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Abstract: The collection and transportation of samples are crucial steps in stopping the initial
spread of infectious diseases. This process demands high levels of safety and timeliness. The rapid
advancement of technologies such as the Internet of Things (IoT) and blockchain offers a viable
solution to this challenge. To this end, we propose a Blockchain-enabled Infection Sample Collection
system (BISC) consisting of a two-echelon drone-assisted mechanism. The system utilizes collector
drones to gather samples from user points and transport them to designated transit points, while
deliverer drones convey the packaged samples from transit points to testing centers. We formulate
the described problem as a Two-Echelon Heterogeneous Drone Routing Problem with Transit point
Synchronization (2E-HDRP-TS). To obtain near-optimal solutions to 2E-HDRP-TS, we introduce a
multi-objective Adaptive Large Neighborhood Search algorithm for Drone Routing (ALNS-RD). The
algorithm’s multi-objective functions are designed to minimize the total collection time of infection
samples and the exposure index. In addition to traditional search operators, ALNS-RD incorporates
two new search operators based on flight distance and exposure index to enhance solution efficiency
and safety. Through a comparison with benchmark algorithms such as NSGA-II and MOLNS, the
effectiveness and efficiency of the proposed ALNS-RD algorithm are validated, demonstrating its
superior performance across all five instances with diverse complexity levels.

Keywords: blockchain; drone-assisted sample collection; routing; adaptive large neighborhood
search; synchronization

1. Introduction

Infectious diseases are a class of diseases that can be transmitted between humans,
animals, or between humans and animals. They are caused by various pathogens, which
pose a serious threat to human life and property security. One example is the outbreak
of the COVID-19 pandemic, which has had huge impacts on people’s health, the global
economy, and the international community [1]. As of March 2023, there have been more
than 470 million confirmed cases and over 6 million deaths worldwide [2]. As a result of
COVID-19, economic growth has declined and unemployment has risen globally in recent
years [3]. According to a United Nations report, the global economic growth is expected to
be 1.9% in 2023, one of the lowest growth rates in decades.

Infectious diseases like COVID-19 exhibit strong infectivity and long incubation peri-
ods, leading to widespread transmission and difficulties in controlling the spread. Delayed
detection of outbreaks has resulted in city-wide lockdowns in many countries. For ur-
gent public health emergencies, the Centers for Disease Control and Prevention (CDC)
must ensure continuous and sensitive monitoring for early warning, which is beneficial
in preventing virus spread and disease transmission [4]. The CDC typically conducts
regular sample testing in high-risk communities during the initial stages of an outbreak.
Sample collection and transportation are crucial links that require high levels of safety
and timeliness.
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When collecting samples within the community, residents traditionally undergo test-
ing at hospitals or community sites, a process known for its lengthy sampling times and the
potential for gatherings that contribute to the spread of viruses. Moreover, the transporta-
tion of these samples via delivery vehicles traveling between testing centers and community
sites elevates the risk of contact with infected individuals, potentially turning vehicles into
carriers of the virus. This increased exposure and potential for the spread of virus through
sample movement highlights the importance of implementing the necessary measures to
minimize the risk of infection transmission during transport. Addressing this challenge
requires the development of an innovative sample collection method that prioritizes ef-
fectiveness while minimizing virus transmission risk. Ideally, this new method should
be rapid and automated, facilitating early epidemic prevention actions and mitigating
gatherings and cross-infection during collection and transportation. Thus, it is meaningful
to propose an infection sample collection system. The development of technologies such as
IoT and blockchain provide feasible solutions for this work.

In recent years, the technology behind drones has undergone rapid development,
resulting in significant improvements in endurance and payload capacity [5]. As a result,
drones offer a new solution for the collection of infectious disease samples. Many companies
have attempted to use drone delivery technology for sample transport. In Hangzhou, China,
drones are already being utilized for the transportation of nucleic acid samples (Figure 1).
During the epidemic period, up to 100,000 samples can be delivered daily. The employed
drones can support a payload of 10 kg, a flight time of at least 20 min, and a range of
18 km. Compared to traditional vehicle transportation, using drones for sample delivery
has several advantages: firstly, replacing traditional modes with unmanned systems saves
medical resources; secondly, transporting samples by drone avoids the temporal and spatial
interaction between sample transfer and individuals, thereby reducing the risk of epidemic
spread during transportation to the greatest extent possible; thirdly, drones can avoid the
impact of traffic control and terrain factors on sample transport, enabling even more timely
delivery; and finally, drones can be equipped with sensors, cameras and other electronic
devices to ensure sample safety by recording the transportation process [6].

(a) (b)
Figure 1. Drones are utilized for the transportation of nucleic acid samples in Hangzhou, China.
(a) Drones arrive at designated locations to load samples. (b) Medical personnel load samples onto
the drone.

However, existing drone-assisted sample collection solutions still have the potential to
improve the timeliness and safety of sample collection [7]. Additionally, existing solutions
have significant shortcomings in terms of epidemic information security and the risk of
epidemic spread. Drones are only used for point-to-point sample transportation between
sampling points and testing centers, rather than participating in the entire collection task.
Participants still need to personally queue up at sampling points, which increases the risk
of personnel gathering and cross-infection. The traceability of infectious disease samples
is also difficult to realize, resulting in medical institutions being unable to take effective
measures to control the spread of epidemics. Moreover, public health information that lacks
management and protection is at risk of being tampered with. Essentially, in existing drone-
assisted sample collection solutions, drones are only replacing vehicles in the task mode,
without any fundamental difference. In addition, regarding sample collection, remote areas
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have always been a challenge due to sparse populations and inadequate infrastructure. For
these scenarios, both existing drone-assisted sample collection solutions and traditional
shuttle-based sample collection solutions make it difficult to achieve the safe and rapid
collection and delivery of samples.

To overcome the shortcomings discussed and improve the safety and timeliness of sam-
ple collection, we integrate emerging technologies such as IoT, drones, and blockchain to
propose the Blockchain-enabled Infection Sample Collection system (BISC). The blockchain’s
chain structure improves information security and makes infection samples traceable. We
also propose a two-echelon drone-assisted mechanism that utilizes two types of drones
for transporting samples to testing centers: the agile and fast collector drone for collecting
infection samples at user points, and the deliverer drone for long-distance sample delivery.
The brief workflow of the system is as follows: The collector drone will transfer the samples
to the designated transit points, where they will be handed over to the deliverer drone. The
deliverer drones receive samples at transit points and transport them to the nearest testing
center. All samples are stored and tested at the testing center. This solution realizes contact-
less sample collection so that users complete sampling without the extra risk of infection.
The data generated during the operation of the system and the test results are stored in the
blockchain to ensure data security. The two types of drones can effectively reduce the risk of
cross-infection during sample collections due to different activity areas, thus improving the
biological safety and reliability of sample collection. In addition, the collaboration between
collector drones and deliverer drones can significantly improve the effectiveness of sample
transmission in remote areas. Our main contributions can be summarized as follows:

• We propose a blockchain-enabled infection sample collection system that is built with
an infrastructure layer, a blockchain layer, and an application layer. The information
security of infection samples is ensured using the hash function, chain structure,
timestamp, and consensus mechanism. The routing algorithm for sample collection is
integrated into the smart contract to improve the reliability and automaticity of BISC.

• We propose a model of a Two-Echelon Heterogeneous Drone Routing Problem with
Transit point Synchronization (2E-HDRP-TS). The model integrates fixed transit points,
synchronized handover operations, and heterogeneous drones with limited energy
and capacity. It is specifically designed for collecting infection samples from all user
points with two types of drones. It improves the time efficiency of samples, especially
in remote areas, and reduces the probability of cross-infection during sample collection.
To measure sample safety, we introduce the exposure index.

• We present a multi-objective Adaptive Large Neighborhood Search algorithm for
Routing of Drones (ALNS-RD). By incorporating flight distance-based and exposure
index-based operators, this algorithm can better plan the drone’s route and improve
the total collection time for infection samples and the exposure index. Based on the
dominance relationship, we refine the criteria for multiple objectives and adaptive
mechanisms. To increase diversity in the Pareto set, we determine the search direction
based on the crowding distances.

• We conducted a series of experiments based on practical cases. First, we optimized and
adjusted the key parameters used in ALNS-RD. Then, we validated the effectiveness
and superiority of using the flight distance operator and exposure index operator
to improve the quality of the Pareto set through experiments. Finally, we compared
the proposed ALNS-RD algorithm with existing ones (i.e., NSGA-II, MOLNS). The
experimental results demonstrated that ALNS-RD performs much better when solving
the 2E-HDRP-TS for infection sample collection.

The rest of this article is organized as follows. Section 2 discusses related work,
Section 3 describes the architecture of BISC, Section 4 describes the two-echelon drone-
assisted mechanism, Section 5 specifically addresses the solution approach, Section 6
provides the experimental results, and Section 7 concludes the article.
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2. Related Work

With the continuous performance improvement of drones, they have demonstrated
significant advantages in efficiency and flexibility. Research on the application of drones in
logistics delivery is also increasing. We first review the literature on drone delivery systems
and then review the literature on 2E-VRP and corresponding solution methods.

2.1. Drone-Assisted Delivery System

Due to drones’ enormous potential, extensive research has been conducted on drone
delivery. Andreato et al. [8] demonstrated the feasibility of drone delivery from a cost
perspective and highlighted the challenges that must be overcome to make it practical.
Sundar et al. [9] proposed a routing problem that considered the fuel constraints of a single
drone while minimizing total fuel and enabling multiple refueling stations. Song et al. [10]
proposed a scheduling model for a drone-delivery logistics system, which allows drones
to share multiple charging stations due to the constraints of the load capacity and flight
time. Dorling et al. [11] proposed a Drone Delivery Problem (DDP), implementing a
mixed-integer linear program that considered battery weight, payload weight, and drone
reusability. Tian et al. [12] proposed the Solar-Powered UAV Delivery System (SPU), which
eliminates the need for charging facilities. When the SPUs run out of power, they recharge
themselves at a designated landing site instead of at charging stations. Other studies
have used a combination of drones and ground vehicles for delivery. Murray et al. [13]
first introduced drones into the study of the Traveling Salesman Problem (TSP), calling it
the Flying Sidekick Traveling Salesman Problem (FSTSP), in which drones assist vehicles
in completing package deliveries and specifying that drones only serve one customer in
a single journey. Ferrandez et al. [14] established a mathematical model to expand the
truck–drone delivery system by optimizing the number and location of drone launch sites.
Sajid et al. [15] proposed mixed-integer linear programming models for UAV-routing and
UAV-route scheduling problems, taking into account the effect of incidental processes and
the varying payload on travel time. Aggarwal et al. [16] analyzed different types of UAV
path planning techniques and discussed issues related to UAV network communications,
providing a comprehensive research perspective. Laghari et al. [17] investigated the design
of UAV systems, especially communication systems, and proposed sensor-based data
processing methods as well as applications. Deng et al. [18] proposed a new solution
for vehicle-assisted UAV delivery, allowing UAVs to serve multiple customers in a single
take-off while considering energy consumption. She et al. [19] proposed self-organized
UAV traffic flow in low-altitude 3D airspace, formulating the user equilibrium condition
using partial differential equations and proposing a scheme for numerical solution and
system performance computation.

