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Abstract: In this study, we design and analyze a reliability-oriented downlink wireless network
assisted by unmanned aerial vehicles (UAVs). This network employs non-orthogonal multiple access
(NOMA) transmission and finite blocklength (FBL) codes . In the network, ground user equipments
(GUEs) request content from a remote base station (BS), and there are no direct connections between
the BS and the GUEs. To address this, we employ a UAV with a limited caching capacity to assist
the BS in completing the communication. The UAV can either request uncached content from the
BS and then serve the GUEs or directly transmit cached content to the GUEs. In this paper, we first
introduce the decoding error rate within the FBL regime and explore caching policies for the UAV.
Subsequently, we formulate an optimization problem aimed at minimizing the average maximum
end-to-end decoding error rate across all GUEs while considering the coding length and maximum
UAV transmission power constraints. We propose a two-step alternating optimization scheme
embedded within a deep deterministic policy gradient (DDPG) algorithm to jointly determine the
UAV trajectory and transmission power allocations, as well as blocklength of downloading phase, and
our numerical results show that the combined learning-optimization algorithm efficiently addresses
the considered problem. In particular, it is shown that a well-designed UAV trajectory, relaxing the
FBL constraint, increasing the cache size, and providing a higher UAV transmission power budget all
lead to improved performance.

Keywords: unmanned aerial vehicle (UAV); non-orthogonal multiple access (NOMA); finite
blocklength (FBL) codes; content caching

1. Introduction

Recently, unmanned aerial vehicles (UAVs) have been extensively utilized across vari-
ous domains, such as enhancing wireless coverage and contributing to the development of
smart cities, as noted in previous studies [1,2]. The utilization of UAVs is recognized as a
promising technique in numerous 5G applications, owing to their inherent characteristics,
which include rapid mobility, cost-effectiveness, and extended airtime, as highlighted in
the literature [3]. To be more precise, low-altitude UAVs can be exploited by wireless com-
munication networks for swift deployment and enhanced mobility flexibility, as outlined
in [4]. These advantages imply the growing importance of UAV-enabled communication
systems in upcoming wireless networks.

However, the rapid evolution of 5G networks has led to a significant surge in wireless
communication demands. Data traffic congestion is mostly attributed to the repeated
downloads of a few popular contents. To mitigate this bottleneck, edge caching technology
has emerged as a promising solution, enabling edge servers to cache frequently accessed
contents. In certain scenarios, UAVs can act as edge servers to serve ground user equipment
(GUEs) and cache popular contents. In [5], the authors have explored the joint optimization
of UAV deployment, caching placement, and user association in UAV-assisted cellular
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networks, with the goal of maximizing the mean opinion score (MOS) for all users within
the cell.

Non-orthogonal multiple access (NOMA) is considered as a promising technology
that has been extensively studied in communication systems with relays, demonstrating re-
markable effectiveness in enhancing the performance of overloaded networks, as discussed
in [6]. Moreover, NOMA has become increasingly popular for its capability to signifi-
cantly enhance spectral efficiency, making it a potent candidate for enabling low-latency
communications by serving multiple users simultaneously. When NOMA transmission is
integrated with UAVs, especially when employing successive interference cancellation (SIC)
at the receiver, it is anticipated to further enhance the wireless propagation environment.
The performance comparisons between NOMA and orthogonal multiple access (OMA) in
short-packet communications, under the finite blocklength (FBL) regime, has been explicitly
analyzed in [7]. Additionally, the study in [8] has demonstrated a method to maximize
the sum rate by optimally determining the UAV’s position and power allocations when
NOMA transmission is adopted.

Ultra-reliable and low latency communication (URLLC) is a pivotal component of 5G
networks and is primarily focused on delivering mission-critical services, as highlighted
in [9]. URLLC often involves the use of short packets under the FBL regime, which is of
great importance in reducing transmission delays. Consequently, FBL codes necessitate sig-
nificant modifications in wireless communication system design and performance analysis.
In other words, the traditional concept of Shannon’s information capacity, applicable under
the assumption of infinite blocklength, becomes inapplicable, meaning the decoding error
probability under the FBL regime can no longer be neglected. In [10], the authors have pre-
sented an analysis of the transmission rate when employing FBL codes in an additive white
Gaussian noise (AWGN) channel, explicitly delving into the decoding error probability.
Furthermore, in [11], the authors have conducted an analysis of globally optimal resource
allocation for URLLC with FBL codes.

1.1. Related Work

Existing research has touched on several aspects. For example, authors in [12] have
constructed a UAV-assisted downlink transmission model, considering a two-user NOMA
scenario with energy and caching capacity constraints on the UAV. In another work, authors
in [13] have investigated UAV deployment and content placement in a cache-enabled multi-
UAV network, aiming to minimize the user request delays. Additionally, a comparison of
the achievable effective capacity between the two-user NOMA and its OMA counterpart
under delay quality-of-service (QoS) constraints within the FBL regime has been explored
by the authors in [14]. Moreover, the authors in [15] analyzed the performance of rate-
splitting multiple access (RSMA) in a multi-user downlink wireless network where a
UAV-assisted BS serves multiple GUEs simultaneously. They also conducted network
optimization in the presence of imperfect channel state information (CSI), considering
both FBL and infinite blocklength (IBL) regimes. However, there is no UAV trajectory
incorporated in this paper, and the content caching introduced in our paper distinguishes
our work from [15] significantly.

In [16], the authors have investigated a UAV-enabled secure communication with FBL
codes aiming to maximize the average effective secrecy rate (AESR) by jointly designing
the UAV’s trajectory and transmit power. This paper provides a comprehensive analysis of
UAV communications using FBL codes, investigating reliability and latency aspects, but
NOMA transmissions and the caching policy are not considered. Another URLLC-enabled
UAV relay system, which is similar to our system model, is investigated in [17], where
the authors have studied the joint location and blocklength allocation for the UAV relay
system with URLLC requirements. However, this paper only considers a 2D scenario with
only one robot (GUE), and no caching at the UAV. Last but not least, a more recent work
in [18] proposes a novel framework for efficient UAV deployment and resource allocation
for Internet-of-Things (IoT) devices in URLLC service scenarios, where multiple UAVs are
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deployed as aerial BSs to provide URLLC communication for IoT devices. The objective
in [18] is to minimize the system’s average transmit power by simultaneously optimizing
the scheduling and association of IoT devices, power control, bandwidth allocation, and
the deployment of UAVs. We notice that the system can be further improved by utilizing
NOMA transmissions and the caching policy, which is one of the main contributions in this
paper. We have summarized the aforementioned related works in Table 1, below.

Table 1. Summary of related research.

