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Abstract: Multi-unmanned systems are primarily composed of unmanned vehicles, drones, and
multi-legged robots, among other unmanned robotic devices. By integrating and coordinating the
operation of these robotic devices, it is possible to achieve collaborative multitasking and autonomous
operations in various environments. In the field of surveying and mapping, the traditional single-
type unmanned device data collection mode is no longer sufficient to meet the data acquisition
tasks in complex spatial scenarios (such as low-altitude, surface, indoor, underground, etc.). Faced
with the data collection requirements in complex spaces, employing different types of robots for
collaborative operations is an important means to improve operational efficiency. Additionally, the
limited computational and storage capabilities of unmanned systems themselves pose significant
challenges to multi-unmanned systems. Therefore, this paper designs an edge-end—cloud integrated
multi-unmanned system payload management and computing platform (IMUC) that combines edge,
end, and cloud computing. By utilizing the immense computational power and storage resources of
the cloud, the platform enables cloud-based online task management and data acquisition visual-
ization for multi-unmanned systems. The platform addresses the high complexity of task execution
in various scenarios by considering factors such as space, time, and task completion. It performs
data collection tasks at the end terminal, optimizes processing at the edge, and finally transmits the
data to the cloud for visualization. The platform seamlessly integrates edge computing, terminal
devices, and cloud resources, achieving efficient resource utilization and distributed execution of
computing tasks. Test results demonstrate that the platform can successfully complete the entire
process of payload management and computation for multi-unmanned systems in complex scenarios.
The platform exhibits low response time and produces normal routing results, greatly enhancing
operational efficiency in the field. These test results validate the practicality and reliability of the
platform, providing a new approach for efficient operations of multi-unmanned systems in surveying
and mapping requirements, combining cloud computing with the construction of smart cities.

Keywords: multi-unmanned systems; payload management; cloud platform; multi-machine collaboration;
edge—device—cloud integration; digital twins

1. Introduction

In recent years, unmanned systems, as an innovative technological means, have qui-
etly been changing people’s lives and have the potential to revolutionize the commercial
and industrial sectors. From smart agriculture to intelligent logistics, from drones to au-
tonomous vehicles, unmanned systems have permeated various fields and are becoming
essential tools for solving real-world problems. The collection of three-dimensional scene
information using unmanned devices has become a hot research topic. Unmanned devices
offer advantages such as flexibility, high accuracy, good adaptability, and wide data col-
lection range, greatly enhancing the accuracy and efficiency of surveying and mapping
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work and gradually transitioning from manned to unmanned surveying. Different types
of unmanned systems and surveying scenarios impose different requirements on the per-
formance of ground stations, particularly in terms of computing capabilities. Traditional
integration models struggle to meet the demands of distributed and high-performance
computing. On one hand, large-scale ground station systems are often deployed on dedi-
cated computers, which suffer from poor portability and high maintenance costs. When
the computing capabilities fail to meet application requirements, the solution typically
involves adding hardware. On the other hand, ordinary ground station devices can only
control a single unmanned device at a time, which is not conducive to the collaborative
operations of multiple unmanned systems.

With the development of cloud computing and internet technology, many applications
with high demands for computing capabilities have migrated to cloud platforms. This not
only effectively reduces hardware costs but also meets the dynamic computing require-
ments of different task scenarios. Cloud computing is a comprehensive technology that
integrates virtualization, big data, and communication, providing computing and various
services to end terminals through cloud servers [1]. Edge computing focuses on pushing
computation and data processing to the edge of the network, enabling faster response and
processing of data [2]. The end serves as an interface between the physical and digital
worlds, which in unmanned systems means an unmanned device that is equipped with
sensing, data collection, and real-time response capabilities. The combination of edge—
end—cloud synergizes edge computing, end devices, and cloud computing with each other
to achieve efficient data processing and computational resource management [3]. Edge
devices, as edge nodes, can quickly process and filter data, transmitting key information to
the cloud for further analysis and processing. The cloud, in turn, provides powerful com-
puting capabilities and storage resources capable of handling large-scale data and complex
computing tasks. End devices play a role in data collection and real-time response. The
edge—end—cloud combined model brings broad application prospects to various industries,
enabling real-time data analysis and making more intelligent decisions.

The collaborative operation of multiple unmanned systems has become an important
trend in the field of robotics [4]. Multiple unmanned systems, through the collaboration of
multiple intelligent agents, can accomplish complex tasks that a single intelligent agent
cannot handle alone. They have a wide range of applications in military [5], search and
rescue [6], agriculture [7], and other fields. Most unmanned systems consist of the same
type of intelligent agents, with individual functions that limit the system’s capabilities.
However, multi-unmanned systems composed of different types of agents have advantages
when performing specific tasks. For example, a multi-unmanned system composed of
drones and unmanned vehicles can expand the field of view of the unmanned vehicle,
while the unmanned vehicle can alleviate the spatial limitations of the drones, enabling the
completion of more complex tasks. Zhao et al. [8] proposed a dynamic, collaborative task
allocation model for heterogeneous unmanned platforms and researched the task allocation
problem. The experimental results demonstrated that the hybrid improved algorithm,
Hy-CAN, utilized by the authors, effectively improves system efficiency. Xin Z et al. [9]
developed a swarm of unmanned systems for exploring complex scenarios, and their
research showed that through optimization algorithms and collaborative control strategies,
a swarm of drones can achieve efficient and stable collaborative operations. Stolfi et al. [10]
proposed a novel mobile monitoring system called CROMM-MS, which aims to patrol
and detect individuals escaping restricted areas. This system addresses the collaborative
operation problem among heterogeneous unmanned systems (UAVs, UGVs, and UMVs)
and has shown promising results in experiments. The above examples fully illustrate that
the shortcomings of a single unmanned system can be solved through the cooperation
between multiple unmanned systems.

