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Abstract: When unmanned platforms perform precise target detection, the configuration of detection
nodes will significantly impact accuracy. Aiming to obtain the minimum dilution of precision (DOP),
this paper innovatively proposes an optimal detection configuration design method focused on the
heterogeneous unmanned cooperative swarm based on the nested cone model. The proposed method
first divides the swarm into different groups according to the performances of platforms and then
uses a conical nested configuration to arrange the placement of each node independently. The paper
considers the problem of the inaccurate prior position of the target and replaces the single-point DOP
with the average DOP on the prior region of the target as the optimization objective. Considering the
unavoidable positioning errors in engineering practice, this paper provides the optimal configuration
of the detection group (DG) and anchor group (AG) in the swarm to reduce the impact caused by
positioning errors of detection nodes. We set a certain swarm consisting of 3 types of platforms to
design the configuration by simulation experiments and find the optimal parameters for nested cones
to realize accurate detection.

Keywords: cooperative detection; configuration; minimum DOP; unmanned swarm

1. Introduction

In recent years, with the rapid development of drones and ground unmanned vehicles,
a large number of unmanned platforms equipped with complex sensors have been widely
used in detection, reconnaissance, and other tasks in various scenarios. Limited by the size,
load, or endurance of a single unmanned platform, an unmanned swarm composed of
multiple unmanned platforms can better adapt to complex environments and complete
tasks [1,2].

In general, according to the composition of the unmanned platform in the swarm,
it can be divided into a heterogeneous swarm and a homogeneous swarm. In a homo-
geneous swarm, the type of unmanned platforms is all the same. Correspondingly, a
swarm composed of multiple unmanned platforms with different motion characteristics or
detection sensors is called a heterogeneous swarm. Diverse sensors and carrier platforms
in heterogeneous swarms give them better capabilities and more approaches when swarms
are detected in complex environments [3–5].

Cooperative navigation and cooperative detection are important ways to improve the
performance of unmanned swarms. Cooperative navigation is to improve the positioning
accuracy of other platforms in the swarm by broadcasting observation information within
the swarm or relative observation information between platforms. With the sharing of
high-precision positioning information provided by nodes with a high-accuracy navigation
system, all the nodes in the swarm could obtain higher positioning accuracy [6,7].

Acquisition of an accurate target position is one of the important goals of detection.
In a detection swarm, the geometry formed by unmanned platforms has an important
impact on target location performance [8–10]. Therefore, researchers have explored many
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optimization strategies for single-target localization problems. Cramer–Rao lower bound
(CRLB) and Fisher information matrix (FIM) were used to evaluate estimation performance
in articles [11,12], respectively. Various optimality criteria are widely used, such as the
D-optimal criterion (maximizing the determinant of FIM) [13] and the A-optimality crite-
rion (minimizing the trajectory of inverse FIM) [14]. The sensor configuration optimization
theory based on Fisher information is relatively late in the development of unmanned
swarms. Zhang studied the positioning performance of a leader–slave multi-AUV (au-
tonomous underwater vehicle) cooperative positioning system and analyzed the influence
of different configurations on the positioning performance through simulation [15]. Fang
proposed an optimal configuration estimation method for cooperative positioning based
on distance measurement and verified that the optimal formation could obtain better posi-
tioning accuracy by analyzing the configurations of single-lead underwater vehicles and
double-lead underwater vehicles [16]. In 2023, Bo Xu established a multi-objective AUV
three-dimensional cooperative positioning formation optimization model based on angle
of arrival (AOA) measurement, used the D-optimal criterion to derive the single-objective
and multi-objective evaluation functions of the underwater three-dimensional cooperative
positioning system, and used the optimization algorithm to obtain the optimal formation
of the cooperative positioning system [17].

In addition to using FIM to establish the objective function for configuration opti-
mization, the method of minimizing DOP to achieve optimal detection configuration has
also achieved fruitful results for the single-point detection problem [18–20]. The geometric
dilution of precision (GDOP) minimization criterion has been widely used in localization
configuration optimization. In the study [21], it is considered that in engineering prac-
tice, the configuration scheme with practical geometric significance is more practical than
the infinite solution. Walker formation has been widely used in the constellation design
of satellite positioning [22]. Yang defined a nested conic configuration on the basis of
the conic configuration, derived the conditions that the minimum Position Dilution of
Precision (PDOP) nested conic configuration should meet, and discussed the method of
constructing the minimum GDOP configuration [23,24]. Based on this, Wang has carried
out a large number of simulation experiments and discussed and analyzed the GDOP
minimization conditions of nested conical configurations with the application background
of the ultra-wide band (UWB) positioning system [25].

Currently, most research sets an ideal condition for unmanned swarm detection,
which neglects the positioning error in many aspects [26,27]. First, before determining
the configuration for precise detection of a single target, the target location needs to be
provided by a priori information, which should be imprecise in practice. However, most of
the current research does not take into account the effects caused by positioning errors. To
solve the problem caused by inaccurate prior positions, Wan Jun seeks the local optimal
solution of the GDOP density of each group of buoy combination conical configurations
based on the extreme value condition of the minimum PDOP positioning pattern, and then
seeks the global optimal solution of the minimum GDOP density from all the candidate
buoy combination configurations to achieve the optimal design of underwater positioning
formations [28].

In addition, there is also an issue of imprecision in the positioning of each detection
node itself. Small platforms such as drones are unable to carry high-precision autonomous
navigation equipment limited by cost, size, power, and other limitations. In GNSS in-
terference or rejection environments, their positioning accuracy could be extremely poor,
making it difficult to deploy them to the proper placements accurately according to the
designed configuration. To deal with the above problems, we employ unmanned ground
vehicles (UGVs) equipped with high-precision autonomous navigation systems in the clus-
ter as anchor points and use the principle of collaborative positioning to provide accurate
self-position information for the detected UAVs [29].

Cooperative navigation is an important and effective method to improve the perfor-
mance of unmanned platform swarms, which improves the positioning accuracy of other



Drones 2024, 8, 11 3 of 33

platforms in the swarm by broadcasting the observation information within the swarm or
relative observation information between platforms. With the sharing of high-precision
positioning information provided by nodes with a high-accuracy navigation system, all the
nodes in the swarm could obtain higher positioning accuracy [30].

Considering practical problems such as positioning errors, this paper focuses on
heterogeneous unmanned swarms and fully utilizes their superior performance by utilizing
cooperative navigation and detection. The optimal configuration in 3D for minimum DOP
would be designed based on nested cones. The main contributions of the article can be
summarized as follows:

1. In detection tasks, the configuration design based on the target’s prior position relies
on the accuracy of prior information. To address the problem of an inaccurate prior
position of the target, the optimization objective is transformed from the DOP of the
target point to the average DOP of the target area. On this basis, the design problem
of the optimal DOP nested cone configuration on the target prior region was studied
to ensure that the designed optimal configuration can achieve the minimum DOP
value within a certain range on the plane, which avoids the problem of the detection
configuration being unable to achieve optimal detection due to inaccurate target prior
positions.

2. Considering that in practical engineering applications, the localization errors caused
by the poor self-positioning performance of drones will lead to the inaccuracy of target
detection. A large number of simulation experiments were conducted to evaluate the
impact of positioning errors on DOP under the optimal DOP configuration, which
provides experimental support for the robustness analysis of different 3D optimal
configurations against platforms’ localization errors.

3. Based on the evaluation conclusion drawn from the second work, an AG was designed
using UGVs to further reduce the impact of the positioning performance of the
detection drones on the detection results. We fully arrange the roles of all nodes in
the heterogeneous unmanned swarms and apply cooperative positioning methods
to improve the positioning accuracy of nodes in the DG, significantly reducing the
self-positioning error of detection nodes and improving the detection accuracy toward
targets.