In the field of medical delivery, many studies have shown that drones can improve
the efficiency and cost-effectiveness of blood delivery, laboratory testing, and medication
delivery [20,21]. Hii et al. [22] pointed out that the process of drone medical delivery can
potentially affect the quality of medical supplies. In their study, they indicated that medical
supplies such as insulin are very sensitive to the environment. Therefore, the potential
impact of temperature and vibration on the effectiveness of medical supplies should be
fully considered in drone-assisted medical delivery. Scott et al. [23] designed a new model
for drone medical delivery systems. The model combines traditional land transportation
with drone delivery and uses budget as a constraint to provide location decisions for drones.
In addition, as the variety of IoT devices increases and technology advances, the integration
of medical systems and IoT becomes a feasible solution. Zeadally et al. [24] presented the
devices and technologies that need to be incorporated into the IoT ecosystem for medical
systems. They emphasize that providing reliable connectivity for medical devices and
sensors through the IoT ecosystem is the key to unlocking the digital medical system.
Paganelli et al. [3] proposed a detailed description of an IoT-based conceptual architecture
for a COVID-19 patient monitoring system. The architecture also provides modules for
analyzing health data to provide patients with feedback and insights. Otoom et al. [25]
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proposed a solution for the detection and monitoring of COVID-19 cases, which collects
real-time data from wearable sensors and uses machine learning to predict suspected cases.
We summarize the comparison between our work and the existing literature in Table 1.

Table 1. Comparison between our work and the existing literature.

Reference Complete Physical Model Route Scheduling Medical Item Blockchain

[8,17] ✓
[9–11,15,16] ✓ ✓

[12–14] ✓
[20–22] ✓ ✓

[23] ✓ ✓ ✓
[3,24,25] ✓

Our work ✓ ✓ ✓ ✓

Currently, drone-assisted delivery is a hot topic in the logistics field. However, research
on drone-assisted delivery of medical items, especially with regard to the delivery of
infection samples, is still relatively rare. Unlike ordinary delivery objects, medical items
often have characteristics such as being fragile and susceptible to contamination. Compared
with traditional delivery processes, medical delivery not only considers costs and time but
also the safety and effectiveness of medical items. In particular, for drone-assisted delivery
of infection samples, we need unique transportation strategies to minimize the exposure
risks of the samples. In addition, we also need to consider the drone’s energy consumption
and capacity to ensure that it can successfully complete the delivery task. In addition, as far
as we know, there are no papers on systems combining blockchain and drone collection of
infection samples. The introduction of blockchain is beneficial for improving the traceability
and information security of infection samples.

2.2. 2E-VRP

The two-echelon drone-assisted mechanism described in this paper can be charac-
terized as a two-echelon heterogeneous drone routing problem with transit point syn-
chronization, which is a variant of the two-echelon vehicle routing problem (2E-VRP).
The 2E-VRP has been widely studied in academia over the past decade, and the classic
model is as follows: there is a central station and a fixed number of intermediate sites
with operational capacity restrictions on a two-level logistics network; a specific num-
ber of vehicles are used on each level of the network; the demand of all customers is
fixed and known, and cannot be divided. The 2E-VRP has attracted widespread atten-
tion in the past decade, and the methods for solving this problem mainly include exact
algorithms and heuristic algorithms. González-Feliu et al. [26] were the first to propose
the model of 2E-VRP, and solved an instance with 32 customers and satellites using the
branch-and-cut algorithm. Perboli et al. [27] introduced some new optimality cut classes.
They improved the algorithm by adding valid inequalities based on the network flow
formulation and the connectivity of the transportation system graph. Jepsen et al. [28]
proposed a modified branch-and-cut algorithm to address the problem of an incorrect up-
per bound when the number of transfer stations exceeds two in Perboli et al.’s model [27].
Baldacci et al. [29] proposed a new mathematical model in which two binary variables were
used to decide whether a feasible route was adopted. They proposed an exact algorithm
that decomposes the 2E-VRP into a set of VRPs with multiple depots, further enhancing
the scalability and accuracy of the algorithm for solving instances. If the problem size
expands further, exact algorithms cannot be efficiently solved. Therefore, in recent years,
researchers have turned to using heuristic algorithms and metaheuristic algorithms to
solve the 2E-VRP. Hemmelmayr et al. [30] proposed the Adaptive Large Neighborhood
Search (ALNS) heuristic algorithm, which is specifically designed for the structure of the
2E-VRP. Breunig et al. [31] proposed a hybrid metaheuristic that combines enumeration
local search with destruction and repair heuristics. Compared with other algorithms, the
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ALNS algorithm has a greater advantage in solving problems due to its extensive heuristic
operators providing directions for neighborhood search.

In recent years, many improved models have emerged based on the classic model
of 2E-VRP. Regarding the two-echelon vehicle routing problem, Crainic et al. [32] first
proposed a 2E-VRP model with a synchronization concept, which integrated multiple
depots, multiple tours, heterogeneity, and time windows. Perboli et al. [33] proposed
a two-echelon vehicle path planning problem with satellite synchronization. Granger
et al. [34] proposed the 2E-VRP problem with time windows, satellite synchronization
constraints, and multi-trip based on urban scenarios. Li et al. [35] proposed the two-
echelon vehicle path planning problem with satellite dual synchronization and solved
it with an improved ALNS algorithm. Belgin et al. [36] proposed a two-echelon vehicle
routing problem with simultaneous pickup and delivery (2E-VRPSPD) and developed
a hybrid heuristic algorithm based on variable neighborhood descent and local search.
Chen et al. [37] proposed a new two-echelon delivery system based on hybrid machine
learning and heuristic optimization. The method pre-distributes predicted demands from
depots to regional facilities to improve the solution quality. Yu et al. [38] proposed the
two-echelon van-based robot routing problem with hybrid pickup and delivery, including
five new one-to-one pickup and delivery modes. Paredes-Belmar et al. [39] proposed a
milk transportation problem with vehicle routing and the location of milk collection centers.
They addressed the location of milk collection centers to reduce costs. Xue et al. [40]
proposed a two-echelon dynamic vehicle routing problem with proactive satellite stations,
which converts customers with available idle storage to satellite stations and optimizes the
transportation cost and storage cost.

The above research mainly focuses on the delivery problem based on vehicle trans-
portation and has made remarkable progress in problem modeling and algorithm design.
However, these models and algorithms are not applicable to the infection sample collection
scenario: (1) existing research mainly takes delivery time and cost as the main optimization
objectives. However, in the sample collection scenario, the exposure level of the sample
during the delivery process is a crucial factor that must be considered in addition to the
above two factors. Therefore, we should minimize the exposure risk of the samples by
minimizing their residence time in the handover link; (2) existing research only addresses
the problem of vehicle routes without considering the relationship between effective load
and energy consumption, but in drones-assisted sample collection, we must consider the
impact of energy consumption and payload on the drone routes. Therefore, in this paper,
we propose a 2E-HDRP-TS model. In this model, we consider factors such as the degree of
cross-infection and the collection time of samples during the delivery process. To measure
the safety of the samples, we propose the concept of exposure index and use it as one of
the optimization objectives. Also, we focus on minimizing the collection time to improve
the delivery efficiency. Our goal is to find the optimal delivery route while satisfying
various constraints.

3. Architecture of BISC

In this section, we describe the architecture of BISC in detail.

3.1. Overview of System

Infection samples are currently an essential and valued material for interrupting the
early spread of the virus. BISC typically conducts regular sample collection from high-risk
communities at the initial stage of an outbreak. This critical link requires a high level of
safety and timeliness. In terms of biological safety, all infection samples collected from
users should be considered potentially pathogenic, so it is necessary to take precautions
against the cross-infection from samples. BISC uses heterogeneous drones and a two-
echelon mechanism is used collecting infection samples. Drones flying to user points in
high-risk areas are more susceptible to contamination. Therefore, they are only allowed
to fly to transit points to unload samples and do not have access to the testing center. The
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location of the testing center in a low-risk area far away from residents is conducive to
avoiding the risk of cross-infection of infection samples and ensures accurate sample test
results. In the BISC system, biological safety and information security are inseparable, yet
traditional drone-assisted collection systems have serious information risks. The infection
sample data containing sensitive personal information lack encryption and protection. It is
susceptible to attacks that could result in privacy breaches. In addition, as important public
health information, the infection sample data require traceability and verifiability. Infection
samples lack integrity and authenticity if the source and modification of information cannot
be recorded. The biological safety cannot be guaranteed either. Blockchain, as a distributed,
decentralized, tamper-proof, and traceable technology, can provide an effective solution
for information security [41]. Therefore, we propose an infection sample collection system
with the integration of blockchain. In such a blockchain-enabled system, distributed nodes
are able to exchange the required data without the need for a third-party intermediary by
reaching a consensus. Sample numbers, container selection, event documentation, and
transportation environments all have significant impacts on the biological safety of samples.
Blockchain uses encryption algorithms and digital signatures to ensure the security and
privacy of the above information. The hash value and timestamp are used to record the
source of and changes in information [42].