Paper Considered System Novelty in Our Paper

[12] A UAV-assisted downlink transmission network FBL regime

[13] A cache-enabled multi-UAV network FBL regime

[14] A downlink two-user NOMA network UAV and caching

[15] A multi-user downlink wireless network UAV trajectory designs and caching

[16] A UAV-enabled secure communication system NOMA and caching

[17] A URLLC-enabled UAV relay system 3D scenario, multiple GUEs and caching

[18] A UAV-assisted IoT network NOMA and caching

Our proposed framework with a caching-enabled UAV using NOMA transmissions
and FBL codes provides several advantages: 1. Reduced dependency: caching popular
contents at the UAV allows it to locally serve GUEs without requiring it to connect to
the BS, which reduces the dependency on the BS and mitigating potential challenges like
network congestion; 2. Enhanced spectral efficiency: NOMA transmissions enable the UAV
to serve multiple UEs simultaneously in the same frequency band, resulting in improved
spectral efficiency and more effective use of the available spectrum resources; 3. Improved
reliability: FBL codes are designed to account for the finite blocklength regime, optimizing
the use of coding resources for reliable communication; 4. Optimized resource allocation:
the joint optimization of UAV trajectory, power allocation, and content caching allows
for efficient resource utilization. In summary, the integration of caching-enabled UAVs
with NOMA transmissions and FBL codes contributes to a more efficient, low-latency, and
reliable wireless network.

1.2. Motivations and Contributions

We note that numerous studies have been conducted in the field of NOMA transmis-
sions considering the infinite blocklength coding regime. However, in practical scenarios,
all wireless transmissions are performed using finite blocklength codes, (and if the finite
coding length is sufficiently large, then infinite blocklength assumption can be invoked as a
good approximation). In other words, considering the FBL regime in wireless transmissions
is practically more relevant and accurate, especially when the code lengths are relatively
short due to latency requirements. Recently, NOMA has attracted much interest as a multi-
ple access technique that allows multiple GUEs to share the same time-frequency resources.
NOMA transmissions not only improve spectral efficiency, allowing for more efficient use
of the available bandwidth, but also support low-latency communication and high through-
put by allowing simultaneous transmissions. More importantly, this is advantageous in
applications that require real-time communication, and will benefit more from FBL codes.
In our considered system model, caching at UAV allows frequently requested contents
to be stored locally, reducing the need to retrieve data from a distant data center, which
minimizes back-haul traffic and can lead to more efficient use of the network resources. The
proposed caching policy in this paper can dynamically adjust the cached contents at the
UAV based on GUE preferences or geographical locations, and such a flexibility allows for
adaptive and efficient content delivery strategies. Overall, the combination of FBL codes,
NOMA transmissions, and caching at the UAV enable low-latency communications while
making efficient use of resources.
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In this paper, we combine the FBL regime with NOMA and content caching in a UAV-
assisted network, with the goal of minimizing the maximum end-to-end decoding error
probability when multiple GUEs are involved. Unlike our previous work in [19], where we
aim to find the optimal resource allocation at the UAV only for a fixed UAV position, in
this paper we comprehensively investigate both the optimal UAV trajectory design and the
solutions of the optimal power allocations at the UAV as well as the optimal duration of
the downlink (DL) phase. A two-step alternating optimization scheme embedded within
a deep deterministic policy gradient (DDPG) algorithm has been constructed to jointly
determine the UAV trajectory, transmission power allocations as well as the blocklength of
DL phase, to alleviate data traffic burden and enhance the reliability in URLLC. Our main
contributions in this paper are summarized as follows:

1. We describe and analyze the UAV-assisted downlink NOMA tranmissions with FBL
codes and content caching.

2. We investigate the end-to-end decoding error probability at the GUE and the signal-
to-noise ratio (SNR) or signal-to-interference-plus-noise ratio (SINR) in transmissions.

3. We construct a caching policy for the UAV.
4. We develop a two-step alternating optimization scheme-embedded DDPG algorithm

to minimize the average maximum end-to-end decoding error rate among all GUEs
under both coding length and maximum UAV transmission power constraints.

The remainder of this paper is organized as follows. In Section 2, we start with pre-
senting the system model and conducting an analysis of the FBL regime as well as the SINR
when employing NOMA transmissions. We subsequently delve into the determination
of end-to-end decoding error probabilities and the caching policy at the UAV. Moving
on to Section 3, we formulate an optimization problem with the objective of minimizing
the average maximum end-to-end decoding error rate across all GUEs. This optimization
problem takes into account both the coding length and the maximum transmission power
constraints at the UAV. To address this problem, we construct a two-step alternating op-
timization scheme embedded DDPG algorithm. In Section 4, we present the results of
our simulations, and analyze the performance of our approach. Finally, in Section 5, we
summarize the paper and draw conclusions.

2. System Model

In this paper, we study a downlink system model consisting of a base station (BS),
a UAV, and a set of N GUEs, represented by N = 1, 2, . . . , N, as depicted in Figure 1.
Each of these communication terminals is equipped with a single antenna. Considering
the unpredictable and complex nature of wireless communication environments, such
as natural landscapes or densely populated urban areas, we make the assumption that
all direct communication links from the BS to the GUEs are unavailable. Consequently,
we deploy a UAV with limited cache capacity to serve the GUEs by utilizing NOMA
transmissions in the FBL regime. The UAV is capable of moving on a trajectory at a fixed
altitude. Throughout this research, we assume that all communication channels remain
quasi-static and unchanged within a transmission frame. In other words, the parameters
optimized for the current transmission frame, such as transmission power allocations at
the UAV, are effective within that frame.

We denote the UAV’s cache size as Cuav, and we consider a total of C contents that
can be requested by the GUEs, with the size of the c-th content designated as Ic bits.
If the requested content is available in the UAV’s cache, it is transmitted to the GUE
without involving the BS. Otherwise, the UAV requests this content from the BS before the
transmission from the UAV to the GUE starts.
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Figure 1. An illustration of the considered network.

The key parameters of the system and their notations are summarized in Table 2, and
the abbreviations are summarized in Table 3.

Table 2. Summary of parameters and notations.

N Number of GUEs

I Number of considered time frames

T Completion latency constraint

M Blocklength constraint of a frame

L Length of the caching list

C Number of contents

Tsyb Duration of a transmission symbol

m1 Symbol length of the downlink (DL) phase

m2 Symbol length of the requesting phase

ε Decoding error probability

Dn Size of the content requested by GUE n

Oc Popularity of the content c

hn Fading vector between the UAV and GUE n

huav Fading vector between the UAV and the BS

γ Signal-to-noise ratio (SNR)/signal-to-interference-plus-noise ratio (SINR)

ρn Power allocation factor for the n-th GUE

η Additive white Gaussian noise (AWGN)

σ2 Power of the AWGN

Pmax Budget for transmission power at the UAV

Xc,n Request indicator for GUE n and content c

Yc Caching indicator for content c

Zc Request indicator for content c

2.1. FBL Transmission with Caching

In this paper, the duration of a transmission symbol is denoted as Tsyb seconds, and
therefore a delay limitation of T seconds corresponds to M = T/Tsyb symbols. To be more
specific, T seconds, or equivalently M symbol durations, set the maximum frame length for
completing the requested content or task. Within a frame, two phases exist: a requesting
phase spanning m2 symbols and a downlink (DL) transmission phase encompassing m1
symbols, as depicted in Figure 2. In this study, we introduce Xc,n,i ∈ {0, 1} to indicate
the request of the n-th GUE (Xc,n,i = 1 implies that the n-th GUE is requesting content c
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in the i-th frame). The size of the requested content for the n-th GUE in the i-th frame is
Dn,i = ∑C

c=1 Xc,n,i Ic bits. It is worth noting that within each frame, each GUE is restricted to
requesting only one content, e.g., ∑C

c=1 Xc,n,i = 1, ∀n ∈ N . The UAV first checks its cache:
if the requested content is cached, there is no need to consult the BS; otherwise, the content
must be downloaded from the BS. After checking its cache for all requested contents in
the i-th frame, the UAV proceeds to download all the uncached but requested contents
from the BS through a wireless link in the requesting phase, which spans m2Tsyb seconds.
Subsequently, in the DL transmission phase lasting m1Tsyb seconds, the UAV transmits all
the requested contents to the GUEs through NOMA transmissions. It is evident that the
total service time for each content request is constrained by m1 + m2 = M. Following the
approach in [10], the coding rate R in the FBL regime is approximated as

R ≈ log2(1 + γ)−
√

V
m

Q−1(ε)

ln 2
, (1)

where ε represents the probability of decoding error, m is the blocklength, γ stands for the

SNR or SINR at the receiver, Q−1 is the inverse function of Q(x) = 1√
2π

∫ ∞
x e−

t2
2 dt, and V

is the channel dispersion, defined as V = 1 − (1 + γ)−2.