4. To maximize the performance of cooperative navigation for nodes in the DG by
optimizing the configuration of the AG, an objective function for minimum DOP
for the detection node was established, which was used to design the placement of
each anchor point in the AG. By introducing weight coefficients corresponding to
each detection node, it is ensured that the configuration design of the AG can remain
optimal when facing more complex DGs to optimize detection accuracy.

The following parts of the paper are organized as follows: In Section 2, the design
requirements of nested cone optimization are introduced. In Section 3, combining the
theory of the second section with the heterogeneous unmanned swarm, a design method
for minimum DOP based on nested cone configuration for the cooperative detection of
heterogeneous UAVs is proposed. In Section 4, a certain swarm is set up to carry out
simulations. The influence on configuration design caused by the errors of the target’s
prior position and detection platforms’ location is deeply studied. Based on the results
above, we next design an anchor group to enhance the robustness of the configuration
dealing with positioning errors and give specific parameters to realize optimization. The
results of the comparison simulation are presented in Section 3. The designed detection
configuration has greatly improved accuracy compared to random placement. In the final
summary, based on the results, we consider the possible practical scenarios and challenges
that may be encountered in the next step of application in engineering.
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2. Materials and Methods
2.1. Concepts and Algorithms
2.1.1. PDOP and GDOP

DOP is an important indicator of the advantages and disadvantages of the localization
configuration, which can reflect the relationship between the measurement error and the
localization error, as shown in Equation (1) [31]. em and ed represent the errors of detection
and measurement, respectively. In the case of a certain detection capability of the unmanned
nodes, DOP is related to the spatial distribution and number of the nodes for detection.
Furthermore, the placement of the platforms in the swarm would affect the accuracy of the
detection.

ed = DOP · em (1)

In three-dimensional space, a swarm Gni
= {X1, X2, . . . , Xn} composed of multiple

unmanned platforms will constitute a detection configuration Gn,3, where Xi, i = 1, 2, . . . , n
and Xi = [ϕi, pi].

According to the measurement principle of time of flight (TOF) sensors, the pseudo-
range observation equation is:

Li = di + c · δt + εi i = 1, 2, · · · , n (2)

where Li is the pseudo-range measurement between ith detection node Xi to the target
T =

[
x y z

]
. In the Equation (2), di is the true value of Euclidean distance without

detection error which could be represented as

di =

√
(xi − x)2 + (yi − y)2 + (zi − z)2 (3)

where δt is the clock deviation, c is the speed of light in the atmosphere and εi represents
measurement errors introduced by other factors such as multipath effects.

Solving Equation (2) by the least squares method, we could obtain the position co-
ordinates of the target point. Define Ai =

[
xi − x yi − y zi − z

]
3×1

, the least squares
solution for positioning a fixed point through the pseudo-range measurement equation can
be expressed as:

x = x0 + (AT A)
−1

ATL (4)

where x and x0 is the true position and detecting position of the target.
The positioning error applying this method can be expressed as

σ2 = tr[
(

JT J
)−1

] · σ2
0 (5)

where σ2
0 represents the accuracy variance matrix related to measurement sensors. tr is

the trace of the matrix. J is the n × 4 Jacobian matrix of the linearized pseudo-range
measurement equation. ei =

[
xi − x yi − y zi − z

]
/di shown in Figure 1 is the direction

cosine from the target point T to the ith detection node. J can be represented as:

J =
[

eT
1 eT

2 · · · eT
n

1 1 · · · 1

]T

(6)

For the detection configuration Gn,3, the GDOP can be calculated by:

GDOP(Gn,3) =

√
tr
[
(JT J)−1

]
(7)
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PDOP is a special form of GDOP without considering clock deviation. With δt = 0,
PDOP can be calculated by:

PDOP(Gn,3) =

√
tr
[
(JeT Je)

−1
]

(8)

where Je =
[
eT

1 eT
2 . . . eT

n
]T and obviously Je is an n × 3 sub-block of matrix Jn×4 which

meets J =
[

Je kn
]
, kn =

[
1 1 . . . 1

]T .
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2.1.2. Extremum Condition of DOP Value at Single Point

According to Equation (5), the accuracy of the detection by unmanned platforms is
determined by two factors:

The first is the unit weight variance σ. It is determined by factors such as pseudo-range
measurement accuracy and localization accuracy of platforms. The other is the DOP related
to the parameter covariance matrix, which is determined by the geometric configuration
composed of multiple detection platforms.

By calculating
(

JT J
)−1, we have:

(JT J)
−1

=

[
(Je

T Je)
−1

+ (Je
T Je)

−1 Je
Tkn(kn

T Mkn)
−1

+ kn
T Je(Je

T Je)
−1

(Je
T Je

−1)Je
Tkn(kn

T Mkn)
−1

−kn
T Je(kn

T Mkn)
−1

(kn
T Mkn)

−1

]
(9)

where M = (I − Je
(

JT
e Je

)−1 JT
e ).

Using the Gauss Jordan method to solve
(

JT J
)−1, we obtain the equation of minimum

GDOP:
GDOP2 ⩾ tr(JT

e Je)
−1

+ (kT
n Mkn)

−1
(10)

Based on the Equation (10), we obtain the conditions for minimum DOP.
In two-dimensional space:

min[GDOP(Gn,2)] =
√

22 + 1/
√

n, JT
e Je =

n
2

I, kT
n Je = 0 (11)

min[PDOP(Gn,2)] = 2/
√

n, JT
e Je =

n
2

I (12)

In three-dimensional space:

min[GDOP(Gn,3)] =
√

32 + 1/
√

n, JT
e Je =

n
3

I, kT
n Je = 0 (13)
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min[PDOP(Gn,3)] = 3/
√

n, JT
e Je =

n
3

I (14)

In Equations (11)–(14), n represents the number of detection nodes. GDOP(G) and
PDOP(G) means the GDOP and PDOP at the tip of a certain nested cone configuration
G, respectively. Obviously, redundant observations will reduce GDOP, thereby reducing
detection errors. Whereas, as shown in Figure 2, the improvement of detection accuracy by
increasing the number of base stations is quite limited after reaching a certain number since
GDOP is inversely proportional to the square root of the number of detection platforms.
Compared with PDOP, the minimum GDOP requires kT

n Je = 0 additionally. The reason is
that the symmetrical placement of the detection platforms will maximize the elimination of
errors when it is necessary to consider the impact of clock deviation.
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2.1.3. The Configuration of Unmanned Swarm for Minimum DOP at Single Point

Ignoring the motion characteristics of the detection nodes, there can be an infinite
number of solutions for min[DOP(Gn,3)] based on the minimum DOP condition. The
lowest DOP configuration set is defined as:

On,3 = {Gn,3 | Gn,3 = argmin(GDOP(Gn,3))}
Pn,3 = {Gn,3 | Gn,3 = argmin(PDOP(Gn,3))}

(15)

According to the GDOP minimum condition, various configuration solutions can
be obtained in three-dimensional space for point detection, including cone configuration,
Cartesian configuration, and Walker configuration, which is shown in Figure 3.

Drones 2024, 8, x FOR PEER REVIEW 7 of 35 
 

  
 

(a) (b) (c) 

Figure 3. The configuration geometry with the lowest GDOP. (a) Cone configuration. (b) Descartes 
configuration. (c) Walker configuration. 

The cone configuration has different forms in 2D and 3D space. In 2D space, the cone 
has at least one axis of symmetry. As shown in Figure 4, the target and all detection nodes 
are distributed in a plane. When it comes to 3D space, the cone configurations can be di-
vided into single cone configurations in 3D space and nested cone configurations in 3D 
space. 