A typical application scenario of BISC is shown in Figure 2. We aim to accomplish the
collection, transportation, and testing of infection samples in remote communities with
sparse populations. The public health information is also guaranteed to be traceable and
tamper-proof. Heterogeneous drones are used for infection sample collection and delivery.
Collector drones fly precisely to user points, completing the “last meter” of the collection
task. This mechanism essentially avoids the possibility of spreading the virus between
residents. The other type of drones are deliverer drones, which are mainly responsible for
transporting samples to the testing center after collector drones have completed a certain
amount of collection. Finally, all sample data and test results are stored in the blockchain
to ensure information security. Reliable sample information not only benefits the tracing
and prevention of infectious diseases, but also provides verifiable data support for public
health management. Through blockchain technology, we can ensure transparent records of
sample origins and modifications, thereby maintaining the integrity and authenticity of
infection samples. This measure is not only important for biological safety, but also helps
establish the credibility and traceability of public health information, providing crucial
support for responding to disease outbreaks.
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Figure 2. Overview of BISC.
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3.2. Composition of BISC

The composition of BISC consists of four participating entities, including management
authority, medical institutions, individual users, and transportation agencies, as shown in
Figure 3.

Individual

 users 
Transport

Transportatio

n agencies
Test

Medical 

institutions

Management 

authority

Blockchain

Individual

 users 
Transport

Transportatio

n agencies
Test

Medical 

institutions

Management 

authority

Blockchain

Figure 3. The participants of BISC.

(1) Management authority: The management authority is responsible for the identity
registration of all entities, as well as the distribution of keys, and takes a leading role
in BISC. In addition, throughout the entire collection task, it reads the information on
infection samples in order to facilitate timely decision-making for preventing virus spread.

(2) Medical institution: The medical institutions include hospitals, testing centers, and
laboratories that have the capability to test samples. In BISC, the medical institutions
are responsible for the testing of infection samples and the uploading of the results.
Naturally, the medical institutions are also responsible for epidemiological analysis of
the infectious disease infection and for providing mitigation strategies.

(3) Transportation agency: The transportation agency, which consists mainly of drones
and transit points, undertakes the task of collecting and transporting samples through-
out the entire collection task. Both the collector drone and the deliverer drone are
identified after reaching the transit point to ensure that the infection samples are not
illegally accessed. In addition, transportation data, including the flight routes of the
drones and handover operations, are uploaded into the blockchain by the drones.

(4) Individual user: The individual users accomplish the binding of the personal sample
to the sampling container via the Internet. Also, before delivering the sample, the
individual user needs to verify the identity of the drone. The data generated from the
above delivery process are uploaded into the blockchain along with basic personal
information. Naturally, for privacy protection, individual users can only access their
own sample test results.

The workflow of BISC is shown in Figure 4. First, the management authority identifies
and registers the other entities of the system and assigns the keys. The collector drones
collect infection samples according to a flight route set out by the system. When a collector
drone arrives at a user point, it must be identified before it takes a sample from that point.
Then, it transports several samples to a transit point, waits for the deliverer drone to arrive,
and completes the sample handover after another identity verification. Deliverer drones
transport a large number of samples to a medical institution. All the above transportation
information is packaged and uploaded to the blockchain. The medical institution will
also upload the corresponding test results of the sample. In this way, individual users can
check their health status through the key. The management authority and the medical
institution, on the other hand, establish precautionary measures as soon as possible based
on the infection status of the residents in the region.
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3.3. Layers of BISC

The BISC connects the management authority, medical institutions, individual users,
and even transportation agencies into a network. To ensure information security, we adopt
an alliance chain in BISC, which allows several nodes within different organizations to join
together [43]. We propose a three-layer architecture consisting of an infrastructure layer, a
blockchain layer, and an application layer, as shown in Figure 5.
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Figure 5. The architecture of BISC.

(1) The infrastructure layer is the underlying layer of the system architecture. The infras-
tructure refers to the basic physical facilities and equipment used to collect informa-
tion, including the Global Positioning System (GPS), cameras, sample transportation
boxes, Radio Frequency Identification (RFID), and a variety of sensors. The system
may record route data for the collection process (including information on drone
paths and handover operations) via GPS and cameras. During the transportation
of infection samples, the environment of the sample transportation box affects the
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reliability of sample testing. Therefore, sensors mounted inside the box record data
on the environment (temperature and vibration during collection) and monitor devi-
ations in the collection procedure from standard operating procedures (for example,
a longer collection time or a temperature other than the one recommended). RFID
improves the efficiency of identity verification between drones and user points. The
infrastructure layer mainly provides hardware support for the collection of infection
samples with accurate recording of route data and environmental data throughout the
collection process.

(2) The middle layer of the system is dedicated to the blockchain, in which all system
data are organized into a chronological sequence of interconnected blocks. This
layer incorporates a peer-to-peer network and consensus mechanism to uphold data
consistency across nodes. Moreover, smart contracts are implemented to enhance
information management and optimize infection sample collection routes. Within the
blockchain layer, distinct components such as the data layer, network layer, consensus
layer, and contract layer interact seamlessly to ensure the robust operation of the
system. Each layer has specific capabilities, as follows:
Data layer: The data stored in the blockchain mainly include the user identity,
samples information, route of drones, and testing results. When any node needs to
update the data, it sends a data update request to BISC to verify the transaction by
consensus. Only the data that pass the consensus mechanism can be packaged into a
data block, which is linked to the original data block to form a chain structure. During
this process, technologies such as timestamps, hash functions, and Merkel trees are
applied to keep the information secure and prevent tampering [43].
Network layer: The network layer of the blockchain is a peer-to-peer (P2P) structure
which is used for communication and authentication. The use of P2P technology
ensures that all participating entities in the system can take part in the transaction.
When participating entities need to synchronize data, they broadcast messages to
other nodes in the network for consensus.
Consensus Layer: In BISC, how nodes reach a consensus is key. In this paper, we use
the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm. Its main principle
is to take the management authority of BISC as the master node, while all other
nodes are child nodes. For every consensus computation, all the nodes in the system
communicate with each other and reach a consensus based on the principle of majority
rule. We chose the PBFT algorithm to be applied to the infection sample collection
system for the following reasons: Unlike the Proof Of Work (POW) algorithm, the
PBFT algorithm does not consume a large amount of computing resources, and its
efficiency in dealing with transactions is improved. Moreover, for each consensus
computation, the PBFT algorithm allows for, at most, (N − 1/3) invalid or malicious
nodes. That means, among all the nodes in the system, it must be guaranteed that
there are at least (2N + 1)/3 normal nodes. Most of the participating subjects in BISC
are hospitals, testing centers, or government administrations. They are much less
likely to execute malicious behaviors than other nodes due to strict network security
measures. The feature provides a relatively safe and stable environment base for the
normal operation of the PBFT algorithm.
Contract layer: The contract is the core of the whole system, consisting of script
code and smart contracts. The smart contract is a special program that needs to
formulate the trigger conditions in advance. When the executions are triggered, the
corresponding contract codes are executed automatically, and the outside world does
not need to and cannot intervene manually [44]. This increases the trustworthiness of
the system. In BISC, the smart contract is designed to improve sample information
management and plan a safe and efficient sample collection path.

(3) The application layer serves as a platform that incorporates the blockchain system to
facilitate the exchange of information among diverse participating entities, including
management authorities, medical institutions, individual users, and transportation
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agencies. For example, individual users can query their health information through
the application layer. The management authority can also find out the scale of infection
in the region and issue public health measures.

4. The Two-Echelon Drone-Assisted Mechanism

The BISC uses blockchain to address the issues of traceability and information security.
However, in addition to security, it is also necessary to ensure the effectiveness of the
sample collection and the reliability of the handover process. Routing is key to improving
the effectiveness and reliability during the collection. Therefore, we present a two-echelon
drone-assisted mechanism, which is characterized as a 2E-HDRP-TS. In this section, we
first present the 2E-HDRP-TS, followed by a mathematical model of the problem. For ease
of understanding, Table 2 summarizes the notation used in the 2E-HDRP-TS model.

Table 2. Model notations.

Notation Notation Description

Vu The set of all user points
K1 The set of deliverer drones
K2 The set of collector drones
Vs The set of transit points
G(V, A) The directed graph for all drones
G1(V1, A1) The directed graph for first-level deliverer drone
G2(V2, A2) The directed graph for second-level collector drone
q The sample quality of user points
TC The testing center
Di,j The distance between two users
tD
i,j The flight time of deliverer drone between two users

tC
i,j The flight time of collector drone between two users

LD
i The load of the deliverer drone leaving point i

LC
i The load of the collector drone leaving point i

H1 The maximum capacity of the deliverer drone
H2 The maximum capacity of the collector drone
E1 The maximum energy of the deliverer drone
E2 The maximum energy of the collector drone
w1 The weight of the deliverer drone
w2 The weight of the collector drone
P1 The maximum power of the deliverer drone
P2 The maximum power of the collector drone
FD

i,j The energy consumption of deliverer drone between two users
FC

i,j The energy consumption of collector drone between two users
vD

i,j The flight velocity of deliverer drone between two users
vC

i,j The flight velocity of collector drone between two users
T The total time to complete sample collection
Q The exposure index of the entire solution
xk

i,j The decision variables between i and j

4.1. Model Descriptions
4.1.1. 2E-HDRP-TS Model

We target remote communities in which BISC is applied. Within this scenario, users
are sparsely distributed and are located far from the infection sample testing center. To
reduce the time spent on sample collection and eliminate the biological safety issues
associated with traditional sampling methods, two-echelon heterogeneous drones are used
for the collection task. We classify all user points and infection samples as potentially
pathogenic, thus delineating high-risk and low-risk areas. Drones traveling to user points
are susceptible to virus contamination in high-risk areas and are therefore restricted to
unloading samples at designated transit points rather than entering the testing center.
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Situating the testing center in a low-risk area far from users effectively mitigates the risk of
cross-contamination of infection samples and ensures the accuracy of sample test results.
For the above scenario, we propose the 2E-HDRP-TS, in which the transit point is one
or more designated locations used for sample handover between drones. As shown in
Figure 6, the 2E-HDRP-TS includes two types of drones, each of which may create multiple
delivery routes. One type of drones, called collector drones, is fast and flexible. They
are responsible for collecting samples from various user points and transporting them to
the transit points. The other type of drones, called deliverer drones, have a larger weight
and stronger load capacity. They shuttle between the testing center and the transit points
to transport packaged infection samples to the testing center. Here, we assume that all
infection samples are returned to the testing center and tested there.