The fusion and representation of multi-source data in multi-unmanned systems for
surveying and mapping have achieved a series of accomplishments in practical applications.
Potena C et al. [11] applied drones and unmanned vehicles in map construction for precision
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agriculture. The drone’s camera captured images of the farmland, obtaining a planar map,
while the unmanned vehicle captured images between crops, obtaining specific information
about the farmland. The team designed an efficient algorithm to fuse the data obtained from
drones and unmanned vehicles, resulting in an accurate 3D map of the farmland and crops.
Tagarakis et al. [12] utilized unmanned vehicles (UAVs) and unmanned ground vehicles
(UGVs) for mapping orchards. They fused the results of aerial and ground mapping systems
to provide the most accurate representation of trees. Similarly, Asadi et al. [13] employed
multiple unmanned systems for data collection in construction scenarios. Their unmanned
systems demonstrated collaborative navigation and mapping capabilities in indoor and
complex environments. Multi-unmanned systems have shown many successful cases in
collaborative surveying and mapping. However, there are still many issues regarding the
accuracy of experimental results, requiring further in-depth research.

Currently, research on cloud-based management of unmanned devices mostly focuses
on monitoring a single type of unmanned device, leaving room for research on the man-
agement of multiple types of unmanned devices. Pino M et al. [14] proposed a cloud
platform that combines drones and a cloud platform applied in precision agriculture and
aerial mapping. This platform enables two-way communication with drones and further
manages multiple drones. Koubaa A et al. [15] developed a drone tracking system called
DroneTrack, where the cloud platform invokes drones to track moving targets. Experi-
mental results showed that DroneTrack achieved an average tracking accuracy of 3.5 m for
slow-moving targets. DJI, a company based in Shenzhen, has developed the DJI FlightHub
2 cloud platform [16]. They studied an integrated cloud platform for UAV mission manage-
ment to achieve comprehensive, real-time situational awareness. Nanjing Dayi Innovation
Technology has developed a cloud platform for kite line drones [17], enabling real-time
monitoring, flight planning, and data storage management for drones. These systems have
achieved operational management of a single type of unmanned device. However, when
faced with multi-drone operations in complex environments, there is still a lack of a stable
and efficient management platform.

In response to the aforementioned issues, we designed an intelligent service platform
that integrates multiple functions, including payload management for multi-unmanned
systems, scene data acquisition management, dynamic tracking and real-time display of
unmanned devices’ video footage, online processing and visualization of multi-sensor data,
as well as storage and analysis of massive data. This platform efficiently accomplishes
various tasks related to data collection by multi-unmanned systems in complex scenarios,
addressing the challenges of managing multiple unmanned devices. It is characterized
by its user-friendly interface and strong functionality, and it significantly enhances the
autonomy and intelligence of unmanned device management.

2. Platform Architecture

As shown in Figure 1, the overall architecture of IMUC consists of the following three
layers: (i) Device layer, which includes connected hardware of multiple unmanned systems
(such as unmanned vehicles, drones, etc.). Each unmanned device is equipped with a
microcomputer (for real-time computing requirements and information exchange with the
cloud), sensors (mounted on unmanned devices to collect spatial scene data, with different
sensors used for different task scenarios), and a control platform (used to drive the motion
of unmanned systems). (ii) Transmission layer, which facilitates efficient information
transfer between the cloud layer and the device layer. This layer utilizes ROS Bridge and
MQTT (Message Queuing Telemetry Transport) protocols, with JSON and XML being the
main data formats. (iii) Cloud layer, which provides a range of services and components
in a cloud computing environment. This includes distributed computing, cloud storage,
cloud service components, and interface design. These components and services leverage
the cloud platform to provide large-scale computing and storage capabilities, meeting the
users’ requirements for high performance, scalability, and reliability.
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Below, this article explains each layer of the platform separately.

2.1. Device Layer

The device layer primarily consists of unmanned devices that perform data acquisition
tasks, including commonly used unmanned drones, unmanned vehicles, and other similar
devices. These unmanned devices can execute tasks assigned by the cloud platform, such
as spatial data collection and target tracking. This layer connects various network elements
and services and uses wireless network technologies to connect to the cloud platform.
It receives control commands published by the platform and executes corresponding
operations. The robot operating system (ROS) is widely used as middleware for developing
robot applications and represents a significant milestone in modular programming for
robots [18]. In the era where unmanned devices are extensively employed, the integration
of unmanned systems with the Internet of Things (IoT) world has made remote operations
remarkably simple [19,20].

2.2. Transport Layer

The transmission layer is responsible for transferring data between the device layer and
the cloud layer, as well as handling network management and resource allocation tasks. The
cloud layer can transmit task-defined strategies to the multiple unmanned systems in the
device layer through the transmission layer, which is accomplished with the help of internet
protocol-based interface components. Additionally, network communication plays a crucial
role in transmitting data from unmanned devices to the cloud layer, offering more efficient
data transfer compared to traditional communication methods like telemetry wireless
communication. In this paper, the MQTT (Message Queuing Telemetry Transport) protocol
and ROSBridge protocol are primarily used. MQTT is a lightweight, open, and simple
messaging protocol based on the publish-subscribe model and client/server architecture.
It is adaptable to constrained device resources, low bandwidth, and unstable network
environments. ROSBridge protocol, built on the WebSocket protocol, serves as a bridge
between ROS and other communication protocols or platforms. It enables bidirectional
communication, allowing ROS to interact and communicate with other systems [21]. In
terms of data transmission, instruction-based information mainly utilizes the JSON and
XML data formats, with JSON (JavaScript Object Notation) being the primary format. JSON
is a lightweight data interchange format that is particularly suitable for transferring data
between web applications and APIs. Similarly, the XML format has also been considered
for use in the platform. However, due to the relatively verbose nature of XML, it may
introduce additional network overhead. Therefore, in resource-constrained environments
of unmanned devices, the JSON format is prioritized. This way, whether it is a drone, a
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quadruped robot, or any other device, they can exchange data in a predefined data format,
enabling interoperability. Additionally, coordination and synchronization among devices
are achieved through the aforementioned protocols, where messages are published and
subscribed to, facilitating device status sharing and event triggering.

