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Abstract: Drones have been increasingly used in firefighting to improve the response speed and
reduce the dangers to human firefighters. However, few studies simultaneously consider fire spread
prediction, drone scheduling, and the configuration of supporting staff and supplies. This paper
presents a mathematical model that estimates wildfire spread and economic losses simultaneously.
The model can also help us to determine the minimum number of firefighting drones in preparation
for wildfire in a given wild area. Next, given a limited number of firefighting drones, we propose
a method for scheduling the drones in response to wildfire occurrence to minimize the expected
loss using metaheuristic optimization. We demonstrate the performance advantages of water wave
optimization over a set of other metaheuristic optimization algorithms on 72 test instances simulated
on selected suburb areas of Hangzhou, China. Based on the optimization results, we can pre-define a
comprehensive plan of scheduling firefighting drone and configuring support staff in response to a
set of scenarios of wildfire occurrences, significantly improving the emergency response efficiency
and reducing the potential losses.

Keywords: wildfire; fire spread; firefighting drones; scheduling; metaheuristic optimization; water
wave optimization

1. Introduction

Wildfires, such as forest fires and mountain fires, are one of the most frequent disasters
causing great economic losses, environmental damage, and threats to lives worldwide.
Efficient firefighting operations are critical to reduce the losses. However, traditional
firefighting operations often pose significant dangers to human firefighters. In addition,
traditional aerial firefighting using helicopters, air tankers, and other manned aircraft
are often limited in low flexibility, scalability, and cost-effectiveness [1,2]. In recent years,
unmanned robotics, especially drones (also known as unmanned aerial vehicles, UAVs),
have been increasingly used in firefighting operations to improve the response speed and
economic effectiveness while reducing the dangers to human firefighters [3–6]. In wild
areas, the typical usage of firefighting drones is to deliver water capsules (bags) to fire spots
and then release water (or other water-based liquids) in dispersed form to suppress fire
in the covered area [7,8]. Depending on the types of drones, the amount of water that a
drone carries at a time typically varies from 10 to 1000 kg. Figure 1 shows a TD220 coaxial
firefighting drone (made by Zhongzhihang [9]), which has a payload of 120 kg.

Qin et al. [3] designed a drone firefighting system, which consisted of a quadcopter
as the platform, a transmission system to collect and release water, a kinematic-based
navigation system, and a mission control system to coordinate the drone to find an optimal
path (with respect to distance and power consumption) to the fire spot and then suppress
the fire. Viegas et al. [10] designed a lightweight tethered UAV forest firefighting drone,
which utilized water jet propulsion combined with multi-rotor propulsion to increase the
flight endurance. However, receiving a continuous intake of water for firefighting can
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be impossible in wild areas, as the operational distance is limited by the length of the
aerial hose. Using water capsules delivered by aircraft, to and released on the fire spot,
eliminates this limitation [11]. The aircraft releases a water capsule at an appropriate
position. When moving in a medium above the critical temperature, the capsule shell
accumulates an integral amount of damage; when the damage reaches the value of the
thermal stability coefficient of the shell, the shell breaks and releases water in dispersed
form [8]. Explosive blasts in water makes shock waves, so shock waves propagate in
water first and then beyond water to continue propagation in the air. Explosive water
mist lowers the temperature, insulates oxygen, and asphyxiates the absorption of heat
radiations. Large momentum also enables the mist to pass through smoke to act on the
surface of fuel and (sometimes) soaks into the fuel further [12]. Successive explosions of
multiple capsules can distribute water to cover the fire vulnerability zone more fully. How
to choose an appropriate water-dropping scheme to achieve the optimal firefighting effect
is quite a difficult problem. Śmigielski et al. [13] used a numerical method of distribution
propagation and uncertainty propagation to analyze the precision of system controlling
delivery of a water capsule by a helicopter. Czerniak et al. [14] employed an artificial bee
colony (ABC) to optimize the physical model of flight of a water bag dropped from an
aircraft. They also used the ABC method to optimize fuel consumption of the aircraft [15].
Wang et al. [16] proposed a combined genetic algorithm (GA) for optimizing the water-
dropping scheme for a fixed-wing firefighting aircraft based on a neural network agent
model between the aircraft water-dropping schema and a water distribution polygon.

Figure 1. A firefighting drone with a water capsule [9].

Smart drones are subject to limited endurance and low load capabilities. Effective
path planning (if needed, with the consideration of obstacle and collision avoidance) of
firefighting drones in a complex, wild environment is important. UAV path planning
methods have been extensively studied in the literature, which can be categorized into
local and global search methods depending on whether path planning is considered as
a global optimization problem [17]. Global search methods can be further divided into
problem-specific heuristic methods and metaheuristic methods [18–21]. Luo et al. [22]
proposed an improved D*Lite algorithm for planning the paths of UAVs supplemented
by unmanned ground vehicles (UGVs), which is effective even when the 3D workspace
is only partially known. Harikumar et al. [23] proposed an Oxyrrhis-Marina-inspired
search and dynamic formation control method, which first selects between Levy flight,
Brownian search, and directionally driven Brownian search for target identification and
then controls the UAVs to fly in a dynamic formation to quench the fire using water. Zheng
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et al. also studied the heuristic and metaheuristic methods to search and identify targets
using UAVs [24] as well as human–UAV cooperation [25,26]. Wang et al. [27] proposed
an adaptive vortex search algorithm of planning optimal firefighting UAV paths in terms
of the solution quality, length, and energy. Xiang and Wang [28] presented an improved
ant colony optimization (ACO) algorithm, which combines pseudo-random rules and
roulette, and updates the pheromone concentration based on the distribution rules of the
wolf colony algorithm to give strong feedback to the ants. Based on a forest fire risk map,
Xu et al. [29] presented a method using ring self-organizing mapping to plan a flight path
for forest fire monitoring according to the forest fire risk level. Alsammak et al. [30] used
swarm intelligence to model autonomous and decentralized behaviors for a drone swarm,
which used an improved random walk algorithm to explore distributed fire spots and a
self-coordination mechanism based on the stigmergy to extinguishing fire cooperatively.

Nevertheless, few works on firefighting drone path planning integrate the modeling
of fire propagation, which is a decision basis for firefighting plans. Xavier Viegas [31]
studied the linkage between convection and radiation in the fire propagation in laboratory
experiments and then generalized the results for wind-driven fires to interpret the global
movement of the fire front. Li et al. [32] presented a forest fire spreading simulation system,
to visualize the impact of multi-factors on the fire spread, which can be used to identify
the key sites for the prevention and the control of forest fires. Cellular automata is one of
the major methodologies for describing the dynamics of fire propagation. Alexandridis
et al. [33] presented the simulation results of a cellular automata model describing the
dynamics of a forest fire spread on a mountainous landscape, taking into account fac-
tors such as the type and density of vegetation, the wind speed and direction, and the
spotting phenomenon. Some model parameters were tuned using a black-box non-linear
optimization approach. Rui et al. [34] constructed an improved model that couples cellu-
lar automata with an existing forest fire model, considering the impact of time steps on
simulation accuracy to provide an optimal time-step value. They tested the model on a
case study of a forest fire at Daxing’an Mountain in China, 2006. Mutthulakshmi et al. [35]
adopted a physical model to simulate the spread and extinguishing of fire in the context
of Dumai, Indonesia. They applied cellular automata to predict the effects of firefighting
intervention with the spatial and propagation dynamics of fire. Wu et al. [36] established a
fire propagation model containing multidimensional physical and environmental variables,
where an artificial neural network (ANN) was used to analyze spatial time series patterns.
A restriction of the grid-based models is that they cannot precisely represent complex
topographic differences among cells. There were also studies on fire spreading in and/or
between buildings [37,38], for which surface area of fuel/floor, ventilation, and thermal
conductivity of the boundary material play critical roles. In comparison, wildfire spreading
mainly relies on wind force and combustible vegetation density.