 
Figure 4. The two-dimensional cone configuration. The stars represent the node and the triangle 
represents the target. 

As shown in Figure 5a, the vertices of a single cone configuration in 3D space are 
located at the target point, and all detection nodes are distributed along the edge on the 
circular bottom of the cone. The coaxial nested cone configuration consists of multiple 
cone configurations that are coaxial and have the same vertex as the target point to be 
detected. Except for the vertex and axe, each single cone has an independent parameter. 

  
(a) (b) 

Figure 5. Three-dimensional cones: (a) single cone configuration; (b) coaxial nested cone configura-
tion. 

r

h

ϕ
T

r1

h

1ϕ

r2

2ϕ

T

Figure 3. The configuration geometry with the lowest GDOP. (a) Cone configuration. (b) Descartes
configuration. (c) Walker configuration.



Drones 2024, 8, 11 7 of 33

The cone configuration has different forms in 2D and 3D space. In 2D space, the
cone has at least one axis of symmetry. As shown in Figure 4, the target and all detection
nodes are distributed in a plane. When it comes to 3D space, the cone configurations can
be divided into single cone configurations in 3D space and nested cone configurations in
3D space.
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As shown in Figure 5a, the vertices of a single cone configuration in 3D space are
located at the target point, and all detection nodes are distributed along the edge on the
circular bottom of the cone. The coaxial nested cone configuration consists of multiple cone
configurations that are coaxial and have the same vertex as the target point to be detected.
Except for the vertex and axe, each single cone has an independent parameter.
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For the air–ground cooperative detection task for the unmanned swarm, the conditions
for forming the optimal detection configuration applying Walker or Cartesian configura-
tions are clearly more stringent due to the limitations of the ground or motion performance
of platforms. The nested cone configurations suit the swarms and require all detection
nodes to stay on the same horizontal plane much better, which is beneficial for the control
of unmanned platforms and the positioning of altitude channels [32]. In addition, the
nested cones make it possible to design the placement of different platforms independently,
which is more suitable for heterogeneous roles in the swarm to perform different tasks after
regrouping. The design of the nested cone configuration would be convenient and intuitive
as well. Considering the analysis above, this article adopts a nested cone configuration
as the basis for designing the detection configuration for heterogeneous swarms with a
minimum DOP.
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2.1.4. Conditions for Lowest DOP of Nested Cone Configuration

The optimal configurations with the lowest PDOP Pn,3 and configurations with the
lowest GDOP On,3 should all satisfy the properties below:

1. Pn,3 ⊂ On,3, i.e., if, Gn,3 ∈ Pn,3, Gn,3 ∈ On,3 will hold.
2. For any Gn,3 ∈ Pn,3, Gn,3 + G−IT

n,3 ∈ On,3 at the same time. G−IT
n,3 represents the new

configuration by rotating Gn,3 180◦ around target point T.

Through the two properties above, it can be inferred that the nested cone configuration
has superposition invariance and rotation invariance, which is the theoretical basis for
expanding the single cone configuration to the nested cone configuration. When the
heterogeneous swarm could be divided into q different groups, and each group would
consist of ni, i = 1, 2, . . . q platforms, we defined the nested cone configuration of this
swarm Sq,n as:

Gn,3 =

{
q

∑
1

Gni ,3

∣∣∣∣∣n =
q

∑
1

ni

}
(16)

where n is the total number of unmanned platforms in the swarm. Gni ,3 is the single cone
configuration for each divided group.

To find the optimal nested cone configuration of each detection swarm for minimum
GDOP in 3D space, firstly, it is necessary to study the properties of the orthogonal projection
perpendicular to the cone axis (referred to as the orthogonal projection) of all detection
nodes in 3D cone configuration to the 2D plane. As shown in Figure 6, for a 3D cone
configuration, its orthogonal projection on the plane constitutes a 2D cone Gn,2.
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Figure 6. Three-dimensional cone configuration and its orthogonal projection configuration. The
stars represent the node and the triangle represents the target.

For node placement in 2D space, the projection configuration Gn,2 preserves the basic
properties of a 2D cone and has at least one certain axis of symmetry. For the 2D cone in
Figure 6, it suits Theorem 1.

Theorem 1. The condition for obtaining the minimum PDOP at the cone vertex of a planar 2D
cone Gn,2 composed of n detection nodes is:

n

∑
i=1

cos2 θi =
n
2

(17)

At the same time, if and only if
n

∑
i=1

cos θi = 0 (18)
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holds, the cone vertex of will obtain the minimum GDOP.

For the design of nested cone configurations, each 2D orthogonal projection of a
3D cone in the nested configuration that satisfies the conditions for the optimal cone is
necessary. For Gni ,3 in Equation (16), when the lowest GDOP is obtained at the tip of every
cone, Theorem 2 would hold.

Theorem 2. For the coaxial nested cone Gn,3 =
q
∑
1

Gni ,3 = Gn1,3 + Gn2,3 + . . . + Gnq ,3 in 3D

space, if the coning angle φi and the number of platforms ni in the cone satisfy

1
3

q

∑
1

ni =
q

∑
1

ni · cos2 φi (19)

The minimum PDOP will be obtained at the common vertex. Similarly, if and only if

k

∑
i=1

ni · cos φi = 0 (20)

The minimum GDOP will be obtained as well.

2.2. The Method to Design Coaxial Nested Cone Configuration for Heterogeneous Swarms with
Minimum DOP
2.2.1. The Set of the Swarm in the Research

In this section, a specific unmanned swarm consisting of a certain type and number
of platforms is set up. In the next research in this paper, we will choose three types of
unmanned platforms shown in Figure 7 with different structures and performances to form
a swarm. The type and number of platforms are arranged as below:
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1. Four miniature drones equipped with UWB and range finder.
2. Four large drones equipped with UWB and range finder.
3. Three UGVs equipped with UWB and high-precision inertial navigation system.

It should be noted that although drones of different sizes are equipped with the same
sensors in this research, the size of the drones represents more differences between each
other, such as cost or performance. For this reason, we regard the drones as different
platforms and have divided them into two detection groups. Separating the design of the
configuration for each DG can facilitate the control or task management of nodes in the
group. At the same time, design potential would be saved for considering different sensors.
For the above-mentioned reasons, it is reasonable to arrange heterogeneous unmanned
platforms in different cones.
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2.2.2. Arrangement for Nodes in the Cooperative Heterogeneous Unmanned Swarm

In order to achieve better positioning or detection results, it is necessary to further
subdivide the cooperative swarm into multiple groups for different tasks. As shown in
Figure 8, platforms in the swarm can be divided into detection groups and anchor groups
(AGs) based on their positioning performance. In general, the platforms in the DGs are able
to carry detection sensors such as cameras with high mobility, allow flexible maneuvers,
and cost relatively less. Nevertheless, limited by the operating area and the performance of
the navigation sensors installed, precise positioning for the detection platforms themselves
cannot be achieved. On the contrary, the platforms in the AGs are usually large platforms
equipped with high-precision navigation systems that could provide precise positioning in
satellite rejection environments. However, the large platforms are not suitable for detecting
the target directly due to their high cost and poor mobility. The unmanned platforms
in DGs and AGs can collaborate according to their own roles in cooperative detection,
which can complete the detection tasks much more accurately, quickly, and safely in the
antagonistic area.
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Considering the engineering practice, unmanned vehicles with stronger carrying
capacity generally play the role of high-precision platforms in AGs, while unmanned aerial
vehicles such as drones with better maneuverability and relatively low cost are arranged in
DGs. When the drones with detection sensors approach the target for direct detection, the
location of each detection platform will be obtained by UWBs equipped as the unmanned
ground vehicles (UGVs) perform as anchors. For the above considerations, we divide
the cooperative swarm Sq,n consisting of n platforms into q different groups as: Anchor

groups G i
A,ni

consisting of ni, i = 1, 2 . . . qA nodes and detection groups G j
D,nj

consisting of

nj, j = 1, 2 . . . qD nodes. ni and nj satisfy n =
qA

∑
i=1

ni +
qD

∑
j=1

nj.

