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Abstract: Significant progress has been made in object tracking tasks thanks to the application
of deep learning. However, current deep neural network-based object tracking methods often
rely on stacking sub-modules and introducing complex structures to improve tracking accuracy.
Unfortunately, these approaches are inefficient and limit the feasibility of deploying efficient trackers
on drone AI devices. To address these challenges, this paper introduces ConcatTrk, a high-speed
object tracking method designed specifically for drone AI devices. ConcatTrk utilizes a lightweight
network architecture, enabling real-time tracking on edge devices. Specifically, the proposed method
primarily uses the concatenation operation to construct its core tracking steps, including multi-
scale feature fusion, intra-frame feature matching, and dynamic template updating, which aim to
reduce the computational overhead of the tracker. To ensure tracking performance in UAV tracking
scenarios, ConcatTrk implements a learnable feature matching operator along with a simple and
efficient template constraint branch, which enables accurate tracking by discriminatively matching
features and incorporating periodic template updates. Results of comprehensive experiments on
popular benchmarks, including UAV123, OTB100, and LaSOT, show that ConcatTrk has achieved
promising accuracy and attained a tracking speed of 41 FPS on an edge AI device, Nvidia AGX Xavier.
ConcatTrk runs 8× faster than the SOTA tracker TransT while using 4.9× fewer FLOPs. Real-world
tests on the drone platform have strongly validated its practicability, including real-time tracking
speed, reliable accuracy, and low power consumption.

Keywords: object tracking; UAV tracking; edge AI devices

1. Introduction

Visual object tracking aims to continuously estimate the location or trajectory of a
specific object of interest in a video sequence. It plays a pivotal role in environmental
perception and finds widespread application in domains such as unmanned aerial vehi-
cles (UAVs) [1–8], robotics [9–11], autonomous driving [12,13], and various related areas.
Consequently, visual object tracking has emerged as a highly investigated research field,
drawing substantial attention from the academic community. With the development of
deep learning, significant progress has been made in improving the accuracy and robust-
ness of object tracking methods, enabling them to effectively handle various categories
of target appearances and environmental changes. However, the complexity due to the
multilayer architecture and high computational cost makes it challenging to deploy effi-
cient visual object tracking methods on drone AI devices with limited power supply and
computational resources.

Recently, deep-learning-based trackers [14–20] have demonstrated the advantages of
tracking efficiency. Nevertheless, trackers employing stacked submodules [16,21] and com-
plex structures [19,20,22] prove to be inefficient for edge AI devices, leading to increased
power consumption. In addition, widely employed cross-correlation methods [14,15,23]
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exhibit limitations in terms of tracking accuracy and robustness, which makes it challenging
to fulfill the requirements of UAV tracking. Finally, UAV tracking poses challenges due to
high-speed motion, including target feature changes and blurring, which emphasize the im-
portance of efficient tracking and capturing of target feature changes. Unfortunately, most
current methods only consider feature matching within a single frame and do not account
for dynamic adjustments to the tracking template. Although some methods introduce
dynamic template updating [24–26], they often fail to ensure efficient tracking. In summary,
the urgent problem that needs to be addressed is how to achieve reliable tracking accuracy
with low power consumption and computational cost.

To address these challenges, in this paper, we present a lightweight Siamese tracker,
termed ConcatTrk. The primary advantage of ConcatTrk is its ability to perform real-
time tracking on drone AI devices without significant accuracy reduction, which is not
achievable with extant tracking networks. The network contains three key components:
the multi-scale feature fusion module, the learnable feature matching module, and the
template-constraint branch. The multi-scale feature fusion module is utilized to concatenate
and reduce the dimensionality of feature maps from different convolution levels, which
aims to obtain a fused feature vector with multi-scale features characterizing the target.
Additionally, the learnable feature matching module takes dynamically updated target
feature vectors and search region features as inputs and produces a response map with
attention via a concatenation operation, enabling single-frame feature matching within the
module. Furthermore, the template-constraint branch periodically updates high-quality
target features into the tracking features by concatenation, thus enhancing the tracking
model’s accuracy with minimal computational overhead.