To the best of our knowledge, no previous work simultaneously considers fire spread
prediction, drone scheduling, and the configuration of support staff and supplies for
firefighting. Moreover, most existing work focus on extinguishing a fire as quickly as
possible. However, in most real-world cases, different fire spots have different priorities,
e.g., a subarea with expensive cash crops should be prior to an uncultivated subarea.
Therefore, scheduling firefighting drones to minimize the total fire loss based on the
prediction of fire spread and losses is practically significant, but it is a challenging task due
to the complexity of fire dynamics and its relation to fire losses. To address this challenge,
in this study, first we present a mathematical model that predicts dynamic wildfire spread
together with the related economic losses, which is validated on two real-world wildfires.
The model output can also help us to determine the minimum number of firefighting
drones in preparation for wildfire in a given wild area. Next, given a limited number
of firefighting drones, we propose a method for scheduling the drones in response to
wildfire occurrence to minimize the expected loss using metaheuristic optimization. We
demonstrate the performance advantages of water wave optimization (WWO) [39] over
a set of other popular metaheuristic optimization algorithms. Based on the optimization
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results, we can pre-define a comprehensive plan of scheduling firefighting drones and
configuring support staff in response to a set of scenarios of wildfire occurrences. We
conduct experiments on a set of 72 test instances simulated on some forest park areas in
Hangzhou, China, and the results demonstrate that the proposed method significantly
improved the emergency response efficiency and reduced potential losses. The main
contribution of this paper can be summarized as follows:

• We present a mathematical model of wildfire spreading that simulates dynamic fire
development and propagation, and, at the same time, estimates the economic losses
caused by the fire.

• We propose a heuristic optimization method for configuring and scheduling firefight-
ing drones to minimize the expected total wildfire loss.

• We conduct expensive computational experiments to validate the effectiveness and
efficiency of the proposed method on real-world instances.

In the remainder of this paper, we describe the mathematical model for predicting
wildfire spread and the corresponding economic losses in Section 2, present the optimiza-
tion method for drone scheduling in Section 3, and present the experimental results in
Section 4. Finally, we conclude with discussions in Section 5.

2. Wildfire Spread Modeling and Loss Estimation

Given a wild area A, we divided it into a set of m subareas {A1, A2, . . . , Am} according
to two basic criteria: (1) two adjacent subareas have different topographic and/or envi-
ronmental features, for example, one subarea is full of tall trees and the other is mainly
with shrubs; (2) the area and vegetation biomass of a subarea are not very large, such
that the water volume for extinguishing the fire in the subarea is reasonable (normally
1000∼10,000 kg, which can be carried by 5 to 20 drones at a time). Typically, we first divide
the area according to the first criterion; if some resulting subareas are too large to sat-
isfy the second criterion, we then divide them into smaller subareas according to the
second criterion. After division, we estimate the fire dynamics and losses in each subarea
and the propagation between different subareas.

2.1. Fire Dynamics and Heat Release

The typical process of a wildfire consists of three stages: preheat (growth), full com-
bustion, and decay [31,40], which are illustrated in Figure 2 [41]. Given the time tig

i of fire
ignition in subarea Ai, temperature T(t), (relative) humidity M(t), wind force wf(t), and
wind direction wd(t) in each time slice t, the present model estimates the process of fire
growth in Ai and the process of fire propagation to areas adjacent to Ai, as well as the
corresponding economic losses. Table 1 presents the model parameters used in this paper.
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Figure 2. Illustration of the typical stages of a wildfire.
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Table 1. Model parameters used in this paper.

Parameter Description

m Number of subareas
ai Area (m2) of subarea Ai

tig
i

Time of fire ignition in subarea Ai
ρi Combustible vegetation density ρi of subarea Ai
Qi Total combustible heat of the vegetation in subarea Ai
T(t) Temperature at time t
M(t) Humidity at time t
wf(t) Wind force at time t
wd(t) Wind direction at time t

h(T, M)
Coefficient used in Equation (1) for calculating the heat release rate in the preheat
stage

g
(
wf(t)

) Exponent used in Equation (1) for calculating the heat release rate in the preheat
stage

h′
(
wf(t)

) Coefficient used in Equation (3) for calculating the heat release rate in the full
combustion stage

g′
(
wf(t)

)
Exponent used in Equation (5) for calculating the heat release rate in the decay stage

ϖ
(
wf(t)

)
Coefficient used in Equation (12) for calculating the probability of fire propagation

tfc
i Time at which the fire in subarea Ai enters into the full combustion stage

tde
i Time at which the fire in subarea Ai enters into the decay stage

tex
i Time at which the fire in subarea Ai is naturally extinguished

θ̂ Threshold of heat release rate for the fire enters into the full combustion stage

p̂Q
Threshold of the ratio of the total released heat to Qi for the fire enters into the
decay stage

vi Valuation of vegetation in subarea Ai
v′i Valuation of vulnerable assets in subarea Ai
lbi,i′ Length of the boundary between two adjacent subareas Ai and Ai′

l̂b Threshold of boundary length for fire propagation
∠(la, lb) Angle between two lines la and lb
W Amount of water that can be carried by a drone at a time
D Maximum distance of the drone
W Maximum load of the drone
vmax

u Maximum velocity of the drone
vmin

u Minimum velocity of the drone

1. Preheat stage. After the ignition time tig
i , the heat release rate θ

ph
i (t) continuously

grows with time t, and its growth rate depends on the combustible vegetation density
ρi of the subarea, temperature T(t), humidity M(t), and the wind force wf(t):

θ
ph
i (t) = ρih

(
T(t), M(t)

)
(t− tig

i )g(wf(t)) (1)

where h(·) is a function of temperature and humidity, and g(·) is a function of wind
force. Currently, we define h(·) only on the temperature range from −10◦ to 50◦,
which covers the temperature ranges in most of East China and South China. For
convenience, we simply define g(·) on ten levels of wind force (wind force above level
10 rarely occurs on the mainland), as shown in the function in Table 2.