In air–ground cooperative detection, drones in G j
D,nj

will approach the target as UGVs

in G i
A,ni

stay on the ground. In addition, platforms for the same role might be further
grouped according to the differences in the sizes or sensors equipped, if necessary. Fully
considering the role differentiation of multiple unmanned platforms in cooperative detec-
tion work, this section provides an optimal configuration design method for a cooperative
heterogeneous unmanned swarm.

In the method shown in Figure 9, we should set the height of each group during the
detection process first based on specific tasks, platform performance, and other prerequisite
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factors after selecting the target and regrouping the swarm. The next step is the design
for the configuration of different groups. Clearly, the design of the configuration for each
group in different cones is independent of each other. This characteristic makes it simpler to
complete the optimal configuration design of the entire swarm. Although the configuration
of the DGs has been fixed, we only need to adjust the AG’s configuration to achieve optimal
positioning for all detection nodes in the DGs. As shown in Figure 10, the design for the
G j

D,nj
aims to achieve the minimum DOP at the undetermined target point. Whereas the

design of G i
A,ni

is to achieve the optimal positioning effect at the location of the deployed
detection nodes. In general, we assume the platforms in one group perform in the model
with the same parameters and accuracy.
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The design of each group is all based on the theorems in Section 2. According to
Theorem 2, the orthogonal projection Gi

ni ,2
to the configuration Gi

ni ,3
placed by G j

D,nj
should

be designed properly first. After this step, the relative position of all nodes in the same
group would be fixed with the height being set. In Theorem 1, Gi

ni ,2
should usually be an

axisymmetric figure centered on the target, so only the relative angles θi between the target
and platforms need to calculate. With the Gi

ni ,2
designed, we only need to determine the

coning angle φi of each cone, which could then fix Gi
ni ,3

. At this point, it will be noted that if
the relative position between different groups needs to be determined, an extra parameter
is also required, which is the relative angle βi between the 2D projections of different
groups. In a certain swarm, once the θi, φi, and βi have been set, the coaxial nested cone
configuration for DGs would be fixed. A classic single cone detection configuration G4,3
and a nested cone configuration G1

4,3 + G2
4,3 placed by G1

D,4
and G2

D,4
are shown in Figure 11.
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Figure 11. Detection configuration for drones: (a) single cone detection configuration G4,3; (b) nested
cone configuration G1

4,3 + G2
4,3.

The design of other cones for AGs is the last step after achieving the minimum DOP
at the target point using the nested cone configuration. The configuration design for the
AGs is similar to that of the DGs, but the difference is that the nodes in Anchor have to
stay on the ground when we set UGVs as platforms. Although the height of AGs is set to 0
and the cones degenerate into circles on the plane, we still define the configuration of AGs
as Gi

ni ,3
, so the βi and θi also need to be determined. The difference comes up because the

configuration of AGs focuses on DOP on not only one point but also
qD

∑
i=j

nj nodes in G j
D,nj

,

which would be influenced by the size of configuration. Thus, the ri for the ground circle
needs to be determined to complete an optimal configuration.

In order to focus our research on structuring the optimal configuration for coop-
erative detection, we make the following assumptions about the detection process in a
heterogeneous unmanned swarm:

1. The communication between all nodes in the swarm is completely smooth, and there
is no multipath or clutter in time of arrival (TOA) measurements.

2. Each node has a unique identification, i.e., the problem of data association has been
solved, and each measurement is correctly associated with the correct platform, which
solves.

3. The UGVs in G i
A,ni

are equipped with high-precision positioning equipment, which
makes it possible to keep the positioning results in the local geographic coordinate
system that will not diverge and remain within a certain error.

4. The target is on the ground plane with 0 altitude.
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3. Results

As mentioned above, we set 8 drones in 2 DGs and regard 3 UGVs as 3 anchors in one
AG to form a swarm. Based on the configuration optimization strategy designed, we com-
prehensively consider various practical problems encountered in cooperative navigation,
focusing on the impact of positioning errors on optimization decisions. In the engineering
practice of cooperative navigation, unprecise localization will bring up many problems
involved with random variables. In this section, simulation experiments are conducted to
visually demonstrate the impact of configuration design parameters on DOP using function
figures. Based on the results, suggestions for designing optimal detection configurations
are proposed for air–ground unmanned swarms to facilitate making decisions when facing
a complex environment.

3.1. The Design of Configuration for DGs
3.1.1. Design of Configuration for Minimum DOP at the Target Point

Define the 2 DGs as GD1
4,hD1

and GD2
4,hD2

. According to Theorem 2, we need to first design

the orthogonal projection of the configuration of GD1
4,hD1

and GD2
4,hD2

. For G i
4,hi

consisting of

4 nodes, we need the θi satisfy:
4

∑
i=1

cos2 θi =
4
2

(21)

at the same time,
cos θ1 + cos θ2 + cos θ3 + cos θ4 = 0 (22)

In fact, when more than 4 platforms exist in the DG, the equations for minimum
GDOP are underdetermined, i.e., the solutions for Equations (21) and (22) are infinite. When
considering the field of view of the sensor, it is generally considered to have θ1 = θ2, θ3 = θ4.
So Equation (21) becomes:

4

∑
i=1

cos2 θi =
4
2
→ cos2 θ1 + cos2 θ2 = 1 (23)

with
cos θ1 + cos θ2 = cos θ3 + cos θ4 = 0 (24)

The solution for θi is θ1 = θ2 = π
4 , θ3 = cos θ4 = 3π

4 . Obviously, when there are
4 platforms with equal accuracy forming a detection configuration, if and only if the
configuration G4,2 is square with its center at the target point exactly, G4,2 ∈ O4,2, the GDOP
would obtain the theoretical minimum at the target.

Furthermore, the orthogonal projection of configuration of GD1
4,hD1

and GD2
4,hD2

should be

placed as shown in Figure 12. In this placement, the G8,3 =
q
∑
1

Gi
ni ,3

= G1
4,3 + G2

4,3 formed

by 2 DGs would make it possible that the GDOP or PDOP reaches a minimum at the tip of
the nested cone.

Large drones could carry heavier and more precise detection sensors, so making them
further away from the target would be a decent strategy. Set the height of DG with small
drones, and that for another group with large drones is h2. The condition for obtaining the
minimum PDOP is:

cos2 φ1 + cos2 φ2 =
2
3
⇒ h1

2

r1
2 + h1

2 +
h2

2

r22 + h22 =
2
3

(25)

where φ1 and φ2 represent the coning angle of G1
4,3 and G2

4,3. r1 and r2 are the radius of
two cones.
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In addition, if and only if 4 cos φ1 + 4 cos φ2 = 0, minimum GDOP could be obtained
at the tip of the detection configuration G8,3. However, it is impossible to meet φ ≥ π

2 in
the air–ground detection application. Under the limitation of the detection cut-off angle, no
configuration can satisfy the requirements of Theorem 2. Thus, we introduce the nonlinear
programming problems for minimization as below:{

min f (φ1, φ2) = cos φ1 + cos φ2
s.t. cos2 φ1 + cos2 φ2 = 2

3
(26)

Under the constraints of Equation (26), the value approximates a parabolic curve, as
shown in Figure 13. The value would reach its maximum when φ1 = φ2 ≈ 54.76◦ and
reach a minimum of 0.8165 when φ1 = 35.26◦, φ2 = 90◦. In this configuration, the PDOP
at the target point would obtain the theoretical minimum of 1.06 and the GDOP would
reach its practice minimum of 1.225, which increases by about 9.54% compared with the
theoretical minimum GDOP. Significantly, it is generally considered to maintain a cut-off
angle due to the need for drones to fly at a certain altitude. In practice, the cut-off angle
would be affected by multiple factors, so in this section, we ignore this problem and keep
φ1 = 35.26◦, φ2 = 90◦ as the parameter of the nested cone for further research.