The fundamental security and privacy requirements of the Internet of Things (IoT)
encompass confidentiality, integrity, availability, authenticity, and privacy protection. These
requirements reflect the platform’s capability and functionality in addressing threats and
security vulnerabilities [22,23]. During data transmission, ensuring the security of data
transfer between the cloud and devices is crucial, especially when sensitive and critical in-
formation is involved [24]. The operational process of unmanned devices typically involves
receiving remote commands and control signals from the cloud for remote operations.
These commands and control signals are transmitted through various transmission sources
at different rates, and we can ensure data security through various measures and technolo-
gies. Heidari et al. [25] proposed a deep learning-based blockchain Intrusion Detection
System (IDS) method called BIIR. They developed a secure D2X and D2D communication
model and a blockchain mechanism for secure information transmission. System testing
demonstrated that this method can effectively identify attacks. Prabhu Kavin et al. [26]
introduced an innovative key generation algorithm based on elliptic curve cryptography
(ECC), aiming to generate highly secure keys. Additionally, they introduced a new binary-
based two-stage encryption and decryption algorithm, which references the key values
based on elliptic curve encryption to ensure effective protection of user data in the cloud en-
vironment. In this paper, we employed TLS/SSL technology for data encryption. TLS/SSL
combines public key encryption and symmetric key encryption to achieve end-to-end data
encryption. Moreover, it provides an authentication mechanism to verify the identity of the
cloud and devices. This ensures effective protection of data transmission from the cloud to
the device, ensuring data security and privacy.

2.3. Cloud Layer

The cloud layer primarily consists of distributed computing, cloud storage, cloud
service components, and interface design. The vast computing and storage capabilities
provided by the cloud platform can be utilized for parallel computing of large-scale data in
complex spatial scenarios and for storing data streams containing environment, location,
and task information collected from multiple sensors. In terms of data storage, conventional
location, attribute, and instruction data are stored using the lightweight and efficient non-
relational cross-platform database MongoDB. Spatial scene data, on the other hand, is
stored using the relational database PostgreSQL [27,28]. Different types of data are stored
in different databases, which greatly improves the efficiency of data extraction during
massive data analysis. The cloud layer provides functional components required for
tasks, enabling data processing, visualization, and issuing of relevant task instructions.
Offloading a significant amount of data processing tasks to the cloud layer can greatly
reduce the computational burden on the device layer, thereby enhancing task execution
efficiency. Interface design defines the data transmission format, message semantics, and
communication behavior, adhering to principles such as consistency, security, and flexibility.
This improves the reliability and scalability of the system while reducing development and
maintenance costs.

3. Software Architecture

IMUC utilizes various technologies to build different components and implement
various functionalities. As shown in Figure 2, on the frontend, we use JavaScript, HTML,
and CSS as foundational technologies and employ Vue,js as the frontend framework to
achieve dynamic user interfaces. Additionally, we utilize ElementUI as a Ul design tool to
provide aesthetically pleasing and user-friendly interface elements. On the server side, we
adopt Node js as the backend technology stack and use the Express framework to build
server-side applications. This allows us to efficiently handle client requests and interact



Drones 2024, 8, 19

with databases and other services. To support data storage and management, we utilize
both the NoSQL database MongoDB and the relational database PostgreSQL to meet the
requirements of different types of data. For mapping functionalities, we use Leaflet as
the mapping library and integrate it with TianDiTu and Cesium to provide map display
and interaction features on the platform. Furthermore, we employ the Potree library for
three-dimensional point cloud rendering, enabling visualization and analysis of point cloud
data. Finally, to achieve real-time data transmission and communication, we employ a data
transfer mechanism based on WebSocket technology. This approach ensures real-time data
transfer and bidirectional communication between the client and the server, improving the

platform’s responsiveness and real-time capabilities.
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Figure 2. Software architecture.

4. Related Work

We present our related work in this section. As shown in Figure 3, we divide the main
content of IMUC into five parts for introduction, and will explain in detail the technical

content involved.
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Figure 3. Related work.

4.1. Data Exchange between Edge, Device, and Cloud Platforms

Data exchange, as one of the core technologies of the platform, plays a crucial role.
By utilizing efficient data exchange techniques, it ensures real-time transmission of data
between the edge, edge devices, and cloud platforms. This means that data collected by
edge devices can be quickly and accurately delivered to the cloud servers, enabling the
cloud to access the latest data for real-time monitoring, analysis, and decision-making. The
platform consists of various hardware devices and software, and data exchange technology
enables cross-platform collaboration, allowing different devices and systems to seamlessly
exchange and share data. This collaboration promotes interoperability between compo-
nents, enhancing the flexibility and scalability of the entire platform. The main aspects of

platform data exchange are as follows:
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4.1.1. Camera Data

The data captured by the high-definition camera mounted on the unmanned device is
transmitted to the platform using the MQTT protocol. First, the edge device encodes the
captured raw photos. Then, the device connects to the MQTT broker and takes advantage
of its high-concurrency real-time data streaming capabilities to transmit the encoded stream
to the platform. The platform automatically decodes the data and stores the images in JPG
format on the server.

4.1.2. Lidar Data

To achieve real-time transmission of laser data collected by unmanned devices, the
ROSBridge protocol is used, and data downsampling is performed before transmission to
reduce data storage and transmission costs. The frontend processes the transmitted data
using ROSLIB and utilizes Three.js for graphical rendering. Three.js is an open-source 3D
graphics library based on JavaScript, used to create and display interactive 3D graphics
scenes and animations on web pages. Three.js provides various renderer options, allowing
3D scenes to be rendered into HTML5 Canvas, WebGL, or SVG, facilitating fast rendering
of massive 3D point cloud data. The laser data processing described above is performed on
streaming data and has characteristics such as low latency and high reliability. Additionally,
to enable comprehensive data mining and analysis, the platform also implements a real-
time accumulation display of laser data, with the maximum accumulation configurable by
users. Currently, open-source packages like ROS3D do not yet support the accumulation of
laser data on the web client.

4.1.3. Video Data

For the transmission of video data, we use Mjpg_Server at the edge layer to publish
video streaming services and employ the ROSBridge protocol for data transmission. This
allows for convenient transmission of real-time video streams captured by unmanned de-
vice cameras to the cloud platform, enabling remote monitoring and storage. Additionally,
the video frames are embedded with object detection results that can identify pedestrians
in the video. This means that users can access real-time video through this platform and
accurately detect and recognize pedestrians in the video. The object detection algorithm
used here is YOLOv4 (You Only Look Once version 4) [29], which is an advanced object
detection algorithm that has achieved significant improvements in accuracy and speed.
The general framework of this object detector is shown in Figure 4. Finally, the platform
supports displaying the received video stream data on the web client, allowing users to
watch and monitor the video stream in real time through a web interface. In summary, users
can access the platform through a web browser to obtain video data and object detection
results from the unmanned device camera.

Input Backbone

e

Dense Prediction

\
e

Figure 4. YOLOV4 object detector.