User point

Transit point

Testing center

Route of collector drones

Route of deliverer drones

TC

S2
S1

𝒖𝟏

𝒖𝟐

𝒖𝟑

𝒖𝟔

𝒖𝟓

𝒖𝟖

𝒖𝟕

𝒖𝟗

Figure 6. Two-echelon collection process.

The purpose of this study is to plan the routes of multiple drones to safely and quickly
deliver infection samples to a testing center. A directed graph G(V, A) that contains all the
flight routes of drones is given, which includes the first-level delivery graph G1(V1, A1)
and the second-level collection graph G2(V2, A2). The deliverer drones travel between
the testing center (TC) and transit points, and between the transit points. We define
V1 = {CT}

⋃
{Vs} and A1 = {(CT, i)|i ∈ Vs}

⋃
{(i, j)|i, j ∈ Vs}

⋃
{(i, CT)|i ∈ Vs}. The col-

lector drone sets off from a transit point, flies to the users in sequence to collect samples,
and finally flies to the transit point for synchronous handover. In the same way, we define
V2 = {Vu}

⋃
{Vs} and A2 = {(i, j)|i ∈ Vs, j ∈ Vu}

⋃
{(i, j)|i, j ∈ Vu}

⋃
{(i, j)|i ∈ Vu, j ∈ Vs}.

4.1.2. Energy Consumption Model of Drones

In the 2E-HDRP-TS model, the weight of the samples collected by drones can approach
or even exceed the self-weight and cannot be ignored. Therefore, the energy consumption
of the drone is determined by both its own weight and the payload. As the drone collects
samples one by one, the increased payload also increases the energy consumption rate.
Finally, the collection route must be completed within the energy limit. This is to prevent
the drone from being unable to complete the scheduled route due to insufficient energy
supply, which could result in unreliable or even destroyed infection samples. The payload
changes for each point the drone passes through, either for sample collection or sample
loading and unloading tasks. Thus, the energy consumption rate between two nodes shows
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a stepped change. Taking the collector drone as an example, the power of the battery when
flying from node i to node j is as follows [8]:

pC
i,j =

(w2 + LC
i )v

C
i,j

370ηγ
+ e, (1)

where the self-weight of the collector drone is w2, the payload is LC
i , the speed is vC

i,j, η is
the power transfer efficiency for motor and propeller, γ is the lift-to-drag ratio, and e is the
energy consumption of other electronic devices on the drone.

In addition, to enhance the delivery efficiency of the drones, we assume that the drones
maintain the maximum power during flight, pC

i,j = P2 [45]. Based on this, the formula for

the flight speed and travel time with the payload LC
i can be calculated by

vC
i,j =

370ηγ(P2 − e)
w2 + LC

i
, (2)

tC
i,j =

Di,j

vC
i,j

=
Di,j

(
w2 + LC

i
)

370ηγ(P2 − e)
. (3)

The parameters in Equations (2) and (3) can be determined based on the specific drone
model in the experiment. Figure 7 shows the variation of the collector’s velocity on the
way to complete the sample collection task.

sp
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k
m

/h
)
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Figure 7. Relationship between velocity and payload.

The energy consumption of a drone also varies with its payload, which is defined as

FC
i,j = P2 × tC

i,j = P2
Di,j

(
w2 + LC

i
)

370ηγ(P2 − e)
, (4)

where FC
i,j represents the energy consumption of the collector drone flying from use point i

to use point j with payload LC
i . Obviously, the energy consumption model of the deliverer

drones follows the same principle. When all the collector and deliverer routes are known,
we can calculate the following information: (1) the total energy consumption of each route,
which can be used to determine whether it exceeds the energy limit; (2) the arrival time
at the transit point, which can be used to determine the synchronous performance during
handover operation; and (3) the total time taken to complete sample collection. To simplify
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the model, we ignore the speed changes caused by the takeoff and landing of the drone. In
addition, we do not conduct research on factors such as weather conditions.

4.1.3. Sample Exposure Index

In this section, we first introduce the handover operation and describe the handover
process in detail, and then we develop a performance index called the exposure index to
assess the cross-infection risk of a single synchronous handover operation.

Synchronous handover: In the 2E-HDRP-TS, we use two types of drones for sample
collection. When the collector drone and deliverer drones arrive at the transit point, they
perform a handover operation. The handover operation is defined as medical personnel
unloading samples from the collector and loading them onto the deliverer. At this time,
the security of the samples is threatened, and samples are easily contaminated or even
destroyed. So, the handover process becomes the key to preventing sample cross-infection.
We should minimize the waiting time of drones carrying samples at the transit point
and the time spent on handover operations. Therefore, we require the two drones to be
synchronized as much as possible. In addition to waiting for the other drone, we should also
consider the following time costs: (1) brief disinfection of the drone load box, preparation
for handover; (2) unloading and loading operations; (3) preparation for takeoff.

As shown in Figure 8, we use the example of a transfer operation where the collector
drone arrives first. [tb, tc]: The drones identify each other and prepare for the handover.
[tc, td]: The unloading and loading time of the two drones. During a single handover
operation, two drones must be present at the same time, and the collector’s sample is
unloaded and loaded onto the deliverer. [td, te]: The deliverer drone prepares for takeoff.
However, we assume that the above time can be ignored and will not affect the solution’s
performance. This is because the identity verification and unloading operations of the
drones in the proposed model are very simple and take little time. We only consider the
arrival times of the two drones, ta and tb, and both drones leave at tb. Based on this, we can
describe the exposure index.

tta tb tc td te

Collector drone

deliverer drone

Identification

Unload and load

Take off preparation

Waiting

Figure 8. Time chart for a handover operation.

Exposure index: If the time difference between the two drones (the collector drone
and the deliverer drone) arriving at the designated transit point is too large, the infection
samples carried by these two drones will inevitably be at high risk of exposure. Therefore,
in order to measure the synchronous performance and sample safety of a single handover
operation, we propose an exposure index Qi. The exposure index Qi is divided into
two parts, namely QRE

i , which measures the degree of sample retention, and QSY
i , which

measures the degree of synchronization. QRE
i is obtained by multiplying the quality of the

retained sample by the retention time. QSY
i is obtained by multiplying the time difference

by the average payload factor. The higher the exposure index, the higher the danger and
unreliability of the sample. The exposure index Qi is defined as follows:

QRE
i = LD

i ∗
(

TON
i − TDA

i

)
+ LC

i ∗
(

TON
i − TCA

i

)
, (5)
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QSY
i = kSY ∗

∣∣∣TDA
i − TCA

i

∣∣∣, (6)

Qi = QRE
i + QSY

i , (7)

where i represents the i-th handover operation, TCA
i is the time at which the collector

arrives, and TDA
i is the time at which the deliverer arrives. TON

i is the time at which the
deliverer completes all handover operations at that point, and kSY is the average payload
factor, measured in kg. During a handover operation, handover can only occur when both
drones have arrived, and after unloading and loading their respective samples, they will
depart. In addition, if a different collector visits a handover point corresponding to multiple
different operations, the exposure index needs to be calculated separately. The exposure
index of the entire plan is the average of the exposure indexes of all transit operations.

Q =
∑B

i Qi

B
, (8)

where B represents the total number of handover operations.

4.2. Problem Formulation

In the 2E-HDRP-TS, the positions and number of user points are known, and the
quality of samples generated by all user points is equal. Several collector drones are needed
to transport all users’ samples to the transit points, which requires collectors to collect
multiple users in a single flight. The transit point is one or more predetermined locations
used for sample transfer between drones. Subsequently, the deliverer drones transport
the samples to the testing center. The speed of the drones constantly changes with the
load. There is no storage capacity at the transit point, so both drones should try to arrive at
the same time during the handover operation to reduce the risk of sample cross-infection.
Ultimately, our goal is to find the optimal flight routes for drones to minimize the collection
time and exposure index as much as possible. The total completion time is the time at
which all deliverers arrive at the testing center, which is defined as

T = max(Ti, ∀i ∈ K1), (9)

where K1 represents the set of deliverer drones and Ti represents the time at which the i-th
deliverer drone returns to the testing center.

To simplify the problem, we make the following assumptions: (1) we assume that all
collector drones are homogeneous, and the deliverer drones are the same; (2) the start-up,
acceleration, and stopping of the drones can be ignored; (3) the power of the drones is
constant; (4) during the transit process, the loading and unloading of the drone is very
simple, and we will ignore this part of the time. In the 2E-HDRP-TS, we aim to optimize
the collection duration and exposure index. The problem is a typical multi-objective
optimization problem, defined as

min( f1, f2), (10)

st. ∑
(tc,j)∈A1

xk
tc,j = ∑

(tc,j)∈A1

xk
j,tc = 1, ∀k ∈ K1, ∀j ∈ Vs, (11)

∑
i∈Vs ,j∈Vu

xk
i,j = ∑

i∈Vs ,j∈Vu

xk
j,i = 1, ∀k ∈ K2, (12)

∑
(i,j)∈A

xk
i,j = ∑

(j,i)∈A
xk

j,i, ∀k ∈ K, ∀i ∈ V, ∀j ∈ V, (13)

∑
K∈K2

∑
(i,j)∈A2

xk
i,j = 1 , ∀i ∈ V2, ∀j ∈ Vu, (14)

0 ≤ LD
i ≤ H1, ∀i ∈ V1, (15)

0 ≤ LC
i ≤ H2, ∀i ∈ V2, (16)
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∑
(i,j)∈A1

xk
i,j × FD

i,j ≤ E1, ∀k ∈ K1, (17)

∑
(i,j)∈A2

xk
i,j × FC

i,j ≤ E2, ∀k ∈ K2, (18)

xk
i,j ∈ {0, 1}, k ∈ K, (i, j) ∈ A. (19)

The objective function (10) is to minimize the total collection time of f1 and exposure
index of f2. Constraints (11) require that each deliverer drone starts from and returns to
the testing center. Constraints (12) require that the starting and ending points of each
collector drone must be at the transit points. Constraints (13) are flow conservation con-
straints. Constraints (14) guarantee that each user point is traversed by a collector only once.
Constraints (15) and (16) ensure that the sample load does not exceed the maximum capac-
ity of the drone. Constraints (17) and (18) are energy constraints that ensure the drone can
return to the testing center or transit point before its energy is exhausted. Constraints (19)
represent the decision variable constraints.