As the parameters for the configuration are fixed, the orthogonal projection of the
placement of GD1

4,hD1
and GD2

4,hD2
is shown in Figure 14. In this figure, the relative angle β

between two DGs is much clearer.
According to Equations (5) and (6), the DOP at the target point located at the tip of the

cone would become fixed constants no matter how β between single cones changes. The
results are shown in Figure 15. On the contrary, GDOP/PDOP is more sensitive to changes
in relative angle on the plane near to the cone tip.

3.1.2. Design of Configuration for Minimum DOP on the Prior Target Region

In Section 3.1.1, we assume that the vertices of the nested cone formation are located
at the target, which has inaccurate prior position information in practical terms. As shown
in Figure 16, it is necessary to change the design specification of the optimal configuration
from the DOP at the cone tip to a weighted average DOP value oriented towards a region,
considering that DOP varies significantly in the plane far from the cone tip, which might
be influenced by more factors.

Generally, it is believed that the detection error of ground targets satisfies the Gaussian
distribution if the prior information is sufficiently reliable. It can be considered that the
actual position of the target to be detected should be distributed within a circle with a
certain radius centered on the target prior position, which we define as the target prior
region.
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Set the height for 2 DGs as h1 = 30 m and h2 = 20 m, then we obtain the distribution
map of the DOP value in the target prior region shown in Figure 17. The consensus has
been that the DOP will become lower as it approaches the cone tip. However, in the middle
of each distribution map, the distribution is quite similar, so it is hard to determine which β
could lead to a lower DOP.
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Figure 16. The inaccurate prior information causes the tip of the cone to not be at the target exactly.

In order to evaluate the accuracy of the target prior region, we apply differentiation to
divide the ground. In the process of satellite configuration design [33], the Earth’s surface
is divided into 5120 triangular units, and the average GDOP/PDOP is defined as the final
evaluation indicator as Equation (27).

E(GDOPground) =
n
∑

i=1
GDOP(pi)/n

E(PDOPground) =
n
∑

i=1
PDOP(pi)/n

(27)
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Figure 17. The distribution map of the DOP value: (a) β = 0 (b) β = 45◦ (c) β = 60◦.

GDOP(pi) and PDOP(pi) represents the GDOP/PDOP of the divided ground, which
is centered at the point pi. Employing the above method of differentiating the ground near
the target, the geoid can be approximated as a plane because the target prior region is much
smaller than the Earth’s surface. As shown in Figure 18, the target prior region could be
a planar circle with its radius Rmax = 10 m. The size of the radius reflects the confidence
level of prior information. Divide the plane circle into 200 concentric circles from the inside
out, keeping the difference ∆d in radius between adjacent concentric circles at 0.5 m, which
divides the area into 200 equally wide rings. Then we use an equilateral triangle with a
height of ∆d to fill the rings. According to the differentiation method above, we obtain:

ki =
2li√
3·∆d

+
2li−1√

3·∆d
= 4πRi√

3·∆d
+

4πRi−1√
3·∆d

k =
200
∑

i=1
ki ≈ 2175

(28)
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Taking the central DOP of an equilateral triangle as the DOP of the entire triangle,
then Equation (29) becomes:

E(GDOPground) =

20
∑

i=1

ki
∑

j=1
GDOP(pi,j)·Si,j

S

E(PDOPground) =

20
∑

i=1

ki
∑

j=1
PDOP(pi,j)·Si,j

S

(29)

where Si,j represents the area of the jth triangle on the ith ring, which is centered at pi,j, and
S is the total area of the prior target region.

According to Equation (29), we studied the variation of DOP in the prior target region
near the cone tip with the relative angle β. The PDOP and GDOP maintain the same trend
of change, and both reach their minimum at β = 45◦ with symmetric distribution, as shown
in Figure 19.
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Min_GDOP 1.32 1.57 2.68 14.43 2.48 3.38 
Min_PDOP 1.06 1.06 1.06 1.06 1.07 1.06 

Center_GDOP 1.32 1.57 2.87 32.25 2.58 3.75 
Center_PDOP 1.06 1.06 1.06 1.06 1.07 1.06 
(GDOP )groundE  1.34 1.57 2.80 24.06 2.55 3.63 

(PDOP )groundE  1.06 1.07 1.07 1.08 1.07 1.07 
Min_DOP represents the minimum value in the region. Center_DOP is the DOP at the target prior 
point. (DOP )groundE  is the average DOP in the region. 

The results obtained confirms two vital corollaries: 

1. The trend of changes in Min_DOP, Center_DOP and (DOP )groundE  with respect to 
the cone angle is consistent. 

2. When the coning angles vary from 0 to 2
π , the variation amplitude of PDOP is 

much smaller than that of GDOP. 
As mentioned, the average DOP value in the circular region centered on the ideal 

prior position of the target changes positively with the DOP at its center point. Therefore, 
the conditions for designing the optimal configuration for a single target are necessary 
conditions for obtaining the minimum average DOP on the target region. Now we have 
the optimal configuration to obtain minimum average DOP. The placements of all nodes 
in the DG are shown in Table 2 and in Figure 20. 

5 15 25 35 45 55 65 75 85
  (Deg)

1.0749

1.075

1.0751

1.0752
Average PDOP on the target area

 DG        with h=20m

5 15 25 35 45 55 65 75 85
  (Deg)

1.1232

1.1234

1.1236

1.1238

1.124
Average PDOP on the target area

 DG        with h=10m2

24, D
D
h 2

24, D
D
h

Figure 19. Variation of DOP in the prior target region near the cone tip with the relative angle β.
(a,b) Average GDOP on the target region. (c,d) Average PDOP on the target region.

Fix the parameter β = 45◦, we note that the GDOP and PDOP would change with the
change in the height of DG. The average DOP would reach a lower value when the height
or radius of the cone increases, which indicates that the average DOP will be influenced
by more parameters. For these reasons, more simulation experiments were conducted on
other combinations of cone angles with cos2 φ1 + cos2 φ2 = 2

3 , and the results are presented
in Table 1.
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Table 1. DOP at target point and the average DOP on the target prior region with different angle for
nested cone configuration.

φ1=35.26◦

φ2=90◦
φ1=37.08◦

φ2=79.99◦
φ1=45◦

φ2=65.91◦
φ1=53.76◦

φ2=55.54◦
φ1=40◦

φ2=65◦
φ1=50◦

φ2=65◦

Min_GDOP 1.32 1.57 2.68 14.43 2.48 3.38
Min_PDOP 1.06 1.06 1.06 1.06 1.07 1.06

Center_GDOP 1.32 1.57 2.87 32.25 2.58 3.75
Center_PDOP 1.06 1.06 1.06 1.06 1.07 1.06
E(GDOPground) 1.34 1.57 2.80 24.06 2.55 3.63
E(PDOPground) 1.06 1.07 1.07 1.08 1.07 1.07

Min_DOP represents the minimum value in the region. Center_DOP is the DOP at the target prior point.
E(DOPground) is the average DOP in the region.

The results obtained confirms two vital corollaries:

1. The trend of changes in Min_DOP, Center_DOP and E(DOPground) with respect to the
cone angle is consistent.

2. When the coning angles vary from 0 to π
2 , the variation amplitude of PDOP is much

smaller than that of GDOP.