4.1.4. Location Data

The platform supports real-time transmission of location information received by GPS
devices mounted on unmanned devices to the cloud platform. The location data primarily
includes longitude, latitude, and altitude information. When the unmanned device carries
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a GPS device during a mission, the GPS device periodically retrieves the device’s location
information, including the current longitude, latitude, and altitude. By connecting with the
unmanned device, the platform can transmit this location information in real-time to the
cloud platform.

4.1.5. Command Data

During the execution of specific tasks, the platform sends the operator’s decision
information to the edge or directly to the device using the ROSBridge protocol. This
includes motion commands, start/stop commands, data feedback commands, and more.
Through these instructions, the operator can control the movement and navigation of the
unmanned device.

4.2. Active Perception Based on Change Detection in Complex Scenes

To address the issues of low efficiency, repetition, randomness, and untimeliness in
data acquisition tasks in complex scenes, as shown in Figure 5, we integrated the Global
Remote Sensing Real-time Monitoring and Point-to-Point Update Cloud Platform [30].
This platform can detect persistent changes in the task area and can push the location
information of the changed areas to our platform. This allows our platform to promptly
respond to real-time task requirements and take appropriate measures during execution to
achieve the following goals:

e  Efficiency improvement: By utilizing the detection capabilities of the Global Remote
Sensing Real-time Monitoring and Point-to-Point Update Cloud Platform, we can
quickly obtain information about changes in the task area. This eliminates the need
for extensive searching or blind sampling, saving time and resources;

e  Task optimization: By obtaining real-time location information of the changed areas,
we can perform targeted data acquisition and processing for these regions. This allows
us to more accurately capture the changes in the task area, thereby improving the
quality and effectiveness of data acquisition;

e Timely response: Due to the continuous monitoring of changes in the task area by
the Global Remote Sensing Real-time Monitoring and Point-to-Point Update Cloud
Platform, our platform can receive these change notifications promptly and respond
quickly. This means that we can adjust the task execution strategy in real-time to meet
the evolving task requirements.

Global remote sensing real-time Change detection

monitoring and fixed-point update
cloud platform j

@ The location of the changing area

m{

Multiple unmanned systems Collaborative collectiy

Figure 5. Data collection process based on change detection.
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4.3. Rapid Online Fusion Processing of Multi-Sensor Data
4.3.1. Image Online Stitching

For the online image splicing part, we used the OpenREALM [31] image splicing frame-
work. The process of this framework is shown in Figure 6, which mainly includes five parts:
Pose Estimation, Densification, Surface Generation, Ortho Rectification, and Mosaicing.

IR Densification Suniac L Mosaicing
Estimation Generation Rectification

Figure 6. OpenREALM image stitching process.

First, in the Pose Estimation stage, ORBSLAM?2 [32] is used to estimate the camera
pose matrix. If the tracking is successful, the frames are processed in a georeferenced
manner. The incoming frames may be queued until the estimated error is below a certain
threshold before they can be published. In the Densification stage, the suitability of the input
frames is checked, and based on the pose recognition, the initialization of the depth map is
created. Then, the frames are passed to the densifier interface, where the PSL reconstruction
framework is used. After dense reconstruction, the depth map is projected into a 3D point
cloud, covering any previously existing sparse points. The Surface Generation stage utilizes
the open-source library “Grid Map” proposed by Peter Fankhauser [33]. It is defined by
regions of interest and the Ground Sampling Distance (GSD). Multiple layers of data can
be stacked, where each cell of the grid is composed of a multi-dimensional information
vector. OpenREALM also re-implements some modules to address the efficiency issues of
dynamically growing maps in Grid Map. In the Ortho Rectification stage, a “grid-based
ortho-mosaicking” technique is chosen. It maps each pixel in the image to a corresponding
cell in the grid and uses interpolation and other techniques to estimate the values of each
cell. The Mosaicing stage is the final processing stage, where all previously collected data
are fused into a single scene representation. Here, all sequentially dense-reconstructed and
rectified frames form a high-resolution mosaic.

In our platform, we face the challenge of achieving real-time online stitching of images
from multiple unmanned systems involving the input of data from multiple sensors. To
address this issue, as shown in Figure 7, we plan to modify the OpenREALM framework
and introduce a multi-threading mechanism to enable parallel processing of data from
multiple sensors. With this approach, we can simultaneously handle data from multiple
sensors and ultimately fuse the stitched data into a unified scene. This will improve the
efficiency and real-time capability of our platform.

i/

= |:'> HosE Densification Surface Ortho Mosaicin
o Estimation Generation Rectification 9

Mosaicing

= e ——
' I:> o Densification Surfac_e O_r‘_tho_ Maosaicing
= Estimation Generation Rectification 9

\ Image Stitching p

e

Figure 7. Online stitching of multi-sensor images.

4.3.2. Multi-Source Laser Data Fusion

During the data acquisition process, we employed multiple laser sensors to work
collaboratively, where each sensor may provide laser scan data from different angles or
coverage areas. To obtain high-quality and consistent data, we preprocessed the collected
laser data at the edge by performing operations such as noise removal, filtering, and
calibration. Next, we aligned the data from different sensors to a common coordinate
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system to ensure they were represented in the same frame of reference. To eliminate
differences in position and orientation, we utilized point cloud registration algorithms to
match and align the point cloud data from different sensors. Finally, we fused the registered
point cloud data to merge the data provided by different sensors into a unified point cloud
model [34]. This allows us to visualize the complete point cloud data on the web interface.
Through this process, we can obtain more comprehensive and accurate environmental
information, providing a foundation for subsequent analysis and applications.

