 ≥ ῡ2

2
+ max

t∈[t1,t2]

[
m̄ri

3

6λ̄3
0
+

m̄
3

σ
1.5+ 1.5

Λ
i,j (ςiT

i,jPςi
i,j)

]
(A14)

where ῡ2 is a positive constant satisfying

√
ῡ2 IN−1 ≥ m̄

λ̄0
R +

m̄
2λ̄0

Θ (A15)

and Θ is a positive definite diagonal matrix and satisfies Θ ≥ 4RL1. Then, taking the prop-
erties of ci,j(·) and σi,j(·), by substituting Equations (A14) and (A15) into Equation (A13), it
follows that

˙̄V2(ςj) ≤ ϑ̇(t)ςT
j (C̃ jσ̃ jR ⊗ (ATP + PA))ςj

−ϑ̇(t)
N−1
∑

i=1

(
1
m̄ λ̄0c2

i,jσ
2
i,j(ς

iT
i,jPςi

i,j) +
λ̄0
m̄ ῡ2

)
ςiT

i,jPBBTPςi
i,j

+4ϑ̇(t)ςT
j (C̃ jσ̃ jRL1 ⊗ PB)1N−1

∥∥∥η̄i
ti,j

∥∥∥
sup

≤ ϑ̇(t)ςT
j (C̃ jσ̃ jR ⊗ (ATP + PA))ςj

−ϑ̇(t)ςT
j (2RC̃ jσ̃ j ⊗ PBBTP)ςj

−ϑ̇(t)ςT
j (ΘC̃ jσ̃ j ⊗ PBBTP)ςj

+4ϑ̇(t)ςT
j (C̃ jσ̃ jRL1 ⊗ PB)1N−1

∥∥∥η̄i
ti,j

∥∥∥
sup

.

(A16)

Let ˙̄V2(ςj) ≤ ˙̄V21(ςj) +
˙̄V22(ςj), where

˙̄V21(ςj) = ϑ̇(t)ςT
j (C̃ jσ̃ jR ⊗ (ATP + PA))ςj

−ϑ̇(t)ςT
j (2RC̃ jσ̃ j ⊗ PBBTP)ςj,

(A17)
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˙̄V22(ςj) = 4ϑ̇(t)ςT
j (C̃ jσ̃ jRL1 ⊗ PB)1N−1

∥∥∥η̄i
ti,j

∥∥∥
sup

−ϑ̇(t)ςT
j (ΘC̃ jσ̃ j ⊗ PBBTP)ςj.

(A18)

Next, we prove ˙̄V2 < 0. Firstly, ˙̄V21(ςj) < 0 is proved as follows. Since

˙̄V21(ςj) = ϑ̇(t)ςT
j (C̃ jσ̃ jR ⊗ (ATP + PA − 2PBBTP))ςj (A19)

one can obtain ˙̄V21(ςj) < 0 by substituting Equation (12) into Equation (A19).

Secondly, ˙̄V22(ςj) ≤ 0 is proved. Let λ̄1 = ∥PB∥∞, and λ̄2 > 0 exists such that

λ̄2

∥∥∥ςi
i,j

∥∥∥2
≤ ςiT

i,jPBBTPςi
i,j for any t ∈ [t1, t2]. Then, one has

˙̄V22(ςj) ≤ 4ϑ̇(t)ςT
j (C̃ jσ̃ jRL1 ⊗ PB)1N−1

∥∥∥η̄i
ti,j

∥∥∥
sup

−4ϑ̇(t)ςT
j (C̃ jσ̃ jRL1 ⊗ PBBTP)ςj

= 4ϑ̇(t)
N−1
∑

i=1
ci,jσi,j(ς

iT
i,jPςi

i,j)ri l̄ii

×(ςiT
i,jPB

∥∥∥η̄i
ti,j

∥∥∥
sup

− ςiT
i,jPBBTPςi

i,j)

≤ 4ϑ̇(t)
N−1
∑

i=1
ci,jσi,j(ς

iT
i,jPςi

i,j)ri l̄ii

×(λ̄1
√

2
∥∥∥ςi

i,j

∥∥∥∥∥∥η̄i
ti,j

∥∥∥
sup

− λ̄2

∥∥∥ςi
i,j

∥∥∥2
)

(A20)

where l̄ij denotes the element in the ith row and jth column of the matrix L1. From
Equations (A4) and (A20), one can see that in the time interval [t1, t2], one can select ε to be
sufficiently small such that

∥∥∥η̄i
ti,j

∥∥∥
sup

≤
∥∥∥ςi

i,j

∥∥∥λ̄2

/
(
√

2λ̄1), i ∈ F̄, namely ˙̄V22(ςj) ≤ 0. Thus,

a sufficiently small positive constant ε2 ∈ (κh̄, ε1) exists such that for any ε ∈ (κh̄, ε2),

dV̄2(ςj(t))
dt

< 0, ∀t ∈ [t1, t2]. (A21)

It can be obtained that Equation (A21) contradicts Equation (A1), which means that
Lemma 6 is verified.
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