2. Full combustion stage, in which gas combustion is dominant. Whenever the heat

release rate reaches a threshold θ̂, i.e., θ
ph
i (t) ≥ θ̂, the fire in the subarea enters into

the full combustion stage, the time at which is denoted as tfc
i :

tfc
i = min

t′≥tig
i

{
θ

ph
i (t) ≥ θ̂

}
(2)

The heat release rate during this stage is relatively stable:

θfc
i (t) = c1ρi − h′

(
wf(t)

)
(t− tfc

i )
2 (3)
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where c1 is a constant, and h′(·) is a function of the wind force, the values of which is
shown in the third row of the function in Table 2.

3. The decay stage, in which charcoal combustion is dominant. Whenever the ratio of
the total released heat to the total combustible heat of the vegetation Qi in the subarea
reaches a threshold p̂Q, the fire in the subarea enters into the decay stage, the time at
which is denoted as tde

i :

tde
i = min

t′≥tfc
i

{( ∫ tfc
i

tig
i

θ
ph
i (t)dt +

∫ t′

tfc
i

θfc
i (t)dt

)
≥ p̂QQi

}
(4)

The heat release rate during this stage decreases with time:

θde
i (t) = c2ρi(t− tde

i )−g′(wf(t)) (5)

where c2 is a constant and g′(·) is a function of the wind force, the values of which
is shown in the fourth row of the function in Table 2. Note that t = tde

i will cause a
division-by-zero in Equation (5); at this time, the heat release rate should be calculated
according to θfc

i (t) in Equation (3).
Whenever the heat release rate decreases to a lower limit θ (or the total released
heat reaches the total combustible heat), the fire is extinguished, the time at which is
denoted as tex

i :
tex
i = min

t′≥tde
i

{
θde

i (t) ≤ θ
}

(6)

As a result, the heat release rate of the fire in subarea Ai at each time t is:

θi(t) =


θ

ph
i (t) tig

i < t ≤ tfc
i

θfc
i (t) tfc

i < t ≤ tde
i

θde
i (t) tde

i < t ≤ tex
i

0 else

(7)

Table 2. Function values of g(·) used in Equation (1), h′(·) used in Equation (3), g′(·) used in Equation (5),
and ϖ(·) used in Equation (12).

Wind Force Level 0 1 2 3 4 5 6 7 8 9 10

g(·) values 1.414 1.503 1.691 2.000 2.265 2.673 2.967 3.341 3.568 4.102 4.609
h′(·) values 0.55 0.63 0.77 0.92 1.01 1.18 1.29 1.40 1.53 1.68 1.85
g′(·) values 1.64 1.32 1.21 1.12 0.97 0.90 0.83 0.77 0.74 0.65 0.61
ϖ(·) values 0.16 0.25 0.33 0.46 0.6 0.89 1 1 1 1 1

2.2. Loss Estimation

We consider two types of losses: losses of vegetation and losses of other vulnerable
assets. Let vi be the valuation of vegetation and v′i be the valuation of other vulnerable
assets in subarea Ai. At each time τ, we calculate the first type of losses according to the
ratio of the total released heat to the total combustible heat of the vegetation:

LVi(τ) =



∫ τ

t
ig
i

θ
ph
i (t)dt

Qi
vi tig

i < τ ≤ tfc
i∫ tfci

t
ig
i

θ
ph
i (t)dt+

∫ τ

tfci
θfc

i (t)dt

Qi
vi tfc

i < τ ≤ tde
i∫ tfci

t
ig
i

θ
ph
i (t)dt+

∫ tex
i

tfci
θfc

i (t)dt+
∫ τ

tde
i

θde
i (t)dt

Qi
vi tde

i < τ ≤ tex
i

vi τ > tex
i

(8)
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For other vulnerable assets, we assume that they are partially lost during the preheat
stage and completely lost if the fire enters the full combustion stage:

LV′i(τ) =


∫ τ

t
ig
i

θ
ph
i (t)dt

Qi
v′i tig

i < τ ≤ tfc
i

v′i τ > tfc
i

(9)

The total loss in Ai at time τ is

Li(τ) = LVi(τ) + LV′i(τ) (10)

2.3. Fire Propagation

Fire spread in a subarea is unimpeded. On the contrary, the propagation of a fire
in a subarea Ai to an adjacent area Ai′ is considered as probabilistic, and the probability
pi,i′(t) depends on the heat release rate, wind power and direction, and open boundary
between the subareas (e.g., for two subareas mainly separated by a river but linked by a
narrow shrub zone, of which the narrow shrub zone is considered as the open boundary
between the subareas). Let lbi,i′ be the length of the open boundary between Ai and Ai′ and
α = ∠(wd, oli,i′) be the angle between the wind direction wd and the line oli,i′ orthogonal to
the open boundary (as shown in Figure 3). We define

ω(α) =

{[ cos(α)+δc
1+δc

]ec 0 ≤ α ≤ 90◦[ (1+0.75 cos(α))δc
1+δc

]ec else
(11)

where δc and ec are two constants between 0 and 1 (taking values of 0.2 and 0.5 in our study,
respectively, which results in that ω(0◦) = 1, ω(90◦) = 1/6, and ω(180◦) ≈ 1/25).

Figure 3. Angle between the wind direction and the line orthogonal to the open boundary between
two subareas.

The probability that the fire propagates from Ai to Ai′ at the next time t+ 1 is calculated as

pi,i′(t + 1) =
θi(t)

θ̂
·

lbi,i′

l̂b
·ω

(
∠(wd(t), oli,i′)

)
·ϖ

(
wf(t)

)
(12)

where l̂b is a threshold of the boundary length, and ϖ(·) is a function of the wind force, the
values of which is shown in the fifth row of the function in Table 2. As we can see, the value
is always one when the wind force level is above six. That is, if the fire is in full combustion
(as the heat release rate reaches the threshold θ̂), the open boundary length is not shorter
than the threshold l̂b, the wind direction is in line with the line orthogonal to the open
boundary, and the wind force level reaches or exceeds six, of which the probability is then
1, i.e., the fire propagates from Ai to Ai′ deterministically.
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In the case that there are multiple burning subareas {Ai1 , Ai2 , . . . , AiK} adjacent to a
subarea Ai, the joint probability of the ignition in subarea Ai is calculated as

pig
i (t) = 1−

K

∏
k=1

(
1− pik ,i(t)

)
(13)

2.4. Simulation Process

Suppose that a set A∗ of one or more subareas are burning at the beginning time.
From t = 0 to a given end time tend, we can simulate the process of fire propagation by
iteratively calculating the ignition probabilities and estimating the fire development in
related subareas at each time slice t using the following steps:

1. Let t = 0; for each subarea Ai ̸∈ A∗, initialize its accumulated ignition probability

pcig
i (0) = 0.

2. Set t = t + 1; if t = tend, then exit.
3. For each subarea Ai ∈ A∗, calculate its heat release rate according to Equations (1)–(7) (if

needed, update its fire stage), and then calculate its loss according to Equations (8)–(10).
4. For each subarea Ai ̸∈ A∗ and for each τ ∈ [1, t] satisfying pig

i (τ) > 0 (i.e., the subarea
has a probability of being ignited at time τ), calculate its heat release rate according to
Equations (1)–(7) (if needed, update its fire stage), and then calculate its loss according
to Equations (8)–(10) under the condition of tig

i = τ.
5. For each subarea Ai ̸∈ A∗:

(a) Initialize the non-ignition probability p¬ig
i (t) = 1.