4.4. Cloud-Based Unmanned System Payload Management and Monitoring
4.4.1. Multi-Unmanned System Payload Management

Device management: The platform supports the connection of various types of de-
vices, including drones, unmanned vehicles, and robotic dogs, among others. We
need to input the model, IP address, and basic information such as the task name
and operators involved for each device. The basic information we submit is auto-
matically stored in the server’s database and synchronized to the device information
panel. Through such a device management mechanism, we can scientifically track and
manage critical information on various devices. This includes device models, allowing
us to accurately identify and differentiate different types of devices; IP addresses,
enabling precise device localization within the network; and task names and operator
information, facilitating the recording and tracking of device usage. This scientific
device management approach not only helps ensure the accuracy and traceability of
device operations but also provides comprehensive control over device connectivity
status and task assignment. Additionally, by storing basic information in a server-side
database and synchronizing it with the device information panel, we can have real-
time awareness of device status and attributes, offering users more convenient device
management services;

Group control settings: Group control settings allow for customizing the parameters
required for data transmission operations across multiple unmanned devices before
starting a mission. This primarily includes setting the main control IP, topics for laser
data and camera data for different unmanned devices, color settings for laser data from
different sources, waypoint planning object settings, remote control object switching,
as well as maximum linear and angular velocity settings. Once we have completed
the settings, the data will be updated in the server parameters. Through group control
settings, we can customize the operational parameters of unmanned devices to meet
the specific requirements of tasks. By setting the color of laser data from different
sources, we can better distinguish and visualize information from different data
sources. The setting of waypoint planning objects allows us to precisely specify the
navigation of unmanned devices in missions. The ability to switch remote control
objects, as well as the setting of maximum linear and angular velocities, provides
flexible control over the motion behavior of unmanned devices. Group control settings
are of significant importance for the collaborative work of multiple unmanned devices,
as they can enhance work efficiency and reduce costs and resource inputs.

4.4.2. Device Monitoring

Equipment tracking: The platform can receive real-time location information returned
by unmanned equipment and, at the same time, update the trajectory information
generated during its movement into the image map. Through this function, users
can clearly understand the activity trajectory of each unmanned device. We also
automatically differentiate colors for different unmanned device trajectories, allowing
users to easily distinguish and identify the trajectory paths of different devices. This
feature will provide users with real-time and intuitive location information displays
to better monitor and analyze the movement of unmanned devices. By observing
the movement patterns and trajectories of unmanned devices, users can gain a better
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understanding of the activity range of the devices. This is of significant importance for
tasks such as mission supervision, location analysis, and path optimization;

e  Remote control of devices: Under normal communication conditions, the platform
can remotely control the movement of unmanned devices using the Nipple]S virtual
joystick. Nipple]S is a JavaScript library used to create interfaces for virtual joystick
touch functionality. This feature allows temporary takeover of unmanned vehicles
when they are unable to navigate autonomously or encounter risks. The vector
controller provided by Nipple]S enables simultaneous control of the angular velocity
and linear velocity of the device’s movement;

e  Device waypoint planning control: The waypoint planning feature empowers users to
autonomously define waypoints on the map interface. It also reads the control object
specified in the group control settings and sends the set waypoints to the designated
unmanned devices. Upon receiving the instructions, the devices autonomously explore
and navigate to the specified waypoints. During this process, the devices collect real-
time scene data from their surrounding environment and transmit it back to the
platform. This feature enables remote control of unmanned devices for efficient data
collection. Users can utilize this functionality to flexibly plan waypoints for the devices,
meeting the specific requirements of the tasks. The devices autonomously navigate
according to the predefined sequence of waypoints, collecting crucial environmental
information. This remote control approach not only enhances the efficiency of data
collection but also reduces the complexity and risks associated with manual operation.

4.5. Cloud Route Planning and Massive Data Visualization
4.5.1. Cloud Route Planning

Global route planning is the foundation for multi-unmanned system operations and
provides decision-making support for executing tasks with unmanned devices. In our
platform, global route planning considers two factors, area data and the number of devices,
to determine the global routes. The platform automatically sends the route data as task
information to the unmanned devices, which autonomously carry out the assigned tasks
within the specified time frame. As shown in Figure 8, the platform automatically plans the
global routes based on the user-defined task area and the number of unmanned devices.
These global routes serve as initial paths, and during the data collection process, if the
devices encounter obstacles, they rely on their obstacle-avoidance capabilities.

(a) | | (b)

Figure 8. Global route planning. (a) Global route planning under a single unmanned device;

(b) Global route planning under multiple unmanned devices.

The pseudocode of the global route planning algorithm is as follows: Algorithm 1.
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Algorithm 1. Global Route Planning Algorithm

1. // Step 1: Set a task area

2. taskArea = defineTaskArea()

3. // Define the task area

4. // Step 2: Set unmanned device types and quantities

5. deviceList =[]

6.  For each device type and quantity:

7. device = createUnmannedDevice (deviceType, quantity)

8. // Create an unmanned device object

9.  deviceList.push (device)

10. // Step 3: Plan global routes for each unmanned device based on the drawn task area
11.  For each device in deviceList:

12.  globalRoute = planGlobalRoute (taskArea, device)

13.  // Plan a global route for the device

14.  device.setGlobalRoute (globalRoute)

15. // Step 4: Send the global routes to each unmanned device
16.  For each device in deviceList:

17.  sendGlobalRouteToDevice (device, device.globalRoute)

4.5.2. Mass Data Visualization

When conducting surveying and mapping tasks with multiple unmanned systems,
it is common to collect a large amount of environment point cloud data across different
flight missions. However, this poses significant challenges when it comes to displaying
such massive amounts of data on a web browser. Firstly, environment point cloud data
can be extremely large, containing millions or even billions of points. Transferring and
loading such large-scale data faces limitations in network bandwidth and storage capacity.
Traditional browser technologies may encounter performance bottlenecks when dealing
with such a large volume of data, resulting in slow loading speeds or even the inability to
load and display the data properly. Secondly, processing and visualizing point cloud data
require significant computational resources. Browsers typically run on terminal devices
such as personal computers, tablets, or smartphones, which have limited computing power.
Therefore, real-time processing and visualization of point cloud data in a browser can
lead to performance degradation, lagging, or crashes. To overcome these challenges, the
platform adopts the Potree [35] point cloud visualization framework. Potree provides
various tools for point cloud data processing, analysis, and visualization, enabling users to
intuitively understand the distribution, shape, and features of the data. It employs a range
of optimization techniques, such as hierarchical storage and progressive loading of point
cloud data, to enhance data transfer and loading efficiency. By segmenting point cloud
data into multiple levels and dynamically loading data based on the user’s perspective
and needs, Potree enables fast point cloud data visualization while reducing the burden on
network transmission and device computation.