Table 3. Summary of abbreviations.

UAV Unmanned aerial vehicle

GUE Ground user equipment

NOMA Non-orthogonal multiple access

SIC Successive interference cancellation

FBL Finite blocklength

URLLC Ultra-reliable and low latency communication

AWGN Additive white Gaussian noise

DDPG Deep deterministic policy gradient

SNR/SINR Signal-to-noise ratio/signal-to-interference-plus-noise ratio

BS Base station

DL Downlink

DRL Deep reinforcement learning

MDP Markov decision process

DQN Deep Q-network

DNN Deep neural network

Figure 2. System topology and frame structure.
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In this paper, we introduce the notation Yc,i ∈ {0, 1} as the caching indicator. Specif-
ically, Yc,i = 1 signifies that content c has been cached at the UAV during the i-th frame.
Additionally, we define Zc,i as the requesting indicator, as follows:

Zc,i =

{
1 when ∑N

n=1 Xc,n,i ≥ 1;
0 when ∑N

n=1 Xc,n,i = 0.
(2)

In particular, Zc,i = 1 indicates that content c has been requested in the i-th frame by
one or more GUEs. Subsequently, during the i-th frame, the size of all the requested but
uncached contents is Duav,i = ∑C

c=1 Zc,i(1 − Yc,i)Ic bits. Given that the target coding rate in
the request phase is Ruav,i =

Duav,i
m2

, the decoding error probability of the UAV in the i-th
frame during the requesting phase can be expressed as

εUAV
i ≈Q

(√
m2

Vuav,i

(
log2(1 + γuav,i)−

Duav,i

m2

)
loge2

)
. (3)

Taking Rn,i =
Dn,i
m1

as the desired achievable coding rate for the n-th GUE in the i-th
frame, the decoding error probability during the DL phase can be formulated as follows

εn,i ≈Q
(√

m1

Vn,i

(
log2(1 + γn,i)−

Dn,i

m1

)
loge2

)
. (4)

It is important to notice that, operating within the FBL regime, the blocklength of each
frame is constrained by M, and the receiver’s decoding error probability is not negligible.

2.2. UAV Trajectory and SINR in Transmissions

In the i-th frame, the position of the UAV at the given altitude zuav is denoted by
(xuav

i , yuav
i , zuav), where zuav is assumed to be constant in this paper, and the locations

of GUEs are fixed and represented by (x1, y1, 0), (x2, y2, 0), . . . , (xn, yn, 0), . . . , (xN , yN , 0),
respectively. Therefore, the distance between the UAV and the n-th GUE in the i-th frame

can be calculated by dn,i =
√
(xuav

i − xn)2 + (yuav
i − yn)2 + z2

uav. The positions of UAV
over different frames constitute the UAV trajectory in the entire considered period.

Referring to Equations (3) and (4), it is evident that SINR plays a substantial role
in influencing the decoding error probability. Therefore, in this section, we specifically
investigate the SINR under various transmission scenarios.

During the requesting phase, the UAV is receiving the required data from the BS. Given
our assumption of quasi-static channels, we consider the channels to remain unchanged
within a frame. As a result, the SNR for the UAV during the requesting phase in the i-th
frame is determined by the following expression:

γuav,i = ρuav|huav,i|2, (5)

where huav,i represents the channel coefficient between the UAV and the BS, which varies
depending on changing UAV positions. Additionally, ρuav is the ratio of the transmission
power at BS to the noise power, calculated as PBS

σ2 , with PBS as the transmission power from
the BS to the UAV, and σ2 denoting the noise power of the AWGN.

During the DL phase, the UAV transmits combined signals to all GUEs based on the
NOMA principle. Consequently, the signal received by each GUE in the i-th frame can be
described as follows:

yn,i = hn,i

N

∑
k=1

√
Pmaxρk,ixk,i + η, ∀n ∈ N , (6)

where xk,i and ρk,i stand for the message and the power allocation factor of the k-th GUE
in the i-th frame, respectively. Pmax represents the constraint or budget for transmission
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power at the UAV, and η denotes the AWGN, e.g., η ∼ CN (0, σ2). Additionally, hn,i is
the channel coefficient between the UAV and the n-th GUE in the i-th frame, and this also
varies depending on UAV positions. Note that ∑N

k=1 ρk,i = 1.
To implement the SIC within the NOMA technique, we initiate a reordering process for

all GUEs based on their channel quality at the start of each frame. In the i-th frame, the N
GUEs are arranged in ascending order of their corresponding channel quality, specifically,
|h1,i| ≤ |h2,i| ≤ . . . ,≤ |hN,i|. The GUE with the weakest channel is designated as the first
GUE, while the one with the strongest channel holds the position of the last GUE. Adhering
to the SIC principle, for the n-th GUE (where 1 ≤ n ≤ N), the signals from all the previous
n − 1 GUEs are decoded first. Subsequently, these decoded signals are subtracted from the
superposed received signal. Consequently, the SINR for the n-th GUE to decode its own
signal in the i-th frame can be described as follows:

γn,i =
|hn,i|2Pmaxρn,i

∑N
t=n+1 |hn,i|2Pmaxρt,i + σ2

. (7)

In the FBL regime, it is essential to note that the SIC errors cannot be ignored. This is
because the n-th GUE must first successfully decode the signals from the preceding n − 1
GUEs before proceeding to decode its own signal. In cases where SIC fails for any GUE,
the decoding process for that GUE will also be unsuccessful. Therefore, it is crucial to
investigate the error rate associated with the decoding of signals from other GUEs. The
SINR for the n-th GUE in decoding the signal of the k-th GUE (where k ≤ n − 1 < N) in
the i-th frame can be expressed as follows:

γn,k,i =
|hn,i|2Pmaxρk,i

∑N
t=k+1 |hn,i|2Pmaxρt,i + σ2

. (8)

The first GUE can directly decode its own signal by treating the signals from all other
GUEs as interference, as there is no SIC being performed at GUE 1. On the other hand, the
last GUE conducts a total of N − 1 SIC processes, and the calculation of its SINR becomes
relatively straightforward if all the SIC processes are successful:

γN,i =
|hN,i|2PmaxρN,i

σ2 . (9)

2.3. End-to-End Decoding Error

The primary goal of our study is to minimize the average maximum end-to-end
decoding error rate for all GUEs while adhering to both coding length and maximum UAV
transmission power constraints within the specified time frames. In this section, we delve
into the analysis of the end-to-end decoding error probability for GUEs within a particular
frame. For the n-th GUE in the i-th frame, we explore two distinct scenarios: whether the
content that is being requested has already been cached at the UAV or not.