As mentioned, the average DOP value in the circular region centered on the ideal
prior position of the target changes positively with the DOP at its center point. Therefore,
the conditions for designing the optimal configuration for a single target are necessary
conditions for obtaining the minimum average DOP on the target region. Now we have
the optimal configuration to obtain minimum average DOP. The placements of all nodes in
the DG are shown in Table 2 and in Figure 20.

Table 2. Locations of all nodes in the DG when forming the optimal configuration for minimum DOP.

DG 1 GD1
4,hD1

DG 2 GD2
4,hD2

Node 1 (h1 · tan φ1 · cos θ1,1 h1 · tan φ1 · sin θ1,1 h1) (h2 · tan φ2 · cos θ2,1 h2 · tan φ2 · sin θ2,1 h2)
Node 2 (h1 · tan φ1 · cos θ1,2 h1 · tan φ1 · sin θ1,2 h1) (h2 · tan φ2 · cos θ2,2 h2 · tan φ2 · sin θ2,2 h2)
Node 3 (h1 · tan φ1 · cos θ1,3 h1 · tan φ1 · sin θ1,3 h1) (h2 · tan φ2 · cos θ2,3 h2 · tan φ2 · sin θ2,3 h2)
Node 4 (h1 · tan φ1 · cos θ1,4 h1 · tan φ1 · sin θ1,4 h1) (h2 · tan φ2 · cos θ2,4 h2 · tan φ2 · sin θ2,4 h2)

θ1,1, θ1,2, θ1,3, θ1,4 and θ2,1, θ2,2, θ2,3, θ2,4 form an equal difference sequence separately with difference as 90◦.

In the optimal configuration designed, as shown in Figure 20, the minimum DOP at
the target point would be obtained, but the average DOP would be affected by the height
or radius of the cone configuration, as we mentioned in Figure 18. An extra group of
parameters reflecting the size of the cone, which could influence the average DOP in the
region, needs to be further researched. In fact, we have ri = hi · tan φi for each cone and
tan φi is a constant, i.e., ri and hi play the same role in reflecting the size of configuration.

The decrease in average DOP with the change in height is shown in Figure 21. In
this set of simulations, we fixed the height of one DG and changed another. The result
attributes that the enlargement for size of detection configuration benefits reducing the
average of both GDOP and PDOP, which is consistent with the results shown in Figure 18.
Specifically, when the radius of the configuration is smaller than the radius of the target
region, the impact brought by radius changes on the average DOP is more significant.
As the radius of the nested cone increases, the average DOP in the target region remains
monotonically decreasing. Whereas the decrease in the average DOP will be very slow
when the configuration reaches a huge size.
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Above all, we draw conclusions about the parameter design for the nested cone
configuration to obtain the average DOP in the target prior region. Because the trend of
point DOP and the average DOP with coning angle is consistent, there is no need to change
φi and θi for each cone when localization errors exist. The relative angle should maintain
45◦ to form the optimal configuration for the minimum of both point DOP and average
DOP in the region. In addition, the larger configuration would theoretically lead to a lower
average DOP, but the range between the detection node and the target should be considered
with the sensors’ performance in practice.

3.1.3. Design of Configuration for Minimum DOP with the Condition of Platforms’
Localization Error

In the research above, we create an optimal configuration for DGs to detect the
ground target without considering the position error of platforms in the groups, which
would invalidate the configuration and miss the minimum DOP. As shown in Figure 21,
the unmanned platforms in DGs may not be exactly at their ideal position as arranged
during the detection operation due to navigation errors. Considering the positioning error
introduced by its own positioning performance, the true positions of each detection node
will satisfy a Gaussian distribution centered on the ideal placed position.

If the drones leave their ideal arranged position, the accuracy of cooperative detection
would directly decline. However, the position error cannot be eliminated or neglected
in practice. To reduce the impact caught by position error, we carry out simulations
to quantificationally analyze how DOP could increase with different position errors of
platforms and study the relevant robustness of nest cone configurations.

In this section, we introduce the random positioning errors of each platform in the
detection group, as shown in Figure 22. With the errors added, we applied Monte Carlo
simulations 200 times repeatedly to calculate the point DOP and region DOP for each RMSE
of the positioning error. The mathematical expectations and variances of the simulation
with the same RMSE are shown in Figure 23.
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In Figure 23, lines representing the expectation clearly show that both the prior po-
sition DOP and the average DOP on the target prior area will increase with the increase
in positioning error of each detection node, which means the positioning error could dete-
riorate the detection accuracy severely. The sensitivity of GDOP to positioning errors is
roughly the same as that of PDOP. When the positioning error reaches 5 m, E(GDOPground)
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will increase by 9.5% and E(PDOPground) will also increase by 8%. The GDOP distribution
map of the target prior area is shown in Figure 24, with positioning RMSE = 1 m and
RMSE = 3 m, respectively. As for the variances of 200 results of DOP with the same RMSE,
the variance increases sharply with the increase in RMSE, which indicates that the detection
accuracy is likely to be extremely poor or even divergent when the positioning accuracy
of the detection platforms is low, which introduces great instability for the cooperative
detection effect of the entire unmanned swarm.

Drones 2024, 8, x FOR PEER REVIEW 23 of 35 
 

In this section, we introduce the random positioning errors of each platform in the 
detection group, as shown in Figure 22. With the errors added, we applied Monte Carlo 
simulations 200 times repeatedly to calculate the point DOP and region DOP for each 
RMSE of the positioning error. The mathematical expectations and variances of the simu-
lation with the same RMSE are shown in Figure 23. 

  
(a) (b) 

Figure 22. Location of detection nodes under random position errors in the experiments.The symbol 
“*” represents the nodes in 1

14, D

D
h and circles represent the nodes in 2

24, D
D
h . (a) Projection distribu-

tion on x-y plane. (b) 3D spatial distribution. 

 
(a) (b) 

x 

y 

x 

y 

z 

Drones 2024, 8, x FOR PEER REVIEW 24 of 35 
 

 
(c) (d) 

Figure 23. Expectations and variances of DOP at the target point the target prior area with height of 
2

24, D
D
h  being 10 m: (a) Average value of GDOP in simulations. (b) Average value of PDOP in simu-

lations. (c) Variance of GDOP in simulations. (d) Variance of PDOP in simulations. 

In Figure 23, lines representing the expectation clearly show that both the prior posi-
tion DOP and the average DOP on the target prior area will increase with the increase in 
positioning error of each detection node, which means the positioning error could deteri-
orate the detection accuracy severely. The sensitivity of GDOP to positioning errors is 
roughly the same as that of PDOP. When the positioning error reaches 5 m, 
(GDOP )groundE  will increase by 9.5% and (PDOP )groundE  will also increase by 8%. The 

GDOP distribution map of the target prior area is shown in Figure 24, with positioning 
RMSE = 1 m and RMSE = 3 m, respectively. As for the variances of 200 results of DOP with 
the same RMSE, the variance increases sharply with the increase in RMSE, which indicates 
that the detection accuracy is likely to be extremely poor or even divergent when the po-
sitioning accuracy of the detection platforms is low, which introduces great instability for 
the cooperative detection effect of the entire unmanned swarm. 