5. ALNS-RD

To minimize the exposure risk and delivery delay of infection sample collection, we
integrate the ALNS-RD algorithm into the smart contract. The algorithm is executed
automatically at the beginning of the BISC to obtain near-optimal flight route solutions
for drones. The solution includes path sequences for collector drones to collect samples
from user points and path sequences for deliverer drones to transfer samples from transit
points to the testing center. The ALNS algorithm was initially proposed by Ropke and
Pisinger [46], allowing for the use of different destroy and repair operators during the
searching process. Based on ALNS, Rifai et al. [47] proposed the Multi-Objective Adaptive
Large Neighborhood Search (MOALNS) algorithm to provide a good set of non-dominated
solutions for multi-objective problems. However, the above algorithms are not suitable
for solving 2E-HDRP-TS, which has strict constraints for two-echelon synchronization.
Moreover, MOALNS simply determines the solution to be modified by randomly selecting
a non-dominated solution from the archive, which is not conducive to the solution of
2E-HDRP-TS. Thus, this study defines four operators (i.e., flight distance-based destroy
operator, flight distance-based repair operator, exposure index-based destroy operator,
exposure index-based repair operator) for 2E-HDRP-TS to optimize the route of drones and
improve the synchronization performance of handover operations. In addition, in order to
ensure the diversity of the solutions, we set the solution with high crowding distances as
the current solution for the next iteration.

5.1. ALNS-RD Framework

The principle of ALNS-RD is described in detail in Algorithm 1. ALNS-RD begins
by generating a solution and ultimately obtains the Pareto set, in which each member
represents a flight route solution for drones. The steps for each iteration of ALNS-RD
are as follows: During the first iteration, s is added to S∗. In the subsequent iterations,
the algorithm continuously executes a looping process. First, the roulette wheel is used
to select operators; s is removed and inserted to generate s′; if s′ meets the acceptance
criterion, then s′ is chosen as the s for the next iteration; S∗ and the operator weights are
updated; s is replaced based on the crowding distance every δ iterations. Finally, we obtain
the Pareto solution set S∗. ALNS-RD utilizes two types of operators: destroy ϕ− and repair
ϕ+ operators. The two types of operators iteratively destroy and repair the flight route
solution for drones s to obtain a new solution s′. The destroying refers to removing a
number p of user points from the current solution s, while repairing refers to inserting all
pending user points in the solution. All operators initially have the same weight, which
determines their probability of being selected at each iteration. The weights are updated
based on the operators’ historical performance. If s′ satisfies the acceptance criterion, it is
accepted and becomes the current solution s← s′ for the next iteration. Additionally, if s′
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is non-dominated, it is inserted into the Pareto set. The acceptance criterion and the update
of the Pareto set are described in detail in Section 5.7. This procedure continues until the
stop-criterion is met.

Algorithm 1: ALNS-RD
Input: Current solution s, destroy operators ϕ+, repair operators ϕ−

Output: Pareto set S∗

if first iteration then
S∗ ← s;

end
while stop-criterion not met do

roulette wheel selection operator;
remove a certain number of user points from s and insertion;
generate s′;
if s′ satisfies acceptance criterion then

s of next iteration← s′;
end
update S∗;
update operator weights;
every δ iterations: replace s based on crowding distances;

end
return: S∗

5.2. Initial Solution

We propose using a two-phase construction algorithm to obtain the initial solution, as
described in Algorithm 2. Firstly, a best insertion heuristic is used to generate routes for
deliverer drones to visit all used transit points, as described in lines 3–7. In this heuristic,
the closest transit points in terms of distance are inserted into the routes of drones. Then,
based on the deliverer drone’s route, multiple routes of collector drones are generated to
visit user points, as described in lines 8–12. Similarly, the best insertion heuristic is used to
insert user points into existing routes of drones.

Algorithm 2: Procedure for generating initial solutions
Input: User points Vu, transit point Vs, number of deliverer drones |K1|, number

of collector drones |K2|
Output: Initial solution
Initialize the deliverer route, starting from the TC;
Initialize the collector routes, starting from a random transit point;
while unvisited transit points exist do

Find the transit point s closest to the last point on the route;
Insert end of route;
Add the starting city to the end of the route;

end
while unvisited user points exist do

Find the user point u closest to the last point on the route;
Insert end of route;
Add the starting city to the end of the route;

end
return: Initial solution

5.3. Non-Dominated Solution

2E-HDRP-TS is a multi-objective problem, which requires minimization of the total
completion time of sample collection and the exposure index of samples during the han-
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dover process. In most cases, these two objectives are in conflict. When the total collection
time of infection samples is prioritized, the vast majority of samples are likely to be sent
to the closest transit point to the testing center to ensure that the entire sample collection
task can be completed quickly. However, considering that the completion time of the
handover mainly depends on the last drone to arrive, doing so may result in these samples
staying at this transit point for too long, which in turn increases the risk of sample exposure.
This conflict between objectives prevents us from obtaining a dominant optimal solution.
Therefore, we generate a Pareto solution set S∗ to preserve the various non-dominated
solutions s. In the 2E-HDRP-TS, the Pareto dominance relation can be defined when a
solution s ∈ S∗ dominates a solution s′, denoted as s ≻ s′, if and only if the following
conditions are fulfilled:

fO(s) ≤ fo(s′), ∀o ∈ O, (20)

fO(s) < fo(s′), ∃o ∈ O, (21)

where O is the set of optimization objectives. Equations (20) and (21) indicate that s can be
equal to s′ on one objective, but another objective must be better than s′. During the iteration
process, s will be inserted into the Pareto set S∗. When a new solution that dominates s
appears, s will be removed from the Pareto set S∗. The Pareto front of S∗ moves forward
with the optimization and is closer to the true Pareto front.

5.4. Destroy Operators

We generate a new solution by destroying and repairing the current flight route
solution for drones. This process assigns infection samples to different collector drones
and replans their visit routes. To destroy a current solution, we first select an operator and
continuously remove user points until the removal requirement is met. There are two types
of destroy operators: route-based destroy operators and user-based destroy operators.

5.4.1. Route-Based Destroy Operators

Route-based destroy operators remove the entire route of drones and contain the
following three operators.

• Random route removal: For the current solution, this operator randomly removes a
route of the drone, which means removing all user points on this route.

• Random drone removal: This operator randomly removes all user points collected by
the drone. It is hoped that the repair operator will assign uncollected user points to other
drones. Random drone removal is a more effective method than random route removal.

• Exposure index-based route removal: Based on the low-exposure requirement of the
two-echelon infection sample collection with synchronization, we proposed a destroy
operator based on the exposure index. When the drones participating in the handover
arrive almost synchronously, the exposure index at this handover naturally is very
low. If the collector drone arrives a long time before (or after) the deliverer drone,
the handover operation will involve a long waiting time and will pose a threat to the
sample’s safety. We are inspired by the worst removal [46] and directly remove the
poorly performing routes in the handover. The operator begins by calculating the
exposure index of each handover operation. After sorting, all user points on the worst
route are removed until the removal requirement is met. This operator removes routes
with poor synchronization performance to improve the safety of the sample.

5.4.2. User-Based Destroy Operators

User-based destroy operators remove certain user points from the drone’s route and
contain the following four operators.

• Random user point removal: This operator randomly removes user points from the
drone’s route until the removal requirement is met.

• Worst user point removal: For each user point, this operator calculates the difference
between the cost function with and without this user point. The cost function repre-
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sents the distance required to collect samples at that point. Then, the operator sorts
the user points from the highest to the lowest cost and removes the worst user points
from the drone’s route.

• Related user point removal: This operator is based on the Shaw removal heuristic [48],
and it deletes a certain number of related user points from the drone’s route. We
measure the relatedness between two user points based on their distance. A shorter
distance indicates a great degree of relatedness. This operator is designed to delete
closely related user points.

• Flight distance-based removal: To minimize the total collection time of infection
samples, we design a flight distance-based destroy operator.

As shown in Figure 9, the flight distance of the sample at user point 1 follows the route
of the collector drone to transit point 4 first, and then follows the route of the deliverer drone
to the testing center (node 0). In order to evaluate the potential impact of an individual
user point on the objective value T, the following analysis is conducted. First, according to
the flight time of the collector drone in Equation (3), we calculate the time increment t1 for
user point 1 on this route:

t1 =
q ∗ DF

1,4

370ηγ(P2 − e)
, (22)

where q is the quality of a single sample. DF
1,4 is the flight distance from user point 1

to transit point 4 along the route. The other parts of Equation (22) can be considered as
constants when the drone’s parameters are determined. Therefore, t1 is proportional to
DF

1,4 but independent of the drone’s weight and total payload.

User point

Transit point

Testing center

Route of collector drones 

Route of deliverer drones
0

5 4

𝟏

𝟐

𝟑

Flight distance of point 1

Figure 9. Flight distance of sample at user point 1.

Figure 10 further explains the relationship between the flight time and flight distance
of the user point. The x axis represents the drone’s weight and the quality of each user
point’s sample q (w2 > q). The drone’s route from the starting point passes through each
user point, and finally returns to the endpoint. The size of each column rectangle represents
the specific time increment for the corresponding weight portion in this route.

The Equation (22) can also be refined by considering the flight distance in the route
of the deliverer drone. We assume that the handover operation is perfectly synchronized,
meaning there is no waiting time for both drones involved in the handover link. The time
increment of user point 1 with respect to the objective value T is given as

t′1 =
q ∗ DF

1,4

370ηγ(P2 − e)
+

q ∗ DF
4,0

370ηγ(P1 − e)
. (23)
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In summary, there are two methods that can be used to shorten the collection time
when the sample quality is fixed. The first method is to optimize the route and find shorter
circuits. The second method is to find and remove user points with large time increments
from the flight route and assign them to drones with lower collection costs. Since the
time increment is proportional to the flight distance of the user point, we propose a flight
distance-based destroy operator. The operator aims to remove user points with the longest
flight distances. Instead of calculating the difference in objective value with and without
these user points, it calculates the increment in the objective value in terms of flight distance.
Removing the user point with the farthest flight distance after sorting can significantly
reduce the total collection time of infection samples.
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Figure 10. The relationship between time increment and flight distance: The red part represents the time
increment caused by the drone’s self-weight. The green part represents the time increment caused by user
point 1, which is the t1. The blue part represents the time increment caused by the drone when collecting
samples from other user points.