(b) For each subarea Ai′ ∈ A∗ that is adjacent to Ai:

i. Calculate pi′ ,i(t) according to Equation (12).
ii. Update the non-ignition probability as

p¬ig
i (t) = p¬ig

i (t)(1− pi′ ,i(t)) (14)

(c) For each subarea Ai′ ̸∈ A∗ that is adjacent to Ai while having pcig
i′ (t−1) > 0:

i. Calculate the probability of the propagation from Ai′ to Ai as

pi′ ,i(t) =
E
(
θi′(t)

)
θ̂

·
lbi′ ,i

l̂b
·ω

(
∠(wd(t), oli′ ,i)

)
·ϖ

(
wf(t)

)
(15)

where E
(
θi′(t)

)
is the expected heat release rate of Ai′ at time t, which

is calculated as

E
(
θi′(t)

)
=

t−1

∑
τ=1

θ(τ|tig
i′ = τ)pig

i′ (τ) (16)

ii. Update the non-ignition probability according to Equation (14).

(d) Set pig
i (t) = 1− p¬ig

i (t).
(e) If pig

i (t) ≥ 1− ϵ (where ϵ is a small value, which is set to 0.001 in this study),
then add Ai to A∗;

(f) Otherwise, update the accumulated probability pcig
i (t) of ignition in Ai as

pcig
i (t) = pcig

i (t−1) +
(
1− pcig

i (t−1)
)

pig
i (t) (17)

If pcig
i (t) ≥ 1− ϵ, then add Ai to A∗.

6. Go to step 2.
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For model verification, we used the above process to simulate two wildfires that
occurred in Zhejiang Province, China: one in 2020 and the other in 2022. The data came
from the Emergency Management Department of Zhejiang Province, recording the time
at which each subarea entered into the full combustion stage and the decay stage (as the
preheat stages of wildfires were difficult to monitor, the corresponding times were missing).
We conducted Monte Carlo simulations, with 50 trials on each wildfire, and compared
the simulated full combustion time and decay time with the actual time, then presented
the results of the two fires in Figures 4 and 5, respectively. The results showed that the
deviations of the simulated time curves from the corresponding actual time curves were
generally small. In particular, the full combustion time curves fitted with the actual time
curves well. On the two fires, the mean absolute percentage errors (MPAE) of the full
combustion time were 7.77% and 6.98%, and the MPAE of the decay time were 8.56% and
7.81%, respectively. As the full combustion stage plays the most important role in fire spread
and causes the most losses, the proposed model for wildfire spread and loss estimation is
practically useful.
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Figure 4. Comparison of the simulated and actual fire spread in the first wildfire (fire area consisting
of 46 subareas).

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Full combustion (actual) Full combustion (sim) Decay (actual) Decay (sim)

Figure 5. Comparison of the simulated and actual fire spread in the second wildfire (fire area
consisting of 22 subareas).

3. Drone Configuration and Scheduling
3.1. Minimum Number of Firefighting Drones in Preparation for Wildfire

Let ai be the area (in m2) of subarea Ai. The amount of water for extinguishing the fire
in the area is proportional to ai and θi(t) at time t. Let W be the amount of water that can
be carried by a drone at a time (under the assumption of homogeneous drones, which is
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not difficult to extend to heterogeneous drones). The least number of firefighting drones
required for extinguishing the fire in subarea Ai at time t is

Ni(t) =
⌈
c3

aiθi(t)
W

⌉
(18)

where ⌈·⌉ denotes rounding up to the closest integer, and c3 is a constant. The value of θi(t)
is at most θ̂, and the number is at most

N̂i =
⌈
c3

ai θ̂

W
⌉

(19)

A basic principle of firefighting drone preparation for wildfire is that the usage of
all drones is sufficient to extinguish the fire in any subarea at any time. Therefore, the
minimum number of firefighting drones in preparation for wildfire in the while wild area
can be determined as

Nmin
drones = min

1≤i≤m

{
N̂i

}
(20)

3.2. Optimization Problem of Firefighting Drone Scheduling

For fire prevention for a wild area A, we normally establish a lightweight fire station
near a water resource and equip the station with Ndrones firefighting drones (Ndrones ≥ Nmin

drones).
Let di be the distance from the fire station to subarea Ai, vi be the speed of a fully-loaded
drone from the fire station to subarea Ai, and v′i be the speed of an empty drone (after
releasing water) from Ai to the fire station. We also set up at lease one fire sensor in each
subarea of A: the probability of the sensor perceiving a fire in the subarea is 1 in the full
combustion stage and smaller than 1 in the preheat stage. Anyway, whenever we receive
the warning from a sensor in subarea Ai at time 0, we pessimistically assume that tfc

i = 0,
i.e., the fire is in the full combustion stage.

Suppose that we receive the warning from a set A∗(0) of one or more subareas at
time 0. A firefighting decision x is defined as an order (sequence) of subareas in A. Let
∆t(A∗) be the time for a drone flying to the shortest subarea in A∗, i.e.,

∆t(A∗) = min
Ai∈A∗

di/vi (21)

Whenever there are available drones at time t, we select a candidate set AC(t) of
subareas, each of which has already been ignited (but not yet extinguished) or has an
accumulated ignition probability pcig

i
(
t+∆t(A∗(t))

)
larger than a threshold epc. We arrange

the drones to extinguish the fires in the subareas in AC(t) in the same order as in x.
Based on the above principle, the fitness of a firefighting solution x is evaluated using

the following steps:

1. Let t = 0, N(t) = Ndrones be the initial number of available drones.
2. Calculate ∆t(A∗)(t) according to Equation (21) and select the candidate set AC(t) of

subareas satisfying pcig
i
(
t + ∆t(A∗(t))

)
> epc, which are sorted in the same order as in x.

3. For each subarea Ai ∈ AC(t):

(a) Calculate Ni(t) according to Equation (18).
(b) If Ni(t) ≤ N(t), then assign Ni(t) drones to subarea xi, whose fire will be

extinguished at time t + dxi /vxi , and these drones will be available at the
station at time t + dxi /vxi + dxi /v′xi

, and then set N(t) = N(t)−Ni(t).
(c) If N(t) <

(
mini<i′≤nx{Ni′(t)}

)
, then go to step 4.

4. Set t = t + 1.
5. Check whether there is any burning subarea whose fire will be extinguished at time t;

if so, set the extinguish time to t and heat release rate to zero and remove it from A∗(t).
6. If there is no burning subareas, calculate the total loss and exit.
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7. Use steps 3 to 5 described in Section 2.4 to update the states of the other subareas at
time t; if there is any subarea entering into the full combustion stage, add it to A∗(t);
if there is any burning subarea whose fire is naturally extinguished at time t, remove
it from A∗(t).