For web visualization of massive point cloud data, we implemented the following
solution: Firstly, we uploaded the LAS-format point cloud data to a cloud server using
a POST request. Secondly, the server-side program on the cloud server incorporates the
PotreeConverter, a point cloud format conversion tool embedded in Potree. It automatically
converts the LAS-format point cloud data into the format required by Potree. Lastly,
we utilized Potree for the visualization and rendering of the massive point cloud data.
Potree uses a modified nested octree (MNO) structure, as shown in Figure 9, to divide
the point cloud data into spherical point clouds, significantly improving the speed of data
browsing. To provide a richer point cloud rendering experience, the platform has designed
multiple rendering modes based on intensity values, elevation values, RGB values, GPS
time, categories, and level of detail (LOD), as depicted in Figure 10. These rendering modes
allow users to display point cloud data in various ways according to their preferences
and requirements.
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Figure 10. Transmission line point cloud rendering: (a) intensity coloring; (b) elevation coloring;
(c) RGB coloring; (d) GPS time coloring; (e) classification coloring; (f) LOD level coloring.

In addition, the platform has also designed point cloud rendering capabilities based
on the open-source 3D mapping framework Cesium, which adds another visualization
method for point cloud data. Cesium ion, with its cloud storage capability, is a platform
that provides tilesets and 3D geospatial data. We can upload data to Cesium]S applications,
thereby reducing the platform’s burden of storing large-scale point cloud data. Figure 11
illustrates the display effect of accessing point cloud data stored on Cesium ion.

@) admin Search  Display Setting

Figure 11. Display point cloud data on Cesium.

Lastly, we also integrated point cloud measurement capabilities into the platform. The
functionality primarily includes distance, area, and angle measurements. The measurement
tools utilize GPU point-picking techniques to automatically capture the currently hovered
point or the nearest surrounding 3D points to obtain point data. This approach provides
fast and accurate measurements. The measurement methods are depicted in Figure 12,
illustrating distance, area, and angle measurements, respectively.
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(a) (b)

Figure 12. Point cloud measurement tools: (a) distance measurement; (b) angle measurement;

(c) area measurement.

5. Experiment and Comparison
5.1. Hardware Platform

The hardware setup for this experiment consists of two unmanned ground vehicles
(UGVs) and one unmanned aerial vehicle (UAV). As shown in Figure 13, the UGVs utilize
the BUNKER chassis, which employs a tracked differential drive mechanism capable of
differential rotation. The LIDAR sensor used is the XT32 3D laser, with a maximum range
of 120 m. The UGVs are equipped with an Intel NUC11 computer, a monocular camera,
and an i300 IMU. The UAV used is the Prometheus450, developed by AMOVLAB, as
depicted in Figure 14. Additionally, we employ MESH network communication to enhance
data transmission distance and efficiency, ensuring efficient data transfer during mission
execution. Among the sensors carried by unmanned devices, GNSS (Global Navigation
Satellite System) is primarily used to receive positioning information, thereby determining
the three-dimensional position in the geographic space. LIDAR (Light Detection and
Ranging) is a system that uses laser beams to detect targets and measure distances to objects.
Laser rangefinders have highly accurate ranging capabilities, with precision reaching the
centimeter level. IMU (Inertial Measurement Unit) is an inertial measurement system
composed of sensors such as accelerometers, gyroscopes, and magnetometers. It is a self-
contained navigation system that does not require an external reference frame, relies on
external information, or is affected by weather conditions and external disturbances. IMU
is used to measure object acceleration and angular velocity. The camera is primarily used
to capture image data of the surrounding environment.

[LDAR| .

Figure 13. Hardware composition of unmanned ground vehicle.
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Comprer

Figure 14. Hardware composition of unmanned aerial vehicle.

5.2. Lab Environment

The location for this experiment is in the vicinity of a laboratory building at Wuhan
University. This location offers a complex environment that provides rich conditions for the
experiment. The terrain here is diverse, including various scenarios such as obstacles, bends,
ramps, and tall buildings. These factors were important considerations when selecting the
experimental site. The presence of diverse obstacles allows us to simulate the operation of
unmanned devices in complex environments and test their obstacle-avoidance capabilities
within the platform’s mission planning. The existence of bends and ramps enables us
to test the stability of unmanned devices and the accuracy of navigation on different
terrains. Additionally, the surrounding tall buildings provide an ideal environment to
test the data transmission capability and signal stability of the platform and unmanned
devices in densely populated areas. These complex environmental conditions present
certain challenges for conducting multi-unmanned system data collection operations on
the platform.

5.3. Experiment Procedure

The basic flowchart of the experiment is shown in Figure 15. Firstly, the operator
places the unmanned devices in designated positions. The tester accesses the platform web
page through a browser to perform basic operations such as adding devices and group
control settings. Next, the tester draws the mission area and sends the mission information
to the unmanned devices. The devices autonomously explore the mission area based on
the planned waypoints. Finally, the collected environmental data are transmitted to the
platform and displayed on the web interface.

Place unmanned equipment Access cloud platform

Add device

Initialization
Connect devices -

l failed

" Connection "
T Status

[ ]

Receive instructions Group control settings
Data collection Task area drawing
Data return Waypoint planning

_

Figure 15. Experimental flow chart.
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Figure 16 illustrates the planned waypoint data on the platform, where the unmanned
vehicle autonomously explores and navigates to these positions. The blue dots indicate
the current position of the unmanned vehicle, the red dots represent the target waypoints,
and the red lines depict the traveled trajectory. We also conducted tests for scenarios
with multiple unmanned vehicles, as shown in Figure 17. The map uses different colors
to differentiate the trajectories of different unmanned vehicles. On the right side, the
real-time accumulated LiDAR data are displayed. The red point cloud data represent the
data collected by unmanned vehicle 1, while the blue point cloud data represent the data
collected by unmanned vehicle 2. Here, the point cloud data from different sources are
transformed into the same coordinate system, allowing for the visualization of accumulated
point clouds from multiple vehicles in the same scene. Figure 18 displays the trajectory
of two unmanned vehicles during their operation. The platform records their motion
trajectories and visualizes them. From the trajectory map, it can be observed that both
unmanned vehicles can consistently upload their position data, and their trajectories exhibit
good closure, covering all the targets in the test area.

Figure 16. Waypoint planning.

= .9 admin Search Display Setting

Home ' Data Collection

|

Remote Control d
© Add Name Type  Equipmentlp MissionNeme Operators longitude  Latitude Height Operate
» Start
« Stop
Connec

UGz MRE0O est Jack 114349% 3052032 2237653

Figure 17. Multi-unmanned vehicle operation.
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Figure 18. Trajectory diagram during unmanned vehicle testing: (a) UGV1 trajectory map; (b) UGV2
trajectory map.