5.5. Repair Operators

In Section 5.4, we remove some user points from the drone’s routes in order to generate
a new solution, which results in some infection samples being uncollected in the solution.
Therefore, we use the repair operator to insert the uncollected user points into the drone’s
route. In the repair process, the insertion can either be conducted along the existing route
or another route can be created for the drone. User-based destroy operators contain the
following four operators.

• Greedy insertion: For an uncollected user point, after traversing all possible insertion
positions, this operator chooses the position with the lowest cost for insertion.

• Random insertion: This operator randomly selects insertion positions and chooses the
most suitable position among them to insert the uncollected user points.

• Flight distance-based insertion: Similar to the flight distance-based destroy operator, we
propose a flight distance-based repair operator. This operator traverses each route and
selects the most suitable insertion position based on the minimum flight distance principle.

• Exposure index-based insertion: This operator is aimed at routes that still have room
for improvement in terms of exposure index. Uncollected user points are continuously
inserted at suitable positions along the route to reduce the waiting time for drones in
handover operations. During this process, the selected route keeps expanding until it
reaches saturation, where both drones arrive at the transit point almost synchronously.

5.6. Adaptive Mechanism

The ALNS-RD algorithm utilizes an adaptive mechanism to select multiple destroy
and repair operators. The adaptive mechanism can adjust throughout the entire iteration
process to better adapt to different situations. The algorithm adopts a roulette wheel
strategy to calculate the probability of different operators being selected. At the beginning
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of the iteration, the probability of selecting each operator is the same. Each operator is
assigned a dynamic weight ω, which depends on its contribution to the objective value.
The weights of the repair operators ϕ+ and the destruction operators ϕ− do not interfere
with each other. Specifically, we evaluate the performance of the operators in previous
iterations by their scores, and update their weights. Finally, the selection probability of
each operator is calculated based on the weights and shown as

pϕ−(j) = ωj/ ∑
i∈ϕ−

ωi, ∀j ∈ ϕ−, (24)

pϕ+(j) = ωj/ ∑
i∈ϕ+

ωi, ∀j ∈ ϕ+. (25)

At the beginning of the iteration, all operators are initialized and have an equal
probability of regenerating routes for drones. After entering the iteration, based on the
score πi,j obtained by the operator i in the j-th loop, the weight of selecting the operator i in
the next loop is updated as ωi,j+1. The score πi,j represents the performance of the operator
i in the j-th iteration, and µi,j is the number of times that the operator i was used in the j-th
iteration. When the current iteration ends, the scores obtained by the operators are used to
calculate the new weights. The weight update process is shown as follows:

ωi,j+1 =

{
ωi,j i f µi,j = 0
(1− r)ωi,j + rπi,j/µi,j i f µi,j ̸= 0,

(26)

where r ∈ [0, 1] is the response factor. The r controls the sensitivity of the adaptive selection
of the algorithm and ranges from 0 to 1. As r approaches one, the new weights essentially
depend on the score of this iteration. The parameter πi,j reflects the performance of the
selected destroy and repair operators in the current iteration in the form of a score. The
calculation of the score is as follows:

πi,j = max



θ1 i f s ≻ sP, ∃ sP ∈ S∗

θ2 i f s ≻ sP or sP ≻ s, ∄ sP ∈ S∗

θ3 i f s′ ≻ s
θ4 i f s′ is accepted as a suboptimal solution
θ5 i f s′ not accepted,

(27)

where s′ represents the new solution generated by destroying and repairing a current
solution s. sP is a solution of the Pareto set S∗. The acceptance criteria will be detailed in
the next section.

5.7. Acceptance Criteria

The acceptance criteria of ALNS-RD are developed based on the Archived Multi-
Objective Simulated Annealing (AMOSA) [49]. In AMOSA, the acceptance probability of a
new solution becoming the current solution is determined by considering the dominant
relationship between the new solution, the current solution, and the solutions in the archive.
We propose similar acceptance criteria.

1. If s′ dominates a solution in S∗, s′ will be accepted as the current solution and inserted
into S∗. At the same time, all solutions in S∗ dominated by s′ will be deleted. The
score of the operator in this situation is θ1.

2. If s′ and a solution in S∗ are non-dominating, s′ will also be accepted as the current
solution and will become a new Pareto solution. The score of the operator in this situation
is θ2.

3. If s′ dominates the current solution s, although s′ will be accepted as the current
solution, it cannot be added to the Pareto set S∗. The score of the operator in this
situation is θ3.
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4. If s′ and the current solution s are non-dominated, whether to accept the new solution
s′ is determined by the difference with the Pareto solution set S∗. The closer the
distance to the Pareto set S∗, the higher the probability of being accepted. In this case,
the amount of domination is used to measure the difference between two solutions [49].
Between two solutions a and b, the amount of domination is defined as

△a,b =
O

∏
o=1, fo(a) ̸= fo(b)

(
| fo(a)− fo(b)|

Ro

)
, (28)

where Ro represents the range of the objective o ∈ O, obtained using Pareto set S∗.
When s′ is dominated by m solutions in set S∗, the average amount of domination
can be defined as△A = (∑k

i=1△i,s′)/m. And we pick s′ as the current solution with
probability pC, which is defined as pC = 1/(1 + e△A∗TSA). TSA represents the current
temperature, which is decreased in each iteration by being multiplied by the cooling
rate c. The score of the operator is θ4 if the solution is accepted and θ5 otherwise.

5.8. Crowding Distance and Current Solution Replacement

To prevent premature convergence to a local optimum, we select a solution from the
Pareto set S∗ as the current solution at an appropriate time. Specifically, if a new solution
meets the acceptance criterion, then it is promoted to the current solution for the next
iteration. Otherwise, ALNS-RD continues to generate new solutions based on s or select the
point with the maximum crowding distance from the Pareto set S∗ as the current solution.

In the Pareto set S∗, crowding distance refers to the density around a point, which
is the difference in objective values between the point and its neighbors. As shown in
Figure 11, the crowding distance of solution n can be calculated by

Cn =
O

∑
o=1

fo(n + 1)− fo(n− 1)
Ro

, (29)

where Ro represents the range of the objective o ∈ O obtained using Pareto set S∗. If the
left or right neighbors are empty, the crowding distance Cn is regarded as infinitely large.
A higher crowding distance typically implies a lower similarity between this solution and
other solutions, indicating that the neighborhood search for this solution is not extensive
enough. Consequently, if there is still no improvement after δ iterations, ALNS-RD selects
the solution with the maximum crowding distance as the current solution for the next
iteration. The diversity of the Pareto set is maintained in this way.

𝑓2

𝑓1

n

n-1

n+1

𝑅1

𝑅2

Figure 11. Calculation of crowding distances in Pareto set.

6. Experimental Results

In this section, we first describe the instances used for the experiments. In Section 5.2,
we introduce two performance metrics used to measure the quality of the solution set. In
Section 5.3, we present the actual generated routes. The impact of ALNS-RD parameters on
the solutions is discussed in Section 5.4. In Section 5.5, we discuss the impact of operators
on the quality of solutions. In Section 5.6, we conduct algorithm comparisons.
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6.1. Experimental Setup

We use Pycharm as the simulation platform and run on a computer with an Intel Xeon
Gold 6230R CPU (Intel, Santa Clara, CA, USA) and an NVIDIA Quadro RTX 5000 GPU
(NVIDIA, Santa Clara, CA, USA). In the experiment, we generate 1500 × 1500 m instances
by using an actual layout. The drone’s flight height is set at 30 m to fly in a free space area.
The value of parameters related to collector drones and deliverer drones is set according to
typical ones in practical use [45]. The weight of the deliverer drone w1 is set to 9 kg, the
maximum capacity H1 is 11 kg, the maximum energy E1 is 0.8 kW·h, and the maximum
power P1 is 1.5 kW. The collector drone should carry a lighter load, so the weight w2 is set
to 2 kg, the maximum capacity H2 is 2 kg, the maximum energy E2 is 0.3 kW·h, and the
maximum power P2 is 0.5 kW. We assume that the area is covered by the 4G network and
the drones are capable of maintaining real-time communication with ground facilities (user
points and agencies). We assume that the communication link between the drones and
ground facilities is line-of-sight communication. The communication channel modeling
and parameter settings refer to [50]. All simulation parameters are presented in Table 3. In
this simulation, it is assumed that one deliverer drone and four collector drones complete
the collection task.

Table 3. Simulation parameters.

Parameter Value

The flight height 30 m
The speed of a delivery drone with full payloads 40 km/h
The speed of a collector drone with full payloads 56 km/h
The maximum capacity of the deliverer drone H1 11 kg
The maximum capacity of the collector drone H2 2 kg
The maximum energy of the deliverer drone E1 0.8 kW·h
The maximum energy of the collector drone E2 0.3 kW·h
The weight of the deliverer drone w1 9 kg
The weight of the collector drone w2 2 kg
The maximum power of the deliverer drone P1 1.5 kW
The maximum power of the collector drone P2 0.5 kW
The sample quality of user points q 0.1 kg
The power transfer efficiency for motor and propeller η 0.5
The lift-to-drag ratio γ 3
The energy consumption of other electronic devices on the drone e 0.1 kW
The carrier frequency fc 2 GHz
Channel parameter ηLoS 3 dB
Channel environmental parameter ψ 9.61
Channel environmental parameter β 0.16

6.2. Instance Description

We first generate instances used for the experiments and then present the geographical
configuration of the BISC used in the instances.

6.2.1. Generating Instance

We generate instances by using an actual layout of residential users near the coun-
tryside of Ekron, Kentucky, United States. As shown in Figure 12, this area is located
far from the city and is suitable for two-echelon sample collection with synchronization.
Additionally, there are no buildings in the countryside to obstruct drone flights, so the
route of the drone does not need to consider obstacle avoidance. The drone flies between
user points and transit points, delivering all infection samples from the user points to the
testing center.