8. Check whether there are some drones returning to the station at time t; if so, update
the value of N(t).

9. Go to step 2.

For each subarea Ai ∈ A, if it is ignited as a deterministic time tig
i and extinguished at

time tex
i (x) based on the firefighting solution x, then its expected loss E

(
Li(x)

)
is L

(
tex
i (x)

)
calculated according to Equations (8)–(10); otherwise, its expected loss is calculated as

E
(

Li(x)
)
= ∑

τ

L
(
tex
i (x)|tig

i = τ
)

pig
i (τ) (22)

This problem aims to minimize the total loss:

min f (x) =
m

∑
i=1

E
(

Li(x)
)

(23)

3.3. Optimization Algorithms

The above firefighting drone scheduling problem is to find an optimal sequence of
subareas, which is essentially a permutation optimization problem. The solution space has
the same structure as the traveling salesman problem (TSP) and permutation flowshop
scheduling problem (PFSP), while the fitness evaluation function is significantly more
complex and computationally expensive than TSP and PFSP. For a wild area with dozens
to hundreds of subareas, the computational cost of exact optimization methods can be
unaffordable. Here, we adapt several popular metaheuristic optimization algorithms for
TSP/PFSP, which are briefly described as follows:

• GA using order-based solution representation, partial mapping crossover, and swap
mutation [42].

• Particle swarm optimization (PSO) using discrete sequence-based particle representa-
tion [43], where velocity trail values are used as the probabilities of the components
being placed in certain positions of the sequence. We also incorporate a comprehensive
learning strategy [44,45] and an adaptive parameter control mechanism [46].

• Differential evolution (DE) adapted for permutation optimization based on floating-
to-integer mapping [47], where solutions are encoded as floating vectors and evolved
via standard DE mutation and crossover, then decoded to integer sequences based on
the order of floating values.

• Biogeography-based optimization (BBO) for permutation optimization based on sub-
sequence migration [48,49]. The migration operator selects a subsequence from the
emigrating solution and uses it to replace the corresponding part in the immigrating so-
lution while using the original components in the part to substitute the corresponding
components in the other part to avoid duplication.

• Ecogeography-based optimization (EBO) that extends BBO by integrating local and
global migration [50,51].

As the fitness evaluation of a solution to the problem involves the computationally
expensive simulation process, we mainly focus on WWO [39], which uses a small popula-
tion to avoid too many fitness evaluations. WWO is a metaheuristic mimicking water wave
motions to search the solution space. In WWO, each solution x is analogous to a wave with
a wavelength λ(x), which is inversely proportional to the solution fitness; at each iteration,
each solution searches in a range proportional to its wavelength such that high-fitness
solutions search in small ranges, while low-fitness solutions search in large ranges (as
illustrated in Figure 6), which leads to a good balance between diversity and convergence.
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Figure 6. Illustration of wavelength-based search in WWO.

To adapt the original WWO for continuous optimization to this firefighting drone
scheduling problem, we redefine its propagation and breaking operators based on the
principles from [52]. Propagation of a solution x is performed, for m times, by each, with a
probability of λ(x), randomly choosing and reversing a subsequence of x. In this way, the
expected number of subsequence reversals on x is mλ(x), which is inversely proportional
to the solution fitness. If the propagated solution is better than the original one, it replaces
the original one in the population. After each iteration, the wavelength of each solution
is updated as follows (note that the objective function f (x) defined in Equation (23) is
inversely proportional to its fitness):

λ(x′) = λ(x)α fmax−( f (x+ϵ)/( fmax− fmin+ϵ) (24)

where fmax and fmin are the maximum and minimum objective function values in the
population, respectively; α is a constant taking a value of 1.0026; and ϵ is a very small
positive value to avoid division by zero.

Whenever the algorithms find a new best-known solution x∗, a breaking operation
is performed by generating KN (a random number in [1, m]) neighboring solutions, each
being obtained by randomly swapping two subareas xi and xi′ in the sequence. The best
neighbor, if better than x∗, will replace x∗ in the population. In this way, the algorithm uses
diverse solutions to facilitate global search in the early stages while focusing on a small
number of solutions to enhance local search in later stages.

We also employ a population reduction policy [53], which reduces the population size
NP from an upper limit NPmax to a lower limit NPmin:

NP = NPmax −
(

ng

nmax
g

)2

(Nmax
P −NPmin) (25)

where NPmax and NPmin are the upper and lower limit of the population sizes, respectively;
ng is the current generation number; and nmax

g is the maximum generation number. When-
ever the population size should be decreased by 1, the current worst solution is removed.

Algorithm 1 presents the pseudo-code of the WWO algorithm for firefighting drone
scheduling, where each solution x is evaluated using the procedure described in Section 3.2.
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Algorithm 1: WWO algorithm for firefighting drone scheduling.

1 Randomly initialize a population of solutions with wavelengths of 0.5;
2 Let ng = 0 and x∗ be the best solution in the population;
3 while ng < nmax

g do
4 Calculate the wavelengths of the solutions according to Equation (24);
5 for each solution x in the population do
6 Let x′ = x;
7 for i = 1 to m do
8 if rand(0, 1) < λ(x) then
9 Randomly select and reverse a subsequence of x′;

10 if f (x′) < f (x) then
11 Set x← x′;
12 if f (x) < f (x∗) then
13 Set x∗ ← x;
14 Let KN = rand(1, m);
15 for k = 1 to KN do
16 Generate a neighbor x′ by randomly selecting and swapping

two components of x∗;
17 if f (x) < f (x∗) then
18 Set x∗ ← x′;

19 Update the population size NP according to Equation (25) by removing the
worst solution;

20 ng ← ng + 1;
21 return the best-known solution x∗.

The above WWO algorithm uses component swap for local search. To further im-
prove the performance, we propose an enhanced WWO (EWWO) algorithm that includes
two additional local search: one using NEH reconstruction [54] and the other using reinser-
tion, i.e., randomly selecting a component and inserting it into another position. For each
breaking operation, EWWO adaptively selects one from the three local search operators
based on their past performance. Initially, the three operators have the same selection
probability of 1/3. At each generation after the first LP generations (where LP is the
learning period), the probability of each l-th operator (1 ≤ l ≤ 3) is updated based on its
performance during the previous LP generations:

ρl =
clnI

l/nl

∑3
l=1 clnI

l/nl
(26)

where nl is the number of invocations of the l-th operator, nI
l is the number of invocations

of the operator that produce better solutions in the recent learning period, and cl is the
computational complexity of the l-th operator (c1 = 1, c2 = n/2, and c3 = 1). Using the
adaptive local search, Lines 15–18 of Algorithm 1 are replaced by the procedure shown
in Algorithm 2.
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Algorithm 2: WWO breaking using self-adaptive local search.

1 for k = 1 to KN do
2 Randomly select the l-th local search operator according to the probability ρl ;
3 Generate a neighbor x′ by performing the operator on x∗;
4 if f (x) < f (x∗) then
5 Set x∗ ← x′;
6 Set nI

l ← nI
l + 1;

7 if ng ≥ LP then
8 Update the selection probabilities according to Equation (26);

3.4. Drone/Staff Configuration and Preplanning

Normally, when configuring Ndrones drones for a wild area, we fit out 2Ndrones water
capsules at the fire station such that each drone returning from the fire spot can directly
replace the empty capsule with a capsule full of water. Suppose that the (average) time
duration for a staff member to fill up a water capsule is t̃; if N empty water capsules are
left by drones at the station at time t and are required to be filled up at time t + ∆t, the least
number of staff is

nmin
s =

⌈
N

t̃
∆t

⌉
(27)

Given a given fire instance, according to the best-known solution obtained by the
optimization algorithms, we select a round of drone dispatch that has the maximum N/∆t
and then obtain the required number of staff according to Equation (27).