In the first scenario, where the content requested by the n-th GUE has been cached
at the UAV, the end-to-end decoding error probability ϵCA

n,i is composed of two main
elements: the error probability ϵSIC

n,k,i associated with decoding signals from other GUEs
when employing SIC, and the error probability ϵn,i when decoding its own signal. This is
represented as follows:

ϵCA
n,i = 1 −

n−1

∏
k=1

(1 − ϵSIC
n,k,i)(1 − ϵn,i)

(a)
≈

n−1

∑
k=1

ϵSIC
n,k,i + ϵn,i.

(10)



Drones 2024, 8, 12 9 of 23

Approximation (a) is applicable here because the decoding error probabilities are in
the order of 10−5 in the considered ultra-reliable communication scenario. Consequently,
any terms involving two or more error multiplications can be safely disregarded.

We then turn our attention to the second scenario, where the end-to-end decoding
error probability ϵUN

n,i for the n-th GUE in the i-th frame consists of three main components:
the error probability ϵUAV

i when decoding the downloaded content from the BS at the UAV,
the error probability ϵSIC

n,k,i when decoding signals from other GUEs using SIC, and the error
probability ϵn,i when decoding its own signal. In this scenario, we have

ϵUN
n,i = 1 − (1 − ϵUAV

i )
n−1

∏
k=1

(1 − ϵSIC
n,k,i)(1 − ϵn,i)

(b)
≈ ϵUAV

i +
n−1

∑
k=1

ϵSIC
n,k,i + ϵn,i.

(11)

Approximation (b) holds here for the same reason as in approximation (a). By con-
sidering both cases, we can provide a more comprehensive description of the end-to-end
decoding error rate for the n-th GUE in the i-th frame, denoted as ϵtot

n,i :

ϵtot
n,i =

C

∑
c=1

Xc,n,i(1 − Yc,i)ϵ
UAV
i +

n−1

∑
k=1

ϵSIC
n,k,i + ϵn,i. (12)

In Equation (12), we can calculate ϵUAV
i by using (3), and ϵn,i can be determined

from (4). Regarding ϵSIC
n,k,i, it can be computed as follows:

ϵSIC
n,k,i ≈Q

(√
m1

Vn,k,i

(
log2(1 + γn,k,i)−

Dk,i

m1

)
loge2

)
, (13)

where γn,k,i can be calculated using the equation in (8), and Vn,k,i is defined as
Vn,k,i = 1 − (1 + γn,k,i)

−2.
Note that ϵUAV

i , ϵn,i and ϵSIC
n,k,i will change if the position of UAV varies, which is due

to the fact that all the corresponding SNR/SINRs will be different when the UAV position
as well as the channel coefficient changes.

2.4. Caching Policy

In this section, we present our UAV caching policy. Our primary objective with this
caching approach is to store the most popular and frequently requested contents. To
achieve this, we maintain a caching list that records all the request information from the
past L frames on the UAV. Before the start of the i + 1-th frame, the UAV will remove the
request information of the i − L-th frame and incorporate the request information of the
i-th frame into the caching list, as illustrated in Figure 3. Subsequently, the UAV calculates
the popularity of each content, denoted as Oc,i, which represents the popularity of content
c in the i-th frame, and it can be calculated as follows:

Oc,i =

L
∑

l=1
Zc,i−l+1

L
. (14)

Once the popularity of all contents has been determined, the UAV proceeds to cache
contents in descending order of popularity until it reaches the cache size limit Cuav. Follow-
ing this, the UAV updates the caching indicator {Y} for use in the i + 1-th frame. As an
example, Figure 4 provides an illustration of a caching list for i = 50, L = 10, and C = 5.
Assuming that all contents have the same size and the UAV’s cache can only accommodate
2 contents, by the end of the 50th frame, the UAV will cache content 1 and content 5.
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Figure 3. An illustration of the caching list.

Figure 4. An example of the caching list with popularity.

3. Minimization of Maximum Error Probability

In this section, we first formulate and analyze the minimization of the average maxi-
mum error rate in the considered network and then propose a two-step alternating opti-
mization scheme embedded within a DDPG algorithm to tackle the proposed problem.

3.1. Problem Formulation

In this paper, our objective is to minimize the average maximum end-to-end decoding
error rate among all GUEs within a given period/number of frames, by jointly determining
the UAV trajectory {(xuav

i , yuav
i )}, UAV transmission power allocation factors {ρn,i}, and

the length of the DL phase {m1,i} subject to the coding length and UAV transmission power
constraints. Consequently, the global optimization problem is formulated, as follows:

P0: Minimize
{(xuav

i ,yuav
i )},{ρn,i},{m1,i}

1
I

I

∑
i=1

max
n∈N

{ϵtot
n,i} (15)

s. t.
N

∑
n=1

ρn,i = 1, ∀i ∈ I

m1,i + m2,i = M, ∀i ∈ I
m1,i, m2,i ∈ Z, ∀i ∈ I

where I = {1, 2, . . . , I} is the set of considered frames.
In P0, the first two constraints are the UAV transmission power limitation and the maxi-

mum coding length within each frame, respectively. Solving the non-convex problem P0 di-
rectly is quite challenging due to the strongly coupled parameters {(xuav

i , yuav
i )}, {ρn,i}, {m1,i}

and highly non-linear objective function. In order to address this, we propose a DDPG-
based deep reinforcement learning method embedded with a two-step alternating optimiza-
tion scheme.

3.2. Deep Deterministic Policy Gradient Reinforcement Learning

In this section, we introduce and analyze the main structure of the DDPG reinforcement
learning to address the UAV trajectory design in P0. DDPG stands out as a prominent
deep reinforcement learning (DRL) algorithm that combines aspects of both value-based
and policy-based RL techniques. It operates within the actor–critic framework, where the
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actor network is responsible for selecting actions based on the current environment state,
while the critic network evaluates the value of these chosen actions. Both networks are
trained simultaneously using the same set of experiences gathered by the agent during its
interactions with the environment.

To tackle the challenge of sample correlation in reinforcement learning, DDPG em-
ploys a replay buffer to store experiences and randomly samples from this buffer during
network updates. Derived from the deterministic policy gradient theorem for Markov
decision processes (MDPs) with continuous action spaces, DDPG trains the networks using
a stochastic gradient descent with mini-batches and updates the target networks through
a soft update mechanism. The target network and replay buffer play significant roles in
enhancing stability and sample efficiency.

It is evident that the UAV positions in problem P0 are continuous, rendering the use
of the deep Q-network (DQN) algorithm infeasible, as it is designed for discrete actions.
The policy gradient method is sub-optimal in the considered wireless communications,
as it suffers from slow convergence. Therefore, we introduce a DDPG-based algorithm
to address problem P0 with respect to the UAV trajectory design. DDPG is an off-policy
actor–critic algorithm that operates without a particular system model. It is capable of
learning policies in high-dimensional, continuous action spaces [20].