Specifically, we obtain the real geographic locations through Google Earth and measure
the scale of the entire scene. Then, we label the locations of the user points using ImageJ
(https://imagej.net/ij/), an image analysis software program. The instances are generated

https://imagej.net/ij/
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with the map origin at the bottom-left corner, and the coordinates of all user points are
computed to obtain the distance matrix.

Figure 12. The actual layout of residential users near the countryside of Ekron (108 user points).

6.2.2. Geographical Configuration

Based on the geographical configuration proposed by Grangier et al. [34], we adopt
the following X/Y/M/N notation to describe the positions of the testing center and the
transit points. X and Y are expressed as a percentage of the map size, indicating the location
of a testing center. M and N represent the number of rows and columns of the grid. A
transit point is located at each intersection of the grid. Figure 13 shows a −50/50/3/3
configuration, which is used in all experiments. Finally, we combine the actual layout of
residential users and geographical configuration to create an instance called TDR1. The
following route results and parameter tuning of ALNS-RD are based on TDR1.

Figure 13. Geometrical layout.

6.3. Performance Metrics

To evaluate the performance of ALNS-RD, we use the following two performance
metrics to measure the quality of the Pareto set.

6.3.1. Perfect Point

In order to evaluate the quality of the obtained solutions, we introduce the perfect
point f b. The perfect point f b is the best possible point, which has the lowest value in each
objective of the Pareto set generated by ALNS-RD. f b

o represents the perfect value of the
perfect point f b in objective o ∈ O and is calculated by

f b
o = mins∈S∗ fo(s), ∀o ∈ O. (30)

where O represents the set of optimization objectives, O = {1, 2}. f b
1 represents the optimal

total collection time of infection samples T of the entire Pareto set S∗, and f b
2 represents the

optimal exposure index Q of the entire Pareto set S∗.
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6.3.2. Average Euclidean Distance

The average Euclidean distance is commonly used to evaluate the convergence of a
solution set. The Euclidean distance from the solution s to the perfect point f b is denoted
as ds, which can be calculated as follows

ds =

√√√√ O

∑
o=1

(
fo(s)− f b

o
Ro

)2

, (31)

where Ro is the range of the objective o ∈ O in the Pareto set S∗. The average Euclidean
distance of all solutions in the S∗ is denoted as dA, which can be calculated as follows

dA =
∑s∈S∗ ds

|S∗| , (32)

where |S∗| is the number of solutions in the Pareto set S∗. A lower value of average
Euclidean distance dA implies that all solutions are closer to the center of the solution space.
This also means that the Pareto set S∗ is closer to the true Pareto front.

6.4. Simulated Route Results

In this section, we show the simulated route results based on instance TDR1 using
ALNS-RD.

As shown in Figure 14, we select the three most representative solutions from the
Pareto set for route presentation, which are the solution that minimizes the total collection
time of infection samples T, the solution that minimizes the exposure index Q, and the
trade-off solution. In this solution, the deliverer drone has one route, while the collection
drones have two routes. Therefore, we present the routes of drones in two separate figures,
with each drone represented by a different color.

Figure 15 (a)(b)

Figure 17 (a)(b)

Figure 16 (a)(b)

Figure 14. Pareto front based on instance TDR1 using ALNS-RD (Figures 15–17 describe specifically).

Figure 15 shows the flight routes of the drones presented by the solution that minimizes
the total collection time of infection samples T. As shown in Figure 15a, the first routes of
the collector drones depart from the transit point and return to the same transit point for
handover, completing the collection of infection samples at each user point in the process.
There is no intersection between routes of collector drones. This indicates that the drones
tend to make the shortest route decision, resulting in the shortest collection time. As shown
in Figure 15b, the collector drones all choose the nearest transit point to the testing center,
aiming to minimize the total collection time of infection samples.
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(a) (b)

Figure 15. The flight routes of the solution that minimize the total collection time of infection samples
T. (a) First route. (b) Second route.

Figure 16 shows the flight routes of the drones presented by the solution that minimizes
the exposure index Q. In the Pareto set, to optimize the exposure index as much as possible
and improve the synchronization of handover operations, the total collection time of
infection samples T has to be increased. In this case, the solution with the shortest route
may not lead to the optimal objective value Q. We observe that in Figure 16a,b, there are
route intersections, which means that these routes are not the shortest circuits. ALNS-RD
can control the arrival time of the collector drone at the transit point by extending its route,
so that the collector drone synchronizes with the deliverer drone at the transit point.

(a) (b)

Figure 16. The flight routes of the solution that minimizes the exposure index Q. (a) First route.
(b) Second route.

Figure 17 shows the flight routes of the trade-off solution, in which the drones balance
the collection time and exposure index. This solution maintains a relatively low collection
time of infection samples and the exposure index. This trade-off ensures efficient collection
while keeping the risk of infection spread acceptable. Although this solution may not be
optimal, it is highly possible for it to be chosen in practical applications.

(a) (b)

Figure 17. The flight routes of the trade-off solution. (a) First route. (b) Second route.
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Figure 18 shows the payload variation of the drones during the collection and delivery
process in the trade-off solution. Collector drones 1, 2, and 3 each experience two payload
drops, resulting in two transit operations. Collector drone 4 visits numerous user points
located on the edges and performs one transit operation.

In real applications, the Pareto set can provide multiple alternative solutions. The
decision maker can select a flight route solution for drones from the Pareto set that best
fulfills requirements.

Figure 18. The payload variation of the drones during the collection and delivery process in the
trade-off solution.
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6.5. Parameter Tuning

In this section, we describe how the ALNS-RD parameters are used in the following
experiments.

Despite the large number of parameters used in the ALNS-RD, it turns out that it is
possible to find a set of parameters that works well for multiple instances. We use the
following strategy to tune the parameters. We first generate a set of fair parameter settings.
Then, we allow a particular key parameter to take a number of values while the rest of
the parameters are kept fixed. With an insufficient number of iterations (1000), the perfect
value f b

o will be affected by the change of parameter values. Insufficient iterations can
amplify the differences caused by different parameter values. For each parameter setting,
the perfect values f b

o are calculated ten times, and the average is taken. Deviation refers to
the difference between the average perfect value and the best perfect value in the entire
experiment, which is used to evaluate the rationality of the experimental parameter settings.
The lower the deviation, the more likely it is that the solution set obtained based on this
parameter is close to the true Pareto front. We choose the settings with the best average
perfect value and move on to the next parameter. This process continues until all parameter
values have been determined.

First, we determine the value of the destroy ratio α (α = p/|Vu|). It represents the
ratio of the number of user points removed to the total number of user points. Generally,
the removal rate α has a significant impact on the convergence speed of ALNS-RD and
the objectives. The removal rate α ranges from 0.05 to 0.5, with a step size of 0.05. Table 4
shows the impact of α on perfect value f b

o . Obviously, α ranges from 0.2 to 0.3 is a good
choice and we choose 0.3.

Table 4. Impact of α on perfect value f b
o .

Destroy Ratio α 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Dev. f b
1 (%) 20.1 28.8 8.9 9.6 10.4 10.8 11.7 11.8 10.9

Dev. f b
2 (%) 92.6 109.3 50.7 51.2 42.5 71.9 72.1 74.5 80.0

The reaction coefficient r is another key parameter that controls the sensitivity of the
adaptive selection operator during the weight update process. This parameter is set in the
range of 0.1 to 0.8 with a step size of 0.1. By applying the same parameter tuning strategy,
the results in Table 5 are obtained. The results show that the deviation of average perfect
value is minimized when r is set between 0.4 and 0.5. Therefore, we set the reaction coefficient
r to 0.5.

Table 5. Impact of r on perfect value f b
o .

Reaction Coefficient r 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Dev. f b
1 (%) 11.9 12.3 11.5 7.9 8.9 10.2 9.1 12.1

Dev. f b
2 (%) 97.3 75.8 77.0 71.5 61.0 72.3 74.3 82.8

In addition to the damage rate α and the reaction coefficient r, the ALNS-RD algo-
rithm includes the following parameters (c, θ1, θ2, θ3, θ4, θ5, δ). Referring to the study of
Ropke & Pisinger [46], the values of (c, θ1, θ2 θ3 θ4 θ5, δ) are taken as (0.99975, 20, 16, 10, 6,
2, 10), respectively.

6.6. Impact of Operators on Solutions Quality

In this section, we discuss the impact of neighborhoods composed of different opera-
tors on the quality of solution sets. To make the experimental results convincing enough,
we run multiple neighborhoods on instances of different scales. Table 6 provides detailed
descriptions of the instances (TDR1-TDR5).
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Table 6. Instances information, |K1| represents the number of deliverer drones, |K2| represents the
number of collector drones and TC represents the testing center.

Instance Range Scale |K1| |K2| Geographical Configuration

TDR1 1500 m × 1500 m 108 user points 1 4 1 TC and 4 transit points
TDR2 1500 m × 1500 m 108 user points 1 4 1 TC and 4 transit points
TDR3 1500 m × 1500 m 102 user points 1 4 1 TC and 4 transit points
TDR4 1500 m × 1500 m 60 user points 1 4 1 TC and 4 transit points
TDR5 1500 m × 1500 m 50 user points 1 4 1 TC and 4 transit points

We combine different destroy and repair operators, as shown in Table 7. Neighbor-
hood 1 consists of the basic operators mentioned in Sections 5.4 and 5.5. Neighborhood 2
incorporates flight distance-based destroy and repair operators in addition to those in
Neighborhood 1. Neighborhood 3 further includes exposure index-based destroy and
repair operators. We perform insufficient iterations (1000) for the convergence speed
and solution quality of different neighborhoods. We record the best perfect values from
10 runs and the average perfect value. Deviation refers to the difference between the aver-
age perfect value in the neighborhood and the best perfect value in the entire experiment.
The results are presented in Tables 8 and 9.

Table 7. Neighborhood configuration.

Neighborhood Basic Flight Distance-Based Exposure Index-Based

Neighborhood 1 ✓
Neighborhood 2 ✓ ✓
Neighborhood 3 ✓ ✓ ✓

Table 8. Comparison of the perfect value f b
1 over 10 runs for 3 different neighborhood configurations

(The best performance metrics are bolded).