The construction of ConcatTrk highlights the utilization of concatenation as the funda-
mental step for achieving multi-scale feature fusion, intra-frame feature matching, and dy-
namic template updating. Our motivation for adopting this approach is twofold. First, it
aims to reduce the computational overhead in the feature fusion process. Second, it strives
to overcome the limitation associated with commonly used cross-correlation methods.
This limitation pertains to their inability to effectively learn the sample distribution from
the training data. As a result, ConcatTrk is able to retain robust performance in complex
scenarios, as shown in Figure 1.

Figure 1. Visualized comparison of the effect of template-constraint branch (Diving from OTB100
dataset). The upper and lower rows show the tracking results with and without the template-
constraint branch, respectively. Benefiting from the dynamic capture of feature changes, ConcatTrk is
able to track accurately when the target appearance changes radically.

To evaluate the performance of our proposed ConcatTrk, extensive experiments are
conducted on three benchmark datasets, namely UAV123 [27], OTB100 [28], and LaSOT [29].
Our tracker demonstrated competitive accuracy on all the datasets while maintaining a
real-time tracking speed of 41 FPS on the edge AI device Nvidia AGX Xavier.

The main contributions of this work are as follows:

1. We transfer and improve a learnable feature matching module, which performs
the feature matching task more discriminatively than the non-parametric cross-
correlation method.
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2. We propose a simple and effective template-constraint branch for dynamically cap-
turing feature changes of a target and set up a filtering strategy to prevent invalid
features from contaminating the tracking template.

3. We design a lightweight tracker, ConcatTrk, with an end-to-end and cost-effective struc-
ture that performs a balance between tracking speed and accuracy on three benchmarks.

4. We deploy and evaluate ConcatTrk on a drone platform under real-world condi-
tions, showing strong tracking capabilities in challenging scenarios as well as low
power consumption.

2. Related Work
2.1. Siamese Tracking

The Siamese neural network (SNN) is a type of architecture consisting of two arti-
ficial neural networks. These networks share weights and take in two samples as input,
outputting their representations embedded in a high-dimensional space for comparing
their similarities. SNNs have become popular in object tracking due to their ability to
embed two samples in the same feature space. SNN structure is simple yet flexible, and re-
searchers have made significant improvements and achieved remarkable progress on this
architecture. These advancements include methods such as multi-scale feature fusion and
feature matching.

Multi-scale feature fusion is a commonly used approach for extracting target features
in object tracking, utilized in methods such as SiamRPN++ [16], SiamCAR [30], C-RPN [21],
PGNet [31], etc. It benefits from intermediate features with final features as the represen-
tation of input images and obtains different levels of target features through multi-scale
feature fusion operations. This approach leverages the small perceptual field and strong ge-
ometric detail feature representation of low-level networks. For instance, SiamRPN++ [16]
extracts multi-level intermediate features from the backbone network and feeds them into
three separate SiamRPN [15] modules for independent position prediction. The predictions
from different levels are then aggregated through a fusion operation. Similarly, Siam-
CAR [30] employs a similar feature extraction strategy and performs multi-scale position
prediction through cross-correlation operations. TCNN [32] adopts a tree-based structure to
organize multiple distinct convolutional networks and performs online updates to represent
different target appearance features separately. However, UAV tracking scenarios, the com-
putational overhead introduced by stacking sub-modules, and repeated cross-correlation
operations can be problematic for edge devices with limited computational resources.

In terms of feature matching operations, SiamFC [14] introduces the naive cross-
correlation approach, which convolves the template features with the search region features,
ultimately outputting a response map representing the potential presence of the target with
a single-channel representation. As different object categories are activated in different
channels of the feature map, SiamRPN++ [16] proposes deep cross-correlation, which
performs convolution operations along the channel dimension, aiming to learn more
discriminative response maps. Alpha-refine [23] introduced pixel-wise cross-correlation,
convolving each pixel feature vector of the template features individually with the search
features. Subsequently, pixel-to-global correlation and saliency-associated correlation are
also proposed in PGNet [31] and SAOT [33], respectively. Nevertheless, such methods
are essentially convolutional operations, which are less capable of learning discriminative
features from the training data and maintaining robustness in challenging scenarios.