The action space, state space, and reward function of the proposed DDPG reinforce-
ment learning agent are defined as follows:

3.2.1. Action Space

In this paper, we assume that the UAV remains at a fixed altitude, limiting its move-
ment to the horizontal x-y plane. The action space in our proposed DDPG reinforcement
learning consists of the UAV movements A = {αv, αϕ}, i.e.,

ai = Ai, (16)

where αv represents the current speed relative to the maximum speed, with values ranging
from 0 to 1, and αϕ serves as a steering signal that specifies the desired yaw (rotation) angle
(normalized by the maximum yaw angle), ranging from −1 to 1. Note that, in this paper,
we assume the maximum speed of the UAV is constrained by Vuav and the maximum yaw
angle is limited by Φuav.

3.2.2. State Space

The state space in this DRL consists of the horizontal position of the UAV in the
previous frame U i = {(xuav

i−1 , yuav
i−1)}, the angle between the previous direction of movement

of the UAV and the x-axis ϕi = ϕi−1, the GUEs’ current request list X i = {Xc,n,i}, and the
caching list generated from the previous frame Y i = {Yc,i}, i.e.,

si = {U i, ϕi, X i, Y i}. (17)

With any given action in the i-th frame, the x-y position of the UAV in the i-th frame
can be computed by

xuav
i = xuav

i−1 + αvVuavMTsyb cos(ϕi−1 + αϕΦuav), (18)

yuav
i = yuav

i−1 + αvVuavMTsyb sin(ϕi−1 + αϕΦuav). (19)

Here, ϕi is the angle between the current direction of movement of the UAV and the
x-axis in the i-th frame. In this paper, we assume ϕ0 = 0, and thereby we have

ϕi = ϕi−1 + αϕΦuav. (20)



Drones 2024, 8, 12 12 of 23

3.2.3. Reward Function

In P0, the objective is a long time average minimization problem, and it is quite
challenging to directly obtain the optimal solutions considering such a long time duration.
Therefore, in this paper, we equivalently minimize the maximum end-to-end decoding
error probability during each frame. Consequently, we construct the reward function with
the objective to minimize the maximum end-to-end decoding error rate among all GUEs in
any given frame i, i.e.,

ri = R− V log(max
∀n∈N

{ϵtot
n,i}), (21)

where R and V are constants to balance the reward. {ϵtot
n,i} is obtained when the embedded

two-step alternating optimization subroutine is completed with the given UAV position
(xuav

i , yuav
i ), which is provided by the updated state space.

Based on the above definitions, we propose a DRL-based algorithm according to the
DDPG algorithm described in [20]. In this section, we aim to solve P0 without considering
the optimization of UAV transmission power allocations {ρn,i} and the length of the DL
phase {m1,i}, which will be addressed via an embedded two-step optimization subroutine
introduced later. Such a proposed DDPG-based algorithm can be deployed at the BS which
can collect all the required information about the channel states and apply the policy to all
served GUEs and UAV.

The primary distinction between traditional DDPG and our proposed algorithm in
this paper lies in the integration of the optimization subroutine aiming to optimize UAV
transmission power allocation factors {ρn,i} and the length of the DL phase {m1,i}.

The DDPG reinforcement learning comprises two essential components within the
learning agent: (a) an actor network, responsible for determining the action based on the
current state, and (b) a critic network, tasked with assessing the action chosen using the
reward feedback from the environment. These networks are represented as µ(s|ψµ) and
Q(s, a|ψQ), with neural network weights denoted as ψµ and ψQ, respectively. The DDPG
reinforcement learning algorithm includes three sequential steps.

The initial step involves gathering experience through interactions within the envi-
ronment. Using the current network state si, the actor network produces actions related
to the UAV movement. The embedded two-step optimization subroutine determines
UAV transmission power allocation factors {ρn,i} and the length of the DL phase {m1,i}.
Subsequently, this joint action is executed at the UAV. The corresponding reward ri and
the subsequent state si+1 are observed from the environment. The transition of the state
information, represented as (si, ai, ri, si+1), is stored within the experience replay memory
to facilitate the training of both the actor and critic networks.

The next step involves the training of the actor and critic networks using the accumu-
lated experience. To prevent potential issues of divergence stemming from deep neural
networks (DNNs), a random minibatch of transitions is extracted from the experience
replay memory, breaking the correlation between experiences. The training of the critic
network focuses on minimizing the loss function

L(ψQ) =
1

Nb

Nb

∑
ι=1

(
yι − Q(sι, aι|ψQ)

)2
, (22)

where Nb denotes the size of minibatch, and

yι = rι + ζQ′(sι+1, µ′(sι+1|ψµ′
)|ψQ′

), (23)
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where ζ is the discount factor, µ′(s|ψµ′
) denotes the actor target network with weight

ψµ′
, and Q′(s, a|ψQ′

) is the critic target network with weight ψQ′
. Subsequently, the actor

network is trained according to the policy gradient

∇ψµ ≈ 1
Nb

Nb

∑
ι=1

∇aQ(sι, a|ψQ)|s=sι ,a=µ(sι)∇θµ µ(sι|ψµ)|sι . (24)

The final step is the update of target networks. To maintain the stability of network
training, the actor and critic target networks are updated softly:

ψµ′
= δψµ + (1 − δ)ψµ′

, ψQ′
= δψQ + (1 − δ)ψQ′

, (25)

where δ ∈ (0, 1] represents the update ratio of the target network.

3.3. Two-Step Alternating Optimization

In the previous subsection, we have introduced a DDPG method to tackle the problem
of UAV trajectory designs in P0. When the UAV trajectory is given, i.e., its location in each
frame is known, we can transform P0 into following problem P1:

P1: Minimize
{ρn,i},m1,i

max
∀n∈N

{ϵtot
n,i} (26)

s. t.
N

∑
n=1

ρn,i = 1,

m1,i + m2,i = M,

m1,i, m2,i ∈ Z.

Solving P1 in the i-th frame enables us to jointly optimize the transmission power
allocation factors {ρn} for GUEs and the length of the DL phase m1 with the objective
aiming to minimize the maximum end-to-end decoding error rate among all GUEs while
adhering to the coding length and UAV transmission power constraints.

In this subsection, we propose a two-step alternating optimization subroutine to
demonstrate how to attain the optimal UAV transmission power allocation factors {ρn,i}
and the optimal length of the DL phase m1,i when the UAV position is fixed in the i-th
frame. Note that such a UAV position is obtained from the state space updated by the
action chosen in the DDPG structure.

In the j-th optimization iteration within the i-th frame, we initially set m1,i to the
value from the previous iteration, denoted as m1,i,j−1, which relies on the optimization
results from the previous j − 1-th iteration, to decouple the optimization variables. Then,
we determine the UAV transmission power allocation factors {ρn,i,j}. After that, with the
predetermined {ρn,i,j}, we find the optimal value of m1,i,j in the next step. Consequently,
the obtained {ρn,i,j} and m1,i,j are utilized in the j + 1-th iteration.