Neighborhood 1 Neighborhood 2 Neighborhood 3

Instance Best. f b
1 Avg. f b

1 Dev. f b
1 (%) Best. f b

1 Avg. f b
1 Dev. f b

1 (%) Best. f b
1 Avg. f b

1 Dev. f b
1 (%)

TDR1 73.5 78.0 15.6 68.7 72.0 7.6 67.5 71.9 6.5
TDR2 78.0 80.4 15.5 67.6 71.0 5.0 68.5 71.6 5.8
TDR3 75.1 79.0 17.9 66.9 71.5 6.8 67.0 73.0 8.8
TDR4 66.9 69.8 22.7 57.3 61.4 7.9 56.9 60.3 6.0
TDR5 61.1 62.5 17.6 54.4 58.9 8.9 8.2 57.8 6.1

Table 9. Comparison of the perfect value f b
2 over 10 runs for 3 different neighborhood configurations

(The best performance metrics are bolded).

Neighborhood 1 Neighborhood 2 Neighborhood 3

Instance Best. f b
2 Avg. f b

2 Dev. f b
2 (%) Best. f b

2 Avg. f b
2 Dev. f b

2 (%) Best. f b
2 Avg. f b

2 Dev. f b
2 (%)

TDR1 1.61 2.00 70.6 1.23 1.51 29.2 1.17 1.42 21.0
TDR2 5.18 6.20 63.4 4.10 4.73 24.4 3.83 4.23 12.5
TDR3 5.63 6.41 64.0 4.67 5.11 30.8 3.91 4.67 19.4
TDR4 4.98 5.88 78.8 3.80 4.54 37.9 3.29 3.75 13.9
TDR5 2.94 3.47 115.8 1.96 2.20 36.8 1.61 1.81 12.4

Tables 8 and 9 show the impact of the different neighborhoods on the solution quality.
We observe that the flight distance-based operator is highly effective at optimizing the total
collection time of infection samples T. Neighborhood 2 incorporates this operator into
the search process and significantly improves the quality of the objective T. However, we
found that when the exposure index-based operator is used to optimize the total collection
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time of infection samples T, its impact on the quality of the Pareto set is very limited.
Specifically, in Table 8, we can observe that the results obtained from Neighborhood 2
and Neighborhood 3 are very close. In contrast, in Table 9, the best perfect value and
average perfect value for neighborhood 3 with the exposure index-based operator are
improved significantly. In general, the flight distance-based operators and the exposure
index-based operators play different roles in minimizing the objective value. The former is
very effective at optimizing the total collection time of infection sample T, while the latter
can significantly improve the exposure index Q. The results prove that the proposed flight
distance-based operators and the exposure index-based operators can generate a Pareto
set that is closer to the true Pareto front. Based on the experimental results, we configure
neighborhood 3 for algorithm comparison.

6.7. Algorithm Comparison

In this section, we demonstrate the effectiveness of the proposed ALNS-RD algorithm
by comparing it with benchmark algorithms (i.e., NSGA-II [51], AMOSA [49], MOLNS [52]
and MOALNS [47]). NSGA-II (Non-dominated Sorting Genetic Algorithm II) is commonly
used in multi-objective optimization and is one of the classic multi-objective optimization
algorithms. In addition, MOLNS (Multi-Objective Large Neighborhood Search), which
is similar to ALNS, is also included to evaluate the significance of the improvement. All
algorithms are run using the same equipment and software to avoid the bias. The ALNS-RD
algorithm is configured with a neighborhood 3 and iterated 10,000 times. The MOLNS,
MOALNS and AMOSA follow the same parameter settings as ALNS-RD to ensure the
same number of iterations. As NSGA-II is a population-based optimization, the number of
iterations is set differently compared to other algorithms. The parameters in NSGA-II were
configured using the recommended parameters in [51], which are shown in Table 10.

Table 10. Parameter settings of NSGA-II.

Parameter Value

Maximum generation 1400
Population size 20

Crossover probability 0.9
Mutation probability 0.2

As shown in Tables 11 and 12, for the Pareto sets obtained by running the different
algorithms ten times, we calculate the best perfect value Best. f b

o , the average Euclidean
distance of the Pareto Set with Best. f b

o , the average perfect value Avg. f b
o , and the deviation.

Except for TDR4, the Pareto set obtained using ALNS-RD significantly outperforms those
obtained using other algorithms in all performance metrics. ALNS-RD consistently finds
the Pareto set which has the best perfect value f b

1 in the entire experiment. This may be
due to the fact that the proposed operators provide directions for the neighborhood search,
making the solution set of good quality. In particular, in instances with more than one
hundred user points, the deviation of the perfect value and average Euclidean distance
of the Pareto set obtained using ALNS-RD are significantly better than those obtained by
other algorithms. This indicates that ALNS-RD is able to find solutions that are closer to
the true Pareto front in instances with a high level of complexity. This is a highly desirable
characteristic, which means that ALNS-RD is more reliable when it comes to exploring
the solution space and discovering high-quality solutions. The above results show that for
2E-HDRP-TS, the ALNS-RD has good performance and generates solution sets closer to
the true Pareto front.
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Table 11. Comparison of the perfect value f b
1 over 10 runs for different algorithms.

Instance
ALNS-RD NSGA-II MOLNS MOALNS AMOSA

Best. f b
1 dA Avg. f b

1 Dev. f b
1 (%) Best. f b

1 dA Avg. f b
1 Dev. f b

1 (%) Best. f b
1 dA Avg. f b

1 Dev. f b
1 (%) Best. f b

1 dA Avg. f b
1 Dev. f b

1 (%) Best. f b
1 dA Avg. f b

1 Dev. f b
1 (%)

TDR1 65.46 0.78 66.99 2.3 70.51 0.68 76.74 17.2 66.33 0.84 69.45 6.1 66.06 0.84 68.58 4.8 74.61 0.89 79.27 21.1
TDR2 74.55 0.87 76.37 2.4 84.01 0.48 89.69 20.3 78.0 0.88 82.70 6.0 75.52 0.84 78.58 5.4 87.08 0.90 91.01 22.1
TDR3 77.21 0.67 78.84 2.1 82.37 0.89 87.95 13.9 80.2 0.94 83.90 8.7 79.19 0.78 82.93 7.4 85.81 0.93 88.74 14.9
TDR4 54.96 0.78 55.46 0.9 62.95 0.66 67.22 22.3 57.6 0.70 60.14 9.4 56.70 0.75 59.53 8.3 66.86 0.81 70.06 27.5
TDR5 53.56 0.74 53.91 0.7 58.05 0.77 62.43 16.6 54.66 0.87 56.75 6.0 54.10 0.87 57.13 6.7 61.63 0.91 64.98 21.3

Table 12. Comparison of the perfect value f b
2 over 10 runs for different algorithms.

Instance
ALNS-RD NSGA-II MOLNS MOALNS AMOSA

Best. f b
2 dA Avg. f b

2 Dev. f b
2 (%) Best. f b

2 dA Avg. f b
2 Dev. f b

2 (%) Best. f b
2 dA Avg. f b

2 Dev. f b
2 (%) Best. f b

2 dA Avg. f b
2 Dev. f b

2 (%) Best. f b
2 dA Avg. f b

2 Dev. f b
2 (%)

TDR1 1.13 0.66 1.18 4.2 2.04 0.87 3.62 220.4 1.48 0.94 2.39 111.2 1.59 0.86 1.96 73.5 1.83 0.82 2.68 137.2
TDR2 3.02 0.70 3.21 6.2 5.03 0.85 6.32 109.3 4.32 0.85 6.09 101.7 3.92 0.85 5.38 93.0 5.72 0.81 7.48 147.7
TDR3 2.67 0.64 2.78 4.1 6.89 0.68 8.34 212.4 5.38 0.89 6.92 159.2 4.92 0.87 5.61 167.8 6.98 0.88 8.87 232.2
TDR4 2.21 0.78 2.43 10.0 3.33 0.39 5.40 144.3 3.11 0.66 5.09 130.3 2.75 0.79 4.31 95.0 3.20 0.96 4.12 86.4
TDR5 0.99 0.62 1.04 4.8 2.07 0.71 2.94 197.0 1.61 0.95 2.27 129.3 1.46 0.94 1.82 83.8 1.97 0.84 2.25 127.3
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7. Conclusions

This study proposes a Blockchain-enabled Infection Sample Collection system (BISC)
architecture, which is built with an infrastructure layer, a blockchain layer, and an appli-
cation layer, in order to improve the safety and timeliness of infection sample collection.
Additionally, a two-echelon drone-assisted mechanism termed the Two-Echelon Hetero-
geneous Drone Routing Problem with Transit point Synchronization (2E-HDRP-TS) is
proposed, representing an unexplored area in this field. This problem integrates fixed
transit points, synchronized handover operations, and heterogeneous drones with limited
energy and capacity. The 2E-HDRP-TS can be divided into two interrelated decisions: the
flight routes of collector drones for collecting infection samples from user points, and the
transport routes of deliverer drones from transit points to the testing center. To generate
near-optimal solutions, we introduce a multi-objective Adaptive Large Neighborhood
Search algorithm for Routing of Drones (ALNS-RD), aiming to minimize the total collection
time of infection samples and the exposure index. Alongside traditional search operators,
the ALNS-RD algorithm incorporates innovative flight distance-based and exposure index-
based operators to enhance the efficiency and accuracy of the solution. Our comparative
analysis against benchmark algorithms NSGA-II, AMOSA, MOLNS, and MOALNS demon-
strates the superior performance of the proposed ALNS-RD algorithm across diverse levels
of complexity in all five instances.

Even though the performance of the ALNS-RD algorithm is very good, due to its nature
as an offline heuristic algorithm, drones are unable to handle new task requests during the
sample collection process. Hence, our future work will focus on investigating online route
planning algorithms for drones, with the aim of enabling dynamic adjustment of flight
routes during the sample collection and delivery process. We envision the possibility of
using neural networks and reinforcement learning to develop a viable online drone route
planning algorithm. In addition, Clustering users will help to complement the biological
safety of infection samples. Therefore, it is necessary to propose an innovative framework
for implementing the user points clustering in the infection sample collection system.
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