  
(a) (b) 

Figure 24. The GDOP distribution map of the target prior area. (a) RMSE = 1 m (b) RMSE = 3 m. 
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being 10 m: (a) Average value of GDOP in simulations. (b) Average value of PDOP in
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In detail, at the beginning of the lines representing the average, the result with a small
position disturbance is better than that without error. The reason can be explained in
Figure 25 and Equation (29). In Figure 25a, influenced by small disturbances, the optimal
configuration formed by the detection nodes is not severely disrupted but rather slightly
increases in size. According to the result obtained in Section 3.1.2, the magnification of size
would lead to a lower average DOP without considering the positioning error. Obviously,
the conclusion also suits the situation that the RMSE of the detection nodes’ position is
small. Another situation causing a lower average DOP is shown in Figure 25b. Without
destroying the form of optimal configuration, the center of the projected circle deviates
from the prior target point. In Equation (29), more DOP samples will be taken at the ring
with a larger radius, which leads to the incorrect statistical average DOP.
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Figure 25. Special cases for lower DOP caused by positioning error. (a) Radius increases without
destroying the cone. (b) The ideal cone shifts without being destroyed.

The results reflect that the configuration with a small size would suffer severe influence
from positioning errors. We enlarged one of the cones formed by GD2

4,hD2
with parameters

φ2 and θ2 for optimal configuration. We designed and carried out simulations repeatedly,
then plotted the result of the new configuration in Figure 26. Compared with Figure 24,
incorrect statistical values disappear, and the DOP curves ascend quite slowly with the
amplification of 2.1% for PDOP and 2.6% for GDOP when the RMSE is 5 m. In addition,
the variances of DOP significantly decrease, indicating that the larger configuration would
display stronger robustness against positioning errors of detection platforms.

The obvious conclusion obtained from the statistics of the Monte Carlo simulation
prove the deterioration of DOP is mainly caused by destroying the configuration formed by
DGs, reflecting the configuration designed based on Theorem 1, and Theorem 2 should be
the optimal configuration to obtain minimum DOP, not only at the point but also covering
the region. The result also shows clearly that the size of the detection configuration should
be as large as possible within the measuring range for sensors to resist the influence caused
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by positioning errors, which is a vital scheme to ensure detection accuracy. Another way
to deal with this problem is to improve the accuracy of localization of platforms in DGs,
which is the main target for the design of AGs in the swarm.
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3.2. The Design of Configuration for AG

Because the size of the anchor configuration would be much larger compared with
the anchors’ positioning errors, especially since all nodes G i

A,ni
are equipped with a high-

accuracy navigation system, we ignore the stochastic error of nodes’ locations in the
configuration design for AG. As mentioned above, the configuration design of AG is
independent, serving to improve the positioning accuracy of nodes in DGs within the same
swarm.

Two parameters should be determined in this step: The length of the equilateral
triangular configuration and the relative angle βA between AG and DGs. In this section,
we rechoose the parameters of nested cone configuration to be closer to reality: φ1 = 45◦

and φ2 = 65.91◦. The heights of GD1
4,hD1

and GD2
4,hD2

are fixed as 30 m and 20 m, respectively.

As set in Section 3.1, the GDOP cannot be calculated because the number of anchors is less
than 4, so we only apply the sum of PDOP of 8 nodes in DG as the revenue function. The
value of each PDOP at the detection node with increasing l is shown in Figures 27 and 28.
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Figure 28. PDOP on the platforms’ placement in DG 2.

In the figures, the PDOP at each placement for the detection node is not monotonically
decreasing with the expansion of AG configuration. Two special positions must be noted:
One is the inflection point marked as xg

i . When li = xg
i , the sum of PDOP within one DG

would reach its minimum. We mark another point worth focusing on as xk
i , which satisfies

dDOPi(l)
dl l=xk

i
= 1. When li < xk

i , the curve of PDOP is sharply decreased, whereas when

li > xk
i , the decline with increasing l is slow.

By comparing Figures 27 and 28, it can be concluded that xk
i is related to the coning

angle φ and radius r of the cone configuration of the DG. If the radius of the coning angle
becomes larger, the value of xk

i will be higher. Similarly, xg
i would also be affected by

the 2 parameters mentioned, and the larger the radius is, the bigger xg
i will be as well.
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The difference is that the influence of the change in coning angle is contrary, i.e., we will
obtain a smaller xg

i in a cone with a larger φ. In Figure 29, we plot xk
i and xg

i with different
parameters on one number axis to visually present the conclusion.
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Figure 29. The position of xk
i and xg

i in different cones on the number axis.

Furthermore, by zooming in parts of the curves in Figures 27 and 28, the PDOP
of different nodes in one group varies more slightly with li becoming longer, which is
demonstrated by the variance statistics in Figure 30. Although the variance is not vital for
the accuracy of the localization for detection nodes, maintaining consistent positioning
accuracy for all nodes within one group would benefit the control of drones in practice and
better suit the assumption of homogeneous DG we set.
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Figure 30. Variance of PDOP on the location of platforms in the group.

Similar to the design of the detection configuration, in addition to determining the
size of the anchor configuration, it is also necessary to determine the relative angle β, which
is shown in Figure 31. The determination of relative angle can refer to the conclusion in
Section 3.1.2, which is related to the properties of rotationally symmetric images.

Applying the design of detection configuration in Section 3.1, we note that the detec-
tion configuration and anchor configuration are both central symmetry figures. The new
figure combined by 2 configurations would coincide with the β rotating per π

6 . Define β = 0
when the triangle’s median coincides with the square’s diagonal. Setting equal positioning
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weights for all detection nodes, we obtain the objective function as Equation (30). The value
of this function with the rotation of β is shown in Figure 32.

max(DOPnode) = max(
q
∑

j=1

(
αj ·

ni
∑

i=1
DOPnode_i

)
)

αj =
1
q , j = 1, 2 . . . q

(30)Drones 2024, 8, x FOR PEER REVIEW 29 of 35 
 

  
Figure 31. The relationship between the AG and DGs. 

Applying the design of detection configuration in Section 3.1, we note that the detec-
tion configuration and anchor configuration are both central symmetry figures. The new 
figure combined by 2 configurations would coincide with the β  rotating per 6

π . De-

fine 0β =   when the triangle’s median coincides with the square’s diagonal. Setting 
equal positioning weights for all detection nodes, we obtain the objective function as 
Equation (30). The value of this function with the rotation of β  is shown in Figure 32. 

( ) _
1 1

max DOP max( DOP )

1 , 1,2.....

inq

node j node i
j i

j j q
q

α

α

= =

 
= ⋅ 

 

= =

 
 (30)

 
Figure 32. The sum of PDOP at all platforms’ placements in the swarm. 

β

UAV in 

Drones in 

Drones in 

3
A

1

14, D
D
h

2

24, D
D
h

0

0.3
14

2

0.6
28

3

0.9
42

5

1.2
56

6

1.5
70

8

1.8
85

0

2.1
99

1

2.5
13

3

2.8
27

4

3.1
41

6

3.4
55

8

3.7
69

9

4.0
84

1

4.3
98

2

4.7
12

4

5.0
26

5

5.3
40

7

5.6
54

9

5.9
69

0

6.2
83

2

  (Deg)

16.8976

16.8978

16.898

16.8982

16.8984

16.8986

16.8988

16.899
PDOP of all platforms in the swarm

Sum of the PDOP

Figure 31. The relationship between the AG and DGs.

Drones 2024, 8, x FOR PEER REVIEW 29 of 35 
 

  
Figure 31. The relationship between the AG and DGs. 

Applying the design of detection configuration in Section 3.1, we note that the detec-
tion configuration and anchor configuration are both central symmetry figures. The new 
figure combined by 2 configurations would coincide with the β  rotating per 6

π . De-

fine 0β =   when the triangle’s median coincides with the square’s diagonal. Setting 
equal positioning weights for all detection nodes, we obtain the objective function as 
Equation (30). The value of this function with the rotation of β  is shown in Figure 32. 