3.3.1. Optimization of UAV Transmission Power Allocation Factors

During the j-th iteration, when we keep m1 as a constant, it is evident that
m2 = M − m1 is also unchanging. Consequently, our current goal is to attain the best
power allocation factors {ρn,i,j} at the UAV that minimize the maximum end-to-end decoding
error rate among all GUEs. As a result, P1 transforms into P2 under the fixed value of m1:

P2: Minimize
{ρn,i,j}

max
∀n∈N

{ϵtot
n,i,j} (27)

s. t.
N

∑
n=1

ρn,i,j = 1,
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where {ρn,i,j} represents the power allocation factors at the UAV, and ϵtot
n,i,j is the end-to-end

decoding error probability of the n-th GUE in the j-th optimization iteration within the i-th
frame.

P2 remains a challenging min-max optimization problem. To tackle this, we further
break down P2 into N sub-problems, and considering the n-th GUE, we construct:

P2A: Minimize
{ρχ,i,j}

ϵtot
n,i,j (28)

s. t.
N

∑
χ=1

ρχ,i,j = 1,

ϵtot
n,i,j ≥ ϵtot

k,i,j, ∀k ̸= n ∈ N

We formulate a sub-problem P2A for each GUE n ∈ N . In P2A, we focus on min-
imizing the end-to-end decoding error probability only for a single GUE. ϵtot

n,i,j ≥ ϵtot
k,i,j,

∀k ̸= n ∈ N ensures that this minimized error probability is the maximum among all
GUEs, making the attained power allocation factors {ρn,i,j} a potential solution for P2. To
obtain the solution for P2 from P2A, we introduce Lemma 1.

Lemma 1. Among all the sub-problems P2A, the one that attains the minimum value in the
objective function shares the same solution with P2.

Proof. Assume that the t-th sub-problem is the one that attains the minimum value of the
objective function, meaning ϵtot∗

t,i,j < ϵtot∗
v,i,j for all GUEs v ̸= t ∈ N , and then when we apply

the solution obtained from the t-th sub-problem to P2, the objective function’s value must
remain the same as ϵtot∗

t,i,j .
If the solution of P2 differs from the solution of the t-th sub-problem, denoting

ϵtot∗
u,i,j , u ̸= t as the minimum end-to-end decoding error probability based on the solu-

tion of P2, we would naturally expect that ϵtot∗
u,i,j < ϵtot∗

t,i,j because P2 is a minimization
problem. This implies that the solution leading to ϵtot∗

u,i,j in P2 must be the solution of the
u-th sub-problem. However, it contradicts our initial assumption that ϵtot∗

t,i,j < ϵtot∗
u,i,j , since

ϵtot∗
u,i,j < ϵtot∗

t,i,j should be satisfied. Thus, the solution of P2 must be the same as that of the
t-th sub-problem, which achieves the minimum value of the objective function among all
the N sub-problems.

When we aggregate the solutions obtained from all the N sub-problems, according to
Lemma 1, we can confidently claim that the sub-problem solution that yields the lowest
end-to-end decoding error probability in the objective function is the solution of P2.

Every sub-problem P2A can be addressed using a nonlinear optimization tool. How-
ever, it is worth noting that the Q function significantly escalates the computational com-
plexity. To mitigate this challenge, following the approach in [21], we can approximate
the Q function with the F function for any fixed m and D. For example, Q(γ, m, D) can be
approximated as FD

m (γ):

FD
m (γ) =


1, γ ≤ θD

m
1
2 − αD

m(γ − βD
m), θD

m < γ < κD
m

0, γ ≥ κD
m

(29)

where αD
m =

√
m

2π2
2D
m −1

, βD
m = 2

2D
m − 1, θD

m = βD
m − 1

2αD
m

and κD
m = βD

m + 1
2αD

m
.
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Via (29), when m and D are fixed, the total end-to-end decoding error probability for
the n-th GUE in the i-th frame is represented as ϵF

n,i:

ϵtot
n,i ≈ ϵF

n,i =
C

∑
c=1

Xc,n,i(1 − Yc,i)FDuav,i
m2,i (γuav,i)+

n−1

∑
k=1

FDk,i
m1,i (γn,k,i) + FDn,i

m1,i (γn,i).

(30)

We can subsequently convert P2A into following P2B:

P2B: Minimize
{ρχ,i,j}

ϵF
n,i,j (31)

s. t.
N

∑
χ=1

ρχ,i,j = 1,

ϵF
n,i,j ≥ ϵF

k,i,j, ∀k ̸= n ∈ N

θ
Dχ,i,j
m1,i,j < γχ,i,j < κ

Dχ,i,j
m1,i,j , ∀χ ∈ N

θ
Dv,i,j
m1,i,j < γχ,v,i,j < κ

Dv,i,j
m1,i,j , ∀v ≤ χ − 1, v ∈ N

where ϵF
n,i,j represents the value of ϵF

n,i in the j-th optimization iteration during the i-th frame.
We can then solve P2B by using a nonlinear optimization tool without the inclusion of the
Q function, resulting in a reduced computational complexity while sacrificing accuracy due
to the approximation. The choice between solving P2A or P2B should be made considering
the trade-off between solution accuracy and computational complexity.

By solving either P2A or P2B, we can determine the optimal power allocation factors
{ρn}∗ on the UAV. These obtained {ρn}∗ in the j-th optimization iteration during the i-th
frame are represented as {ρn,i,j}.

3.3.2. Optimization of the Length of DL Phase

During the second step of the two-step alternating optimization subroutine, we keep
the power allocation factors on the UAV fixed as {ρn,i,j}, and this transforms P1 into P3 for
determining the optimal duration of the DL phase in the j-th iteration during the i-th frame.

P3: Minimize
m1,i,j

max
∀n∈N

{ϵtot
n,i,j} (32)

s. t. m1,i,j + m2,i,j = M,

m1,i,j, m2,i,j ∈ Z,

where m1,i,j and m2,i,j represent the duration of the DL phase and requesting phase in the
j-th optimization iteration during the i-th frame, respectively.

P3 is a discrete optimization problem, and when M is large, using exhaustive search
becomes inefficient. To address this, we can initially treat m1,i,j as a continuous variable and
solve P3 without considering the integer limitation by using a nonlinear optimization tool.
Similarly, as in P2, we can employ a similar approach to decompose P3 into several mini-
mization sub-problems. After completing the two-step alternating optimization subroutine,
the optimal m1,i is determined by rounding the continuous solution to the nearest integer.

By iteratively solving P2A/P2B and P3, we can obtain the solution of P1 once they
converge. Algorithm 1 below outlines the details of the proposed two-step alternating
optimization subroutine.
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Algorithm 1 Two-step alternating optimization subroutine
Initialization:

1. Initialize {ρn,i,0}, m1,i,0.

Actions:

1. For j = 1 : Jmax
2. Obtain {ρn,i,j} by solving P2A/P2B with m1,i,j−1.
3. Obtain m1,i,j by solving P3 with {ρn,i,j}.
4. End If converged.

Note that in the last iteration, we must perform action 2 one more time to acquire the
final power allocation factors {ρn,i} on the UAV during the i-th frame.

3.4. Joint Trajectory Design and Resource Optimization Framework in the UAV-Assisted Network

In this section, we will explicitly illustrate the comprehensive framework in the con-
sidered UAV-assisted downlink network. The specific details can be found in Algorithm 2,
presented below.