Moreover, let T̂ be the maximum flight time duration of a drone with a fully charged
battery and Tj be the total flight time duration of each j-th drone in the solution, where the
total number of fully charged batteries required for the operation can be calculated as

nbat =
Ndrones

∑
j=1

⌈Tj

T̂

⌉
(28)

Consequently, for a given wild area, we can identify a subset of risky subareas that
easily catch fire, as well as record the most common wind force levels and temperature
grades. For each risky subarea, we simulate the ignition under each wind force level and
temperature grade and use the optimization algorithms to solve the instance. By saving
these instances and the corresponding best-known solutions, when encountering a real fire
warning from a subarea, we can directly select an existing solution to schedule the drones
as well as the required number of staff for firefighting.

Furthermore, we can identify those subareas, where the ignition will cause the most
significant losses and/or require the largest number of staff, as the most important subareas
and, therefore, to strengthen the management and surveillance of those subareas, we must
reduce the risks and consequences as much as possible.

4. Computational Experiments

We test the proposed method in a wild area belonging to the West Mountain Forest
Park, Hangzhou, Zhejiang Province, China. The area is divided into 127 subareas, among
which eight subareas are identified as high-risk subareas. According to our simulation,
when the wind force level is zero (no wind) or one (light air) and the temperature is below
5 ◦C, most fires ignited from the risky areas can be extinguished by one or two rounds of
drone dispatch, i.e, the instances of the firefighting drone scheduling problem are quite easy
to solve. Therefore, we select a set of three wind levels of {2, 4, 6} (as the differences between
two adjacent wind force levels are relatively small, and wind force levels above eight rarely
appear in the area) and a set of three temperature grades of {15–20, 25–30, 35–40} (◦C). We
also set the number of drones to a random integer in [Nmin

drones, 1.2Nmin
drones]. By simulating the
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ignition in each high-risk subarea under each wind level and each temperature grade (the
wind direction is always assumed to be toward the center of the area), we construct a suite
of 72 test instances.

On the test suite, we compare the seven metaheuristic optimization algorithms (GA,
PSO, DE, BBO, EBO, WWO, and EWWO). Each algorithm is run for 30 times on each
instance, for which we record the minimum and median objective function values (in
thousand RMB Yuan or CNY) among the 30 runs and the standard deviation (std). To
ensure a fair comparison, for all algorithms, the termination condition is set so that the
number of objective function evaluations reaches 50,000. Table 3 presents the results of
the seven algorithms on the 72 test instances. We also conduct a non-parametric Wilcoxon
rank-sum test to compare the result of EWWO and the result of other algorithms on each
instance. Table 4 summarizes the averaged values of the results obtained by each algorithm
on the test instances as well as the corresponding ranks among the seven algorithms.

From the results, we can observe that EWWO always obtains the best result on each
test instance. Among the other six popular metaheuristic optimization algorithms, GA
performs the worst mainly because the genetic selection and crossover operations are
elitism-based, making GA to be easily trapped by the local optima. The migration operator
of BBO is similar to genetic crossover, and, therefore, the performance of BBO is close
to that of GA, although the BBO migration model provide better diversity than genetic
selection. Using velocity-based solution movement, the PSO algorithm converges fast,
but it also easily falls into premature convergence. Both the DE mutation schema and
the EBO global migration model have powerful global exploration abilities and can result
in good diversities, and their performances are better than GA, PSO, and BBO. WWO
performs the best among the first six algorithms because its wavelength-based control
model brings a quite good balance between global exploration and local exploitation. The
performance advantage of EWWO over WWO, obviously, is due to the integration and
adaptive control of the three local search operators. For the instances with significant losses,
using the solutions of EWWO, we can reduce approximately 300,000∼600,000 CNY of losses
compared to the solutions of GA and approximately 100,000∼400,000 CNY compared to
the solutions of other algorithms. In summary, the experimental results demonstrate that
EWWO exhibits a significantly better performance than the other popular algorithms on
the test suite. Therefore, we recommend EWWO as the most suitable algorithm to solve the
firefighting drone scheduling problem to the fire department.

According to the best-known results obtained by EWWO, among the eight subar-
eas, under the most serious conditions (highest temperature and wind force), the losses in
six subareas are approximately 1.1∼1.6 billion CNY, while the losses in the other two subareas
are 2.2 and 1.9 billion CNY, respectively. Therefore, the fire department close the major en-
trances to the top risk subarea enhances the entrance management for the second top risk
subarea, significantly reducing the potential fire risks.

Table 3. Resulting minimum, median, and standard deviation of the objective function values (i.e.,
total fire loss in thousand CNY) obtained by the algorithms on the test instances. Symbol † indicates
that the result is significantly different from the result of EWWO at a confidence level of 95%.

Instance Metrics GA PSO DE BBO EBO WWO EWWO
1 minimum 788 787 782 786 782 779 778

median † 808 † 806 801 † 808 801 801 798
std 17 11 15 12 8 15 16

2 minimum 936 932 927 930 923 919 916
median † 980 † 970 951 † 974 †964 955 946
std 29 27 15 35 21 31 25

3 minimum 1059 1052 1044 1057 1051 1046 1039
median † 1172 † 1139 † 1109 † 1136 † 1114 1096 1084
std 62 55 36 59 40 34 29
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Table 3. Cont.

Instance Metrics GA PSO DE BBO EBO WWO EWWO
4 minimum 1133 1132 1118 1132 1121 1110 1108

median † 1221 † 1207 † 1189 † 1203 † 1194 1180 1162
std 79 53 43 45 46 50 28

5 minimum 1256 1235 1218 1260 1225 1204 1162
median † 1345 † 1345 † 1282 † 1325 † 1301 † 1253 1226
std 57 49 28 41 60 31 49

6 minimum 1428 1394 1356 1405 1365 1329 1290
median † 1576 † 1514 † 1454 † 1564 † 1466 1392 1369
std 67 78 51 75 74 46 54

7 minimum 1640 1640 1526 158 1517 1428 1354
median † 1788 † 1694 † 1641 † 1745 † 1622 † 1590 1428
std 111 24 85 98 86 71 64

8 minimum 1807 1784 1642 1752 1671 1558 1517
median † 1980 1† 897 † 1778 † 1889 † 1819 † 1699 1620
std 97 50 84 90 110 75 70

9 minimum 1921 1874 1787 1927 1778 1710 1610
median † 2201 † 2135 † 1984 † 2193 † 2036 † 1852 1729
std 230 226 127 188 219 127 64