Similarly, we conducted tests by connecting the drone to the platform, as shown in
Figure 19. The platform accurately receives GNSS data transmitted by the drone and
updates its position in real-time on the map. During the operation, the connection between
the platform and the drone remains stable, ensuring the reliability of intelligent decision-
making on the platform.

UAV

30.532
30.5318
30.5316
30.5314
30.5312

30.531
30.5308
30.5306
30.5304

30.5302

114.3496  114.3498 11435 1143502 1143504  114.3506  114.3508

(b)

Figure 19. Drone operations: (a) real-time position feedback during drone operations; (b) drone

trajectory map.

5.4. Experimental Results and Analysis

The overall experiment consisted of 10 field tests. Among them, the platform was
tested in conjunction with multiple unmanned vehicles for five tests, resulting in a total
data acquisition of approximately 2782.8855 MB. These data include 1601.23 MB of LiDAR
data, 1181.34 MB of camera data, and 0.3155 MB of GNSS data. The specific information is
shown in Table 1. The platform was also tested in conjunction with the drone for five tests,
resulting in a total data acquisition of approximately 381.0309 MB. These data include
380.856 MB of camera data and 0.1749 MB of GNSS data. The specific information is shown
in Table 2.

Table 1. Multi-autonomous vehicle test results.

Number Date Experiment Laser Data Camera Data GNSS Data Laboratory
Duration (MB) (MB) (MB) Equipment

1 3 June 2023 9min5s 263.67 190.84 0.0515 UGVs

2 5 June 2023 10 min 19 s 275.53 205.08 0.0544 UGVs

3 8 June 2023 8 min 25 s 236.72 182.47 0.0491 UGVs

4 9 June 2023 15min12s 436.41 323.33 0.0826 UGVs

5 12 June 2023 13 min 21's 388.90 279.62 0.0779 UGVs
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Table 2. Drone test experimental results.

Number

Date

Experiment Duration Camera Data (MB)  GNSS Data (MB) Laboratory Equipment

QL W

2 June 2023
5 June 2023
7 June 2023
13 June 2023
15 June 2023

S5minls 64.492 0.0291 UAV
4min21s 56.124 0.0266 UAV
6min1ls 81.761 0.0366 UAV
8 min 36 s 112.322 0.0513 UAV
5min2s 66.157 0.0313 UAV

During the data collection process, all devices were able to receive commands and
complete the data acquisition tasks without any data loss. The display of accumulated
LiDAR data was smooth, allowing for normal manipulation of point cloud data in a 3D
scene. Over time, the LIDAR data were incrementally updated. For camera data, the
images were displayed smoothly, enabling clear identification of the surrounding scenes.
The reception of GNSS data was normal, and the information panel refreshed quickly.
There were no significant deviations between the positioning information of the unmanned
devices and their actual positions. Throughout the operation, the platform was able to
monitor the status of the devices and visualize the data collection results. This ensured the
high-quality completion of the experiment and improved its reliability and accuracy.

5.5. Platform Performance Testing

We conducted performance testing on the platform in an intranet environment. The
test computer had an Intel Core i7-12700H@2.30 GHz CPU, 16 GB of memory, and an
NVIDIA GeForce RTX 3050 GPU. As shown in Table 3, we used the locust tool to simulate
different numbers of unmanned devices sending requests to the platform to test its stress
tolerance. The test duration was set to 1 min. We can observe that the average response
time of the platform increases with the number of drones, and the maximum response time
generally follows an upward trend. For example, when the number of unmanned devices is
20, the maximum response time of the platform is 29 ms, which is acceptable. Additionally,
no request failures occurred among the 147,630 requests, demonstrating the high stability
of the platform. Table 4 displays the resource usage of the platform after a period of stable
operation. The platform’s CPU usage remains below 10%, memory usage stays within
1 GB, and GPU usage is controlled below 55%. From the resource usage, we can observe
that the GPU usage of the platform is relatively high, mainly due to the rendering of a
large amount of 3D data. Table 5 shows the transmission rates of the platform’s main data
types. The transmission rates for LIDAR data, camera data, and other instruction data
are approximately 0.52 MB/s, 0.36 MB/s, and 0.12 MB/s, respectively. The speed of data
transmission is primarily influenced by the network environment.

Table 3. Performance testing of connecting different numbers of unmanned devices.

Number

Number of Unmanned Devices  Requests Fails Median (ms) Average (ms) Min (ms) Max (ms)

NGl Wi

5
10
15
20
25
30

132,437 0 2 2
162,549
148,449
147,630
153,998
167,087

14
13
18
29
41
72

oo oo o
O 00 \J U1 W
O 00 O U1 W
BN W~ N~

Table 4. Resource usage.

CPU (%) Memory (GB) GPU (%)
<10 <1 <55
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Table 5. Data transfer rate.

Laser Data Camera Data Other Instruction Data

0.52 MB/S 0.36 MB/S 0.12MB/S

5.6. Platform Comparison

Here, we compare our platform with similar tools/platforms, as shown in Table 6 We
used seven different functionalities as comparison indicators. The first functionality is the
ability to add new unmanned devices to the platform, which can be configured through
the platform. The second functionality is the ability to manage multiple unmanned devices,
including viewing their current status and location, as well as modifying the configuration
of each device. The third functionality involves real-time monitoring of GPS coordinates,
speed, and video streaming from the unmanned devices. The fourth functionality is the
ability to plan global routes for unmanned devices based on the mission area. The fifth
functionality is the online stitching of aerial images collected by unmanned devices. The
sixth functionality is the online display of multi-sensor data, including LiDAR data, camera
data, GNSS data, etc. The seventh functionality is point cloud data processing, enabling
cloud-based functions such as clipping, rendering, and measurement of point cloud data.

Table 6. Platform comparison.