Algorithm 2 Framework in the UAV-assisted Network
Initialization:

1. Initialize caching size limitation Cuav at the UAV, total length of a frame M,
transmission power PBS from the BS to the UAV during the requesting phase, and
maximum available transmission power Pmax at the UAV during the DL phase.

2. Initialize all neural networks and the experience replay memory.

Actions:

1. Obtain initial state s0.
2. For i = 1 : I
3. Check all the content requests from the GUEs with the cached contents at the UAV,

and generate {Xc,n,i}, {Yc,i} and {Zc,i}.
4. Determine the sampling rate selection and UAV movement action ai by the actor

network according to current state si;
5. Obtain the location of UAV (xuav

i , yuav
i ), which is given by the updated state space,

and calculate the channel coefficients huav,i and {hn,i}.
6. Reorder the GUEs into an increasing order, i.e., |h1,i| ≤ |h2,i| ≤ . . . ,≤ |hN,i|.
7. With given huav,i and {hn,i}, obtain the transmission power allocation factors {ρn,i}

at the UAV, and the length of the DL phase in the i-th frame m1,i via Algorithm 1.
8. Observe reward ri and new state si+1. Update the caching list at the UAV, calculate

the popularity of each content {Oc,i}, and then update the cache.
9. Store transition (si, ai, ri, si+1) in the experience replay memory;
10. Sample a random minibatch transition from the experience replay memory;
11. Train the critic and actor network, respectively;
12. Update target networks.
13. End for.

3.5. Convergence and Complexity Analysis
3.5.1. Convergence

In our proposed approach, we conduct training on the actor network µ(s|ψµ) and
critic network Q(s, a|ψQ) using a gradient descent with exponentially decayed learning
rates. Consequently, the weights ψµ and ψQ will reach convergence after a finite number
of iterations, ensuring the overall convergence of the proposed algorithm. Although it is
challenging to theoretically analyze the time required for the convergence prior to network
training, we rely on simulations to demonstrate the convergence of our proposed algorithm,
as indicated in the numerical results.
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For the embedded two-step alternating optimization subroutine, we introduce the
Lemma 2 below to analyze its convergence.

Lemma 2. Algorithm 1 converges when the optimized objectives in P2 and P3 have the same value.

Proof. Assume that the optimized objectives in P2 and P3 are ϵtot∗
p,i,j and ϵtot∗

q,i,j , respectively.
If ϵtot∗

p,i,j ̸= ϵtot∗
q,i,j , then we have ϵtot∗

p,i,j > ϵtot∗
q,i,j , since the worst case in solving P3 after P2 is

ϵtot∗
p,i,j = ϵtot∗

q,i,j achieved by keeping m1,i,j to be the same as what was fixed in P2. This indicates
that any improvement (i.e., reduction) in ϵtot∗

q,i,j implies that we should have ϵtot∗
q,i,j < ϵtot∗

p,i,j .
Consequently, if ϵtot∗

p,i,j ̸= ϵtot∗
q,i,j , there must be an improvement in the optimized objective,

and hence Algorithm 1 will continue until ϵtot∗
p,i,j = ϵtot∗

q,i,j . Therefore, Algorithm 1 will
stop/converge when the optimized objectives in P2 and P3 have the same value.

Furthermore, since both P2 and P3 are minimization problems, and there exists a lower
bound on the total decoding error rate, together with the characterization in Lemma 2, the
convergence of the embedded two-step alternating optimization subroutine is ensured.

3.5.2. Complexity

In our proposed algorithm, the well-trained actor network generates actions for the
UAV during each frame. In our study, the computational complexity for the action gen-
eration for UAVs is expressed as O(∑l=Nh−1

l=1 Nl Nl+1), where Nh is the number of network
layers, and Nl represents the number of neurons in the l-th layer. Therefore, the total
complexity of the DDPG algorithm is O(I ∑l=Nh−1

l=1 Nl Nl+1).
In the embedded two-step alternating optimization subroutine, P2 and P3 are solved

iteratively based on Lemma 1. P2B involves N variables. Consequently, the necessary num-
ber of iterations is O(

√
N log2(

1
ϵ0
)), where ϵ0 represents the desired accuracy of the interior-

point method in solving P2B. Additionally, P2B encompasses at most 2N constraints, and
hence the computational complexity for solving P2B is O(

√
N log2(

1
ϵ0
)(N + 2N)3), which

is equivalent to O(N3.5 log2(
1
ϵ0
)). Therefore, during one iteration in Algorithm 1, the com-

putational complexity for solving P2 is O(N4.5 log2(
1
ϵ0
)), since we have N sub-problems.

For each sub-problem of P3, we have one variable and one constraint when we relax m1,
and hence the computational complexity for solving P3 is O(N log2(

1
ϵ0
)) during one itera-

tion in Algorithm 1. Assuming that we have Jmax iterations (the worst case) in Algorithm 1,
the computational complexity is O(Jmax(N4.5 log2(

1
ϵ0
) + N log2(

1
ϵ0
))), which is equivalent

to O(JmaxN4.5 log2(
1
ϵ0
)).

Finally, the overall computational complexity of Algorithm 2 is

O(I(
l=Nh−1

∑
l=1

Nl Nl+1 + JmaxN4.5 log2(
1
ϵ0
))). (33)

4. Numerical Results

In this section, we present the numerical analysis of the minimized average maximum
end-to-end decoding error probability among all GUEs by using the proposed algorithm.
In our numerical results, we represent the end-to-end decoding error probability on a
logarithmic scale. We first show the average min-max end-to-end decoding error rate versus
the maximum block length constraint under different UAV transmission power constraints
Pmax as well as different UAV trajectories. Additionally, we explore the influence of cache
size limitations and the length of the caching list at the UAV. Furthermore, we display the
UAV trajectory optimized through the proposed two-step alternating optimization scheme
embedded within the DDPG algorithm. Finally, we provide insights into the convergence
performance of our proposed learning structure.
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In the simulations, the channels are modeled as follows: For GUE n in the set N ,

the channel is generated using the formula hn =
√

ξ0d−αn
n

∼
gn, where dn represents the

distance between the UAV and the n-th GUE, αn is the path loss exponent, and
∼
gn is the

complex Gaussian distributed fading component for the n-th UE. In a similar manner, the

channel between the BS and the UAV is characterized by huav =
√

ξ0d−αuav
uav

∼
guav, where

duav denotes the distance from the BS to the UAV, αuav is the path loss exponent for that link,
and

∼
guav represents the complex Gaussian distributed fading component associated with

the BS-UAV connection. Unless stated otherwise, the UAV serves 3 GUEs in the considered
network. The simulation parameters are listed in Table 4, below.

Table 4. Summary of parameters.