( ) _
1 1

max DOP max( DOP )

1 , 1,2.....

inq

node j node i
j i

j j q
q

α

α

= =

 
= ⋅ 

 

= =

 
 (30)

 
Figure 32. The sum of PDOP at all platforms’ placements in the swarm. 

β

UAV in 

Drones in 

Drones in 

3
A

1

14, D
D
h

2

24, D
D
h

0

0.3
14

2

0.6
28

3

0.9
42

5

1.2
56

6

1.5
70

8

1.8
85

0

2.1
99

1

2.5
13

3

2.8
27

4

3.1
41

6

3.4
55

8

3.7
69

9

4.0
84

1

4.3
98

2

4.7
12

4

5.0
26

5

5.3
40

7

5.6
54

9

5.9
69

0

6.2
83

2

  (Deg)

16.8976

16.8978

16.898

16.8982

16.8984

16.8986

16.8988

16.899
PDOP of all platforms in the swarm

Sum of the PDOP

Figure 32. The sum of PDOP at all platforms’ placements in the swarm.

The curve in Figure 32 reflects that the sum of PDOP varies periodically with a period
as π

6 , which is consistent with the geometric characteristics of the swarm configuration.
The objective function would reach its minimum when β = π

4 + k · π
6 , k = 0, 1, 2, . . . , 11.

We noticed that the objective function includes DOPs of all nodes in 2 DGs with
different configurations. In fact, for a single DG, the condition for obtaining the minimum
sum of DOPs is the same as the conclusion mentioned. When the axis of the regular triangle
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coincides with the diagonal of the square, the minimum sum of DOPs at all detection
nodes within the group is obtained. As shown in Figures 33 and 34, the minimum sum of
DOPs for DG1 and DG2 would be obtained when β = π

4 + k · π
6 , k = 0, 1, 2, . . . , 11 and

β = k · π
6 , k = 0, 1, 2, . . . , 11, respectively.
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Comparing Figure 32 with Figures 33 and 34, it is not difficult to find that the change
trend of the objection function is quasi-synchronous with the sum of PDOPs of nodes in
DG2 due to the greater amplitude of the change in the sum value of DG2 than that of DG1.
This phenomenon indicates that if β is not the optimal value as designed, the sum PDOP of
the group would be more influenced.

In conclusion, we find the best relative angle β to make the AG localize all nodes
in DGs with the best accuracy. The best l for optimal configuration can also be found
according to the curves. In fact, PDOPs vary extremely sightly when the l is bigger than
xk

i or close to xg
i , which provides minor influence on the accuracy of the localization to

detection nodes. For this reason, we trust any li ∈
(

xk
i , xg

i

)
would be a decent parameter if

l = xg
i is hard to realize for ground vehicles when facing complex environments.
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3.3. Comparison between Designed Optimal Configuration and Random Placement

In this subsection, we calculate the PDOP of one set of swarms equipped with different
sensors for detection. In the simulation, the RMSE of localization of nodes in DGs is set at 3
m without cooperative navigation, and the range error of nodes in AG is 1 m. We selected
the results obtained by our method and random placement to carry out the comparative
experiment, in which we considered the positioning error of detection UAVs and conducted
100 Monte Carlo simulations. By comparing their DOP at the target point, we determine
the performances of different configurations.

The swarm consists of 6 UAVs and 3 UGVs. The placement of six nodes based on the
different methods is presented in Table 3. As the design based on the method proposed
in this paper, we divide 6 UAVs into 2 groups at different heights. As comparisons, one
random configuration places detection nodes in 2 heights as well, and another just places
all nodes in one height. In Figure 35, we show the average DOP on the circular region
with a radius of 5 m on the ground. From the result, we can see both GDOP and PDOP
meet a lower value, which means the relevant configuration could lead to better detection
accuracy. The boxplots show the statistical data of all simulations, which we could use
to analyze the robustness of different configurations for DOP. Obviously, the nested cone
configuration performs better. However, when facing positioning errors, the GDOP would
be affected much more than the PDOP.
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Table 3. Placements of nodes in DG in the swarm.

Detection
Nodes

Random Formation Random Formation
in 2 Heights Nested Method

x/m y/m z/m x/m y/m z/m x/m y/m z/m

UAV1 5 −31 30 −10 −28 0 31.63 31.63 20
UAV2 42 35 30 22 15 0 −31.63 31.63 20
UAV3 −62 13 30 −2 −5 0 −31.63 −31.63 20
UAV4 −55 54 30 −7 25 0 31.63 −31.63 20
UAV5 12 −27 30 27 11 0 30.00 0 30
UAV6 15 −32 30 −12 −21 60 0 30.00 30
UAV7 32 15 30 15 21 60 −30.00 0 30
UAV8 −12 27 30 −21 −1 60 0 −30.00 30

As for the fixed optimal configurations for DGs, we compare the average DOP after
adding AG with optimal placement and without AG in Figure 36. By adding UGVs as
anchors, the average PDOP and GDOP on the prior region decreased by 9.1% and 1.1%,
respectively. In fact, the AG would perform a more vital role when the localization errors
of detection nodes rise up by more than 3 m, as we have set now.
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4. Conclusions

This article proposes a design method for the optimal detection configuration of a
heterogeneous swarm based on the nested cone configuration. Considering positioning
errors at detection nodes and the prior information of the target, we conduct a large number
of simulation experiments to determine the parameters for the configuration of a swarm
to obtain the minimum DOP. Besides the optimal conditions, the threshold for the design
of configuration parameters was also discussed and given as recommendations. This
is because, in complex engineering practice, the placement of nodes is often interfered
with by more factors, such as the performance of unmanned platforms and airborne
sensors, mission requirements, including obstacle limitations, terrain factors, and mission
requirements. Therefore, we strive to provide an informative suggestion through the
experiments in the paper in order to make appropriate adjustments to the theoretical
optimal configuration based on the specific situations in practical applications.

Oriented to the heterogeneous swarm, the design of an optimal detection configuration
based on the nested cone has the following advantages:

1. The process of grouping is more intuitive, suiting the working characteristics of
heterogeneous swarms much better.
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2. The modeling of different groups distributed in different cones is independent of each
other, making it easy to add constraints to specific groups based on specific tasks or
establish conditional functions when facing more complex optimization problems.

3. The calculation of DOP is simple and fast, which improves the speed of optimal
design.

In summary, the design method in this article not only leverages the advantages
of heterogeneous swarms but also has a fast optimization speed and good applicability.
However, some questions remain unsettled:

1. The calculation of DOP requires the noise of airborne sensors to be independent white
noise, but the noise characteristics of sensors such as LiDAR and airborne radar do
not strictly satisfy this requirement.

2. The design of the nested cone configuration relies on prior position information about
the target.

3. The design of this formation only focuses on the optimal DOP, which is the detection
accuracy requirement, without considering detection coverage, efficiency, and other
indicators.

In addition, the article utilizes sufficient experimental evidence to prove that the new
configuration remains optimal after superposing different groups with optimal configura-
tions. There is indeed a lack of strict mathematical proof in the design of certain parameters,
which is also a major challenge for nested cone models in transitioning from the optimal
design for a single point to the optimal design for a region.

When it comes to piratical engineering, the designed method based on nested cones
has an advantage in convergent speed and stability compared with other methods facing
convex optimization problems. Different from the sensor placement, the arrangement of all
nodes relies on the instant communication system because the nodes are all movable, which
requires more research to avoid or reduce the effect brought by communication latency.

Overall, the cone nested configuration for minimum DOP is a suitable design solution
for heterogeneous swarm detection. In future work, proving the problem using strict
mathematical proof would be a major focus. In addition, combining other optimization
algorithm ideas or flexibly combining deep neural networks to design the parameters of
the formation will make the nested cone formation more widely applicable and achieve
better design effects.
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