Functionalities

Pino M [14] DroneTrack [15] WebODM [36] QGroundControl [37]  Foxglove [38] IMUC

Robot Configuration
Multi-Robot Management
Robot Monitoring
Robot Route Planning
Online Image Stitching
Multi-Sensor Data Display
Point Cloud Processing

v, v v v, v v,
v v Vv v Vv
Vv v Vv Vv v
v v

v v v
Vv v,

Vv v

6. Discussion

As an integrated platform, IMUC plays a significant role in supporting and optimizing
the collaborative operations of multiple unmanned systems, which is of great importance
for the development of the surveying and mapping industry. In the discussion section
of this paper, we delve into the technical challenges faced by the platform and explore
potential solutions. Additionally, we explore the possibility of integrating the platform with
artificial intelligence and machine learning technologies. Finally, we consider the difficulties
that this platform may encounter in its application in the surveying and mapping industry
and propose possible solutions.

e  Technical Challenges Faced: First and foremost, we are highly concerned with im-
proving the data transmission speed in practical operations, as it greatly affects the
real-time performance of the platform. In the field of unmanned systems, optimizing
data transmission speed is crucial for efficient and intelligent task execution. Currently,
the real-time performance of the platform heavily relies on the quality of the network
environment. Our current solution mainly involves compressing and simplifying data
as much as possible to reduce data transmission time. However, this solution has
limitations. With the continuous development of communication technology, faster
and more stable communication networks and protocols will meet the demand for
high-capacity data transmission. Secondly, we face the challenge of slow web-based
rendering of large-scale 3D data. Rendering speed can be improved by constructing
octree indexes and using level-of-detail (LOD) techniques to adjust the level of detail.
However, as data volume continues to increase, more advanced technologies and
algorithms are needed to support the browsing speed of massive 3D data. We are ex-
ploring the use of cloud computing and distributed computing methods for rendering
large-scale 3D data. By distributing rendering tasks to multiple computing nodes for
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parallel processing, rendering speed can be accelerated, and the real-time capabilities
of the system can be improved. Additionally, leveraging the elasticity and scalability
of cloud computing resources, we can dynamically adjust the scale of computing
resources to accommodate different scales and complexities of 3D geospatial data, as
per the requirement;

Integration of Artificial Intelligence and Machine Learning: The integration of artificial
intelligence (AI) and machine learning (ML) technologies holds significant importance
in data transmission and processing. By leveraging these technologies, intelligent
allocation and scheduling of tasks can be achieved. Based on factors such as the
nature of the tasks, priority, status, and capabilities of the robotic devices, algorithms
can autonomously determine which robots should be assigned tasks and arrange the
execution order of tasks to achieve optimal task completion efficiency. Additionally,
when performing real-time analysis and processing of raw data, useful information or
features can be extracted, noise or outlier data can be filtered, and data compression
and storage methods can be optimized to improve data processing efficiency and
performance. We will conduct in-depth research and apply these technologies to the
platform to achieve more efficient and intelligent applications;

Applications in the Surveying and Mapping Industry: Through this platform, the
surveying and mapping industry can achieve more efficient and accurate geographical
data collection and processing, resulting in significant value and impact. The platform
simplifies the surveying and mapping process by automating data collection, analysis,
and visualization, thus improving efficiency and productivity. It reduces manual work
and time-consuming tasks, helping to save time and resources. Figure 20 shows the
application direction of the surveying and mapping industry and its main technical
routes. Our platform is applied in the surveying and mapping industry and brings
practical help. For example, emergency disaster rescue operations can assist rescue
personnel in remote operations and visualize the situation at the disaster site. This not
only quickly reconstructs the field conditions but also improves safety by reducing
actual contact with hazardous environments or complex terrains. However, applying
this platform to the surveying and mapping industry may face some potential obstacles.
Firstly, there are concerns regarding data quality and security. The surveying and
mapping industry has high requirements for data quality, including high accuracy
and high resolution. It is necessary to implement appropriate data quality control
measures to ensure accuracy during the data collection process. Additionally, it is
essential to strengthen data security and privacy protection to ensure data integrity.
Secondly, there is the challenge of transmitting and visualizing multi-sensor data in
complex surveying scenarios. As we encounter increasingly complex scenarios, we
often deploy more sensors, which complicates data integration and visualization. This
requires continuous iteration of data transformation and standardization tools, as well
as data integration techniques, to achieve the fusion of multi-source data.

Surveying and Mapping Industry Applications
[ Urban } [ Smart } [ Emergency } [ Military }
0 g lannin agriculture disaster action
Application P J ,g‘ —
areas e I: "
Planning .and | Data collection | =P Data processjng
. preparation and analysis
Technical 3
process Application and decision- = Results presentation and
making visualization

Figure 20. Surveying and mapping industry applications.
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7. Conclusions

This paper aims to improve the efficiency of collaborative data collection opera-
tions using multiple unmanned systems in complex scenarios. We utilize cloud com-
puting and cloud storage to alleviate the computational and storage limitations of single-
machine modes. The platform we designed and developed offers several significant
advantages, including:

e  Our platform adopts a batch-streaming hybrid data transmission mechanism. This
mechanism allows us to achieve the transmission and exchange of heterogeneous
payload data from multiple sources, ensuring real-time and complete data delivery.
Whether it is structured or unstructured data, both can be efficiently and reliably
transmitted and exchanged through this platform;

e By enhancing the management and monitoring capabilities of multiple unmanned
systems in the cloud, our platform ensures safety during actual operations. This
includes, but is not limited to, real-time tracking of the geographical positions of
unmanned devices, monitoring the operational status of devices, and receiving real-
time feedback from alarm systems. Additionally, the platform enables fast online
fusion processing and collaborative perception of data from multiple sensors;

e  Our platform achieves multiple functionalities through the visual design of cloud-
based task and route planning. These functionalities include multi-layer switching,
editing and visual computation of payload parameters, offline playback of archived
data, and statistical analysis of massive data. Users can efficiently perform route
planning, adjust payload parameters, view archived data, and conduct data analysis
through a clean and intuitive interface. This greatly enhances the convenience and
efficiency of operating unmanned systems.

In summary, this paper constructed an integrated and efficient computing platform
that is controlled by a cloud-based central brain, with edge computing and intelligent
terminal interactions. The achievements of this work are of great significance in improv-
ing the efficiency of collaborative data collection operations using multiple unmanned
systems in complex scenarios. Future research will further explore how to optimize data
visualization and enhance the real-time performance of the system. We will consider more
factors and study more efficient task allocation and route planning algorithms to cope
with increasingly complex environments and task requirements. Additionally, we will
also consider expanding the functionality of the platform to adapt to a wider range of
application domains and scenarios.
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