Parameter Definition Value

αuav Path loss exponent from the BS to the UAV 2

αn Path loss exponent from the UAV to the n-th GUE 3.5

ξ0 Path loss at the reference point d0 = 1 m −30 dB

σ2 Noise power −95 dBm

δ Target update ratio 0.005

ζ Discount factor 0.85

Nb Minibatch size 64

In Figure 5, we analyze the average min-max error probability attained with the
proposed algorithm considering three different UAV trajectories. In this figure, the curves in
red and blue denote for the average min-max error rates under different UAV transmission
power budgets Pmax, when the UAV is following a circular trajectory, while the dotted curve
in black represents the average min-max error rate when the UAV has the optimal trajectory
with Pmax = 2W, and the dash dotted curve in purple denotes the average min-max error
probability when the UAV has a point-to-point (P2P) trajectory with Pmax = 2W. Such a
P2P trajactory starts at (0, 380) and ends at (350, 100) with a straight line in the considered
400 m × 400 m square area. It is evident that UAV using the optimized trajectory, which
is obtained from our proposed DDPG algorithm embedded with the two-step alternating
optimization subroutine, results in the smallest average min-max error rate. We further
observe that the min-max error probability is reduced when the blocklength constraint M
increases, which is expected since increasing M is the same as extending the transmission
time, resulting in less strict requirements on the coding rate. We further observe that
enlarging the transmission power budget Pmax at the UAV improves the performance
as well. By increasing Pmax, we can obtain a higher SNR/SINR and hence improve the
min-max error probability.

Next, we investigate the impact of the cache size limitation and the length of the
caching list in Figure 6. This figure demonstrates the curves of the average min-max error
probability versus the UAV’s cache size limitation Cuav, where the red and blue curves
represent the average min-max error rates for different lengths L of the caching list when the
UAV follows a circling trajectory, and the dotted black line illustrates the average min-max
error rate when the UAV adopts the optimal trajectory with L = 100. In Figure 6, it is
readily observed that the performance with a larger caching list is consistently better than
the one with a smaller caching list. This is due to the fact that a larger caching list increases
the probability of caching all the popular contents, making the caching procedure more
efficient. We additionally observe that a larger cache size results in a lower average min-
max error rate. This is attributed to the improved caching capability at the UAV, allowing
more contents to be served without consulting the BS and leading to an improved average
min-max error probability. However, it is important to note that the improvement becomes
smaller as the cache size is increased. This phenomenon occurs because the most popular
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content is the first to be cached, and further increasing the cache size mainly enables the
UAV to store less popular contents, providing limited improvements in the min-max error
rate. Last but not least, even when all contents are cached at the UAV, decoding errors may
still occur during the DL phase. Consequently, the min-max end-to-end decoding error
probability does not vanish by merely increasing the UAV’s cache size.
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Figure 5. Influence of blocklength constraint.
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Figure 6. Influence of cache size limitation.

Furthermore, considering both the UAV trajectory design, transmission power al-
locations, and determination of the duration of the DL phase, we illustrate the optimal
UAV trajectory in Figure 7. In the figure, the GUEs are randomly distributed within a
circle whose center is located at (350, 100). The initial position of UAV is set to be (0, 380)
and the BS is located at (350, 380). We can observe that the UAV will first fly somewhat
towards the BS, since at that stage the error rate arising from the UAV downloading in the
requesting phase has more impact on the end-to-end error probability. Afterwards, the
UAV flies more towards the GUE cluster, since, at that stage, the decoding error rate in
the DL phase dominates the overall error probability. We also observe that the UAV will
continue hovering in a very small range close to the GUE cluster, which is due to the fact
that such a position is the optimal location with which the overall end-to-end error rate is
minimized. It is worth noting that when we alter the location of the GUE cluster, the UAV
trajectory changes correspondingly.
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Figure 7. Optimized UAV trajectory.

Additionally, we evaluate the convergence of the proposed DDPG algorithm embedded
with the two-step alternating optimization subroutine, as presented in Figure 8. This figure
shows the reward curve as the number of training episodes grows. In Figure 8, the results
reveal that the UAV trajectory training will converge around 710 episodes, which assures the
feasibility of our proposed algorithm in addressing the global optimization problem.
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Figure 8. Convergence.

In Figure 9, we validate the effectiveness of hybrid frequency-division multiple access
(FDMA)-NOMA to overcome the interference bottleneck as the number of GUEs grows.
In the hybrid FDMA-NOMA, we first divide all the GUEs into different groups, and then
FDMA is utilized between different groups and the GUEs in the same group receive data
from the UAV via NOMA transmissions. To perform the hybrid FDMA-NOMA, we can
simply execute step (6) for every group independently in Algorithm 2 and the rest of the
steps remains the same. In Figure 9, we explicitly demonstrate the average min-max error
probability under different grouping scenarios considering 4 and 6 GUEs. We observe that
with the increasing number of GUEs, the average min-max error probability increases. We
further notice that for the same number of GUEs, the more groups we have, the smaller
average min-max error probability we can achieve. This is mainly due to the fact that with
less GUEs in one NOMA group, the GUEs experience less impact from the SIC errors.
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Figure 9. Hybrid FDMA-NOMA.

Finally, we plot Figure 10 to illustrate the optimized values of m1 and m2, as the
maximum blocklength M keeps increasing. In order to focus on m1 and m2, we keep the
UAV hovering within a small range of the final position obtained by the optimized UAV
trajectory, as shown in Figure 7. In Figure 10, we continuously increase the maximum
blocklength M = m1 + m2 to plot the average m1 and m2. We observe that with the increase
in M, more time is allocated to the DL phase, resulting in a relatively fast growth in m1.
Compared with m1, m2 increases slowly. This can be attributed to the fact that during the
DL phase, the UAV performs downlink NOMA transmissions to the GUEs, and allocating
more time to such a phase mitigates the impacts from both the self-decoding error and SIC
errors. Hence, the optimized allocation indicates that we benefit more from increasing m1
rather than m2, especially in later stages of the UAV flight, at which time most popular
content is highly likely to be already stored at the UAV and communication with the BS
has a lower priority.
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Figure 10. m1 and m2.

5. Conclusions

In this paper, we have investigated the reliability of a UAV-assisted downlink network
with content caching and NOMA transmission in the FBL regime. We have first presented
the system model and conducted an analysis of the FBL regime as well as the SINR when
the NOMA transmission is employed. We then have addressed the end-to-end decoding
error probability and introduced a caching policy for the UAV. We have subsequently for-
mulated an optimization problem aimed at minimizing the average maximum end-to-end
decoding error rate for all GUEs within specified time frames, subject to coding length and
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maximum UAV transmission power constraints. To address this problem, we have initially
presented a DDPG learning-based approach to optimize the UAV trajectory. Furthermore,
we have proposed a two-step alternating optimization subroutine to determine the optimal
solutions of the transmission power allocation at the UAV and the duration of the DL
phase for any given UAV position. Our numerical results indicate that the higher UAV
power budget Pmax results in a lower end-to-end decoding error rate, and increasing the
maximum blocklength M enhances the network performance. We have also observed that
content caching at the UAV significantly improves the end-to-end decoding error probabil-
ity. Moreover, our optimized UAV trajectory consistently outperforms a circular trajectory
in terms of the average min-max error probability. Furthermore, we have explicitly demon-
strated the optimized UAV trajectory and the convergence performance to demonstrate
the effectiveness of our proposed algorithm in this paper. We have additionally validated
the effectiveness of hybrid FDMA-NOMA to overcome the interference bottleneck as the
number of GUEs grows. Finally, we have concluded that it is more effective to allocate more
time to the DL phase rather than the requesting phase, especially when the blocklength
constraint is relaxed. Future work includes the investigation of the network with multiple
UAVs, and with mobile GUEs to capture more challenging practical scenarios.
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