10 minimum 675 674 672 674 672 667 665
median † 699 † 690 684 † 697 680 682 670
std 14 11 8 17 6 9 4

11 minimum 778 771 757 775 765 752 749
median † 788 † 782 † 779 † 784 772 769 763
std 9 6 15 6 4 14 8

12 minimum 822 816 804 822 805 803 793
median † 837 † 836 817 † 837 † 820 809 808
std 6 17 9 13 6 3 13

13 minimum 946 920 895 931 889 872 832
median † 975 † 961 † 921 † 973 930 897 862
std 18 23 13 34 26 17 14

14 minimum 1074 1062 992 1024 993 931 906
median † 1133 † 1112 † 1047 † 1128 † 1056 † 992 926
std 50 35 44 79 52 32 12

15 minimum 1281 1243 1083 1205 1136 1115 990
median † 1340 † 1286 † 1232 † 1316 † 1185 † 1183 1039
std 42 36 130 67 20 28 24

16 minimum 1468 1335 1230 1359 1264 1172 1128
median † 1556 † 1435 † 1331 † 1546 † 1365 † 1275 1221
std 61 79 66 107 46 53 49

17 minimum 1625 1573 1356 1599 1427 1281 1251
median † 1739 † 1634 † 1424 † 1755 † 1565 † 1489 1335
std 62 41 36 85 103 178 34

18 minimum 1891 1811 1587 1751 1591 1615 1423
median † 2024 † 2024 † 1789 † 2013 † 1769 † 1668 1502
std 64 140 97 232 145 32 43

19 minimum 655 652 648 652 650 649 645
median † 655 † 653 † 651 † 655 † 651 † 649 645
std 0 1 1 2 1 0 0

20 minimum 734 708 686 728 711 693 665
median † 758 † 738 † 708 † 757 † 716 † 707 685
std 19 25 9 18 3 8 14

21 minimum 788 788 723 788 737 694 685
median † 822 † 807 † 742 † 813 † 763 † 746 694
std 18 13 8 13 19 28 7
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Table 3. Cont.

Instance Metrics GA PSO DE BBO EBO WWO EWWO
22 minimum 891 836 763 844 834 755 729

median † 970 † 937 † 833 † 927 † 848 † 820 749
std 45 57 62 36 6 46 14

23 minimum 1010 953 891 968 908 865 837
median † 1148 † 1085 † 991 † 1101 † 1009 † 993 872
std 119 60 43 82 49 101 26

24 minimum 1084 1043 1018 1071 1002 967 951
median † 1300 † 1291 † 1100 † 1287 † 1152 † 1095 985
std 134 176 45 105 123 111 26

25 minimum 1325 1266 1201 1257 1155 1049 1015
median † 1492 † 1462 † 1250 † 1449 † 1293 † 1239 1059
std 125 103 32 166 84 89 22

26 minimum 1586 1462 1353 1519 1405 1219 1069
median † 1714 † 1603 † 1427 † 1691 † 1556 † 1249 1128
std 95 96 50 116 76 16 42

27 minimum 1852 1729 1381 1871 1620 1291 1207
median † 2014 † 1992 † 1620 † 1947 † 1671 † 1450 1285
std 90 188 213 42 24 137 41

28 minimum 773 773 767 770 768 765 763
median † 788 † 784 784 † 789 † 785 780 778
std 6 6 11 14 10 8 10

29 minimum 891 864 828 855 832 828 788
median † 916 † 882 † 868 † 900 † 845 † 863 803
std 11 8 28 27 11 30 13

30 minimum 101 989 930 983 943 916 891
median † 1054 † 1031 † 973 † 1032 † 967 † 978 926
std 33 19 25 22 18 35 17

31 minimum 1074 1028 993 1068 1021 966 926
median † 1133 † 1089 † 1052 † 1108 † 1034 † 983 936
std 34 35 41 31 9 7 8

32 minimum 1246 1142 1041 1209 1066 1004 965
median † 1335 † 1264 † 1179 † 1278 † 1216 † 1138 995
std 49 86 64 31 131 112 13

33 minimum 1404 1396 1244 1317 1285 1212 1133
median † 1492 † 1441 † 1348 † 1498 † 1333 † 1297 1172
std 38 39 80 77 38 61 32

34 minimum 1507 1445 1369 1507 1403 1330 1226
median † 1591 † 1528 † 1460 † 1582 † 1478 † 1374 1276
std 62 66 69 56 54 26 22

35 minimum 1630 1560 1453 1529 1534 1386 1349
median † 1734 † 1675 † 1597 † 1703 † 1604 † 1541 1423
std 82 78 82 144 42 75 61

36 minimum 1881 1722 1551 1894 1726 1622 1463
median † 1965 † 1880 † 1746 † 1957 † 1834 † 1667 1542
std 38 86 175 47 85 30 46

37 minimum 896 896 894 895 893 893 891
median † 906 † 906 900 † 906 902 897 896
std 7 7 4 7 7 2 4

38 minimum 985 970 962 969 959 955 936
median † 101 † 995 † 976 † 1001 † 983 † 975 951
std 12 18 7 200 16 11 6

39 minimum 1019 1015 995 998 998 984 960
median † 1044 † 1028 † 1004 † 1033 † 1005 † 993 965
std 13 8 7 14 6 7 3
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Table 3. Cont.

Instance Metrics GA PSO DE BBO EBO WWO EWWO
40 minimum 1064 1051 1035 1054 1046 1031 1024

median † 1093 † 1077 † 1054 † 1074 † 1066 1054 1034
std 23 20 14 15 15 20 7

41 minimum 1305 1228 1188 1239 1167 1111 1039
median † 1428 † 1368 † 1282 † 1410 † 1232 † 1247 1069
std 86 105 51 83 37 77 19

42 minimum 1497 1494 1339 1481 1286 1253 1167
median † 1571 † 1546 † 1397 † 1571 † 1383 † 1347 1197
std 35 27 44 80 85 56 25

43 minimum 1556 1524 1441 1459 1406 1373 1261
median † 1645 † 1572 † 1523 † 1661 † 1514 † 1460 1325
std 54 37 33 99 87 49 51

44 minimum 1847 1847 1595 1821 1582 1469 1413
median † 1985 † 1895 † 1789 † 2004 † 1741 † 1636 1507
std 118 39 89 92 91 73 42

45 minimum 2029 1898 1679 2040 1827 1537 1482
median † 2197 † 2083 † 1907 † 2191 † 2001 † 1696 1571
std 141 98 119 107 110 94 75

46 minimum 749 749 749 749 749 749 749
median † 754 † 754 † 752 † 753 751 750 749
std 4 4 2 3 1 0 0

47 minimum 788 787 783 788 785 781 778
median † 818 † 816 † 811 † 816 806 805 803
std 14 14 23 13 14 12 20

48 minimum 906 902 874 896 863 847 837
median † 960 † 956 † 901 † 950 † 904 † 914 877
std 31 45 19 28 21 37 28

49 minimum 1182 1169 1102 1142 1082 1047 1000
median † 1271 † 1223 † 1194 † 1236 † 1150 † 1130 1069
std 78 48 81 79 57 73 62

50 minimum 1458 1393 1325 1433 1257 1204 1148
median † 1566 † 1527 † 1417 † 1580 † 1372 † 1282 1207
std 64 66 40 69 54 53 28

51 minimum 1566 1456 1420 1529 1417 1301 1261
median † 1694 † 1631 † 1464 † 1694 † 1500 † 1476 1325
std 99 121 23 147 5 152 53

52 minimum 1660 1600 1529 1632 1585 1540 1473
median † 1773 † 1695 † 1627 † 1731 † 1701 † 1610 1556
std 84 74 52 46 73 39 73

53 minimum 1872 1798 1604 1795 1681 1597 1537
median † 1990 † 1983 † 1704 † 1986 † 1755 † 1765 1615
std 55 75 44 140 53 104 63

54 minimum 2049 1919 1903 2041 1864 1694 1655
median † 2157 † 2057 † 2007 † 2104 † 1993 † 1875 1748
std 84 99 90 36 68 147 62

55 minimum 857 855 836 851 837 822 818
median † 882 † 867 † 850 † 882 † 865 † 848 832
std 15 9 7 23 14 15 6

56 minimum 965 946 911 940 937 925 896
median † 995 † 973 † 970 † 981 † 941 † 940 926
std 14 14 41 21 2 10 18

57 minimum 1251 1243 1181 1256 1171 1122 1098
median † 1310 † 1276 † 1224 † 1302 † 1227 † 1172 1133
std 28 21 32 23 47 21 18
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Table 3. Cont.

Instance Metrics GA PSO DE BBO EBO WWO EWWO
58 minimum 1522 1442 1280 1485 1378 1286 1216

median † 1591 † 1518 † 1348 † 1604 † 1430 † 1358 1276
std 37 50 47 92 45 57 29

59 minimum 1660 1647 1449 1540 1504 1416 1335
median † 1783 † 1727 † 1567 † 1794 † 1618 † 1570 1423
std 87 45 68 197 80 127 69

60 minimum 1995 1937 1883 1886 1825 1729 1675
median † 2142 † 2066 † 2004 † 2056 † 1942 † 1918 1768
std 104 74 62 92 67 116 71

61 minimum 2197 2083 2092 2194 2037 1932 1896
median † 2325 † 2275 † 2129 † 2278 † 2165 † 2023 1970
std 54 149 25 69 77 81 44

62 minimum 2448 2332 2217 2336 2300 2141 2049
median † 2610 † 2489 † 2382 † 2579 † 2384 † 2333 2162
std 138 80 119 166 67 103 60

63 minimum 2837 2652 2363 2819 2584 2369 2221
median † 3058 † 2860 † 2648 † 3043 † 2774 † 2486 2325
std 157 171 252 99 161 85 57

64 minimum 650 650 650 650 650 650 650
median † 660 † 659 † 654 † 659 † 654 † 654 650
std 7 6 3 7 3 2 0

65 minimum 773 772 771 772 771 770 768
median † 803 † 790 † 791 † 801 † 786 † 773 768
std 26 11 17 13 7 3 0

66 minimum 975 952 878 948 911 872 852
median † 1024 † 1019 † 967 † 1024 † 956 † 925 867
std 21 46 63 48 30 35 13

67 minimum 1281 1254 1187 1254 1238 1164 1152
median † 1345 † 1325 † 1252 † 1336 † 1293 1215 1212
std 56 59 27 42 27 43 46

68 minimum 1409 1392 1314 1392 1307 1284 1236
median † 1502 † 1463 † 1361 † 1487 † 1376 † 1376 1285
std 55 29 30 79 60 45 38

69 minimum 1670 1595 1552 1631 1544 1533 1463
median † 1788 † 1730 † 1632 † 1788 † 1655 † 1599 1532
std 101 87 53 114 84 46 34

70 minimum 1975 1853 1818 1940 1769 1741 1625
median † 2108 † 2026 † 1937 † 2036 † 1894 † 1884 1704
std 111 110 98 47 76 78 33

71 minimum 2098 2032 1978 2047 1938 1893 1832
median † 2231 † 2153 † 2089 † 2227 † 2064 † 1964 1916
std 104 107 66 135 60 33 56

72 minimum 2197 2128 1996 2197 2042 1965 1921
median † 2369 † 2275 † 2067 † 2326 † 2146 † 2044 2004
std 126 130 48 52 54 46 43

Table 4. Summary of the experimental results of the seven algorithms on the test instances.

Metrics GA PSO DE BBO EBO WWO EWWO

AVG(Minimum) 1348 1303.5 1227.6 1318 1246.7 1187.3 1140.7
RANK(Minimum) 68 54 33 56 37 22 11
AVG(Median) 1436.5 1391.8 1307.3 1420.3 1321.4 1265.9 1189.7
RANK(Median) 68 52 32 60 36 23 10
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Although the seven algorithms use the same number of objective function evaluations,
there are still slight differences among their running times. Figure 7 presents the median
running time of each of the seven algorithms on instances 1–9 (the time variations are
similar on the remaining instances). Moreover, Figure 8 presents the median convergence
time of each algorithm on the instances (we consider ). As we can observe, with the increase
in instance size, the convergence time of EWWO becomes more significantly shorter than
that of the other algorithms.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9

GA PSO DE BBO EBO WWO EWWO

Figure 7. Median running time of each of the seven algorithms on instances 1–9.
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Figure 8. Median convergence time of each of the seven algorithms on instances 1–9.

5. Conclusions

This paper presents a study consisting of a mathematical model that predicts wildfire
spread and the corresponding economic losses that work simultaneously; an optimization
problem of firefighting drones scheduling to minimize the fire loss based on the wildfire
spread and loss estimation; and a metaheuristic optimization method, in particular, the
EWWO algorithm for efficiently solving the optimization problem. The results of the
model and algorithms can also help us to configure the drones and staff to support efficient
firefighting operations and well as prepare a set of plans in response to possible wildfire
occurrences. Validation of the fire spread model on the two real-world wildfires showed
that the MPAE of full combustion time and decay time were around 7∼8%, respectively.
Experiments of the scheduling algorithms on a set of 72 test instances demonstrated that
the solutions obtained by the proposed algorithm of EWWO could reduce approximately
100,000∼600,000 CNY compared to the solutions of other popular algorithms.
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The present work has certain limitations. First, we only estimate the losses caused by
fire but do not consider the cost of drones in configuration and firefighting. Second, the
proposed method limits that the fire in a subarea should be extinguished at a time by a
small number of drones, which is not scalable to large areas that need multiple batches of
drones for firefighting. Third, the scheduling schema requires that the distance between
the fire station (configured with drones) and the utmost subarea cannot exceed the half
of the flight range of the drone. Therefore, for large wild areas, we need to set up more
fire stations.

In the future work, we will consider the cooperation of drones and ground vehicles [55,56],
where ground vehicles carry water and batteries (or support fast battery recharging) for drones
to shorten the travel distances of drones and improve the firefighting efficiency. Our ongoing
work also considers integrating reinforcement learning into the optimization to improve the
problem-solving performance [57].
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