Differently, in this paper, the proposed multi-scale feature fusion module and learnable
feature matching module can compensate for the drawbacks noted above and attain a
trade-off between accuracy and speed.

2.2. Temporal Information Exploitation

The input of deep trackers is a sequence of consecutive image frames, and, therefore,
the temporal dimension should not be overlooked when designing a tracker. The temporal
information enables the tracker to better adapt to variations in target features over time.
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Unfortunately, most current trackers only perceive the tracking task as feature matching
within a single-frame image, disregarding the temporal information, such as OCEAN [34]
and HIFT [35].

There are also trackers dedicated to capturing the temporal changes in target features
continuously to obtain an accurate representation of the target’s current appearance in the
search template features. For example, GCT [26] introduces graph neural networks to incor-
porate spatial–temporal features to handle feature variations in the target. UpdateNet [24]
utilizes a template update subnet to adaptively fuse the latest target features in a nonlinear
manner. GradNet [25] aims to exploit gradient information related to target changes to
obtain an optimal representation of target features. Moreover, ATOM [36] utilizes recurrent
neural networks (RNN) to model the temporal changes in target features.

Nevertheless, these methods suffer from high computational consumption as well as
the inability to address the feature contamination introduced by deformation, occlusion,
and other cases. Different from the previous work, this paper proposed a simple and
effective template-constraint branch, which is used to extract the target features at the
temporal level and set a filtering strategy to filter the contaminated target features. It is
able to improve the tracking accuracy of the tracker with a small computational overhead.

3. Proposed Methods

Now we introduce ConcatTrk Network in detail. In the tracking process, the input
consists of a sequence of continuous images denoted as I, with a total length of N. The initial
target bounding box, denoted as y0, is provided in the first image I0. The initial template
region Z0 and the search region X0 can be obtained by performing a cropping operation.
The tracker then predicts the possible location yi of the target in the subsequent images.
Figure 2 illustrates the decomposition of the network structure into four subcomponents:
the multi-scale feature fusion module, the learnable feature matching module, the predict
head, and the template-constraint branch.

MobileNetV2

MobileNetV2

Classification Branch

Regression Branch

Template-constrained branch

Template Region  

Search Region X

Result BBox     

Multi-Scale Feature 

Fusion Module
Predict Head

Concatenation

Concatenation TransposeConv

Template Feature φ( )

Search Feature φ(X)

TransposeConv

Learnable Feature

Match Module Response Map

with Attention R*

Classification Map   

Regression Map  R

Figure 2. Overview of the ConcatTrk network architecture. Starting from the left, the network
contains a multi-scale feature fusion module, a learnable feature matching module, a predict head,
and a template-constraint branch.

3.1. Multi-Scale Feature Fusion Module

Because low-level features have small perceptual fields and excellent detailed feature
representation, whereas high-level features retain more semantic information, the fusion of
different levels of depth features is an effective way to improve feature representation. There
have also been a number of multi-scale feature fusion methods (e.g., FPN networks [37],
HRNet networks [38], etc.) but they occupy relatively excessive computational resources.
The proposed multi-scale feature fusion module is based on the concept of “fusion before
matching”. Features from different convolution layers are first concatenated and dimen-
sionally reduced to generate fused features, which are then input into the learnable feature
matching module. This approach avoids redundant computations in the “matching first”
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methods (such as SiamRPN++ [16], SiamBAN [18]), thereby improving tracking speed. The
workflow of our multi-scale feature fusion module is shown in Figure 3.

ConcatTrk sets up a pair of parallel convolutional networks as feature extractors for
the input images. It contains two branches: a branch for extracting the features of the search
region, which takes the search region X as input, and another branch for extracting the
template features, which takes the template region Z as input. Both branches consist of a
fully convolutional backbone network with shared weights, whose processing is denoted
by ϕ(·). They output the feature maps ϕ(X) and ϕ(Z) about the search region and the
template region, respectively.

MobileNetV2

Conv3 Feature ℱ3 Conv5 Feature ℱ5 Conv7 Feature ℱ7

Concat Concat

⨁ ⨁
TransposeConv

Search Feature φ 𝑋

31 × 31 × 25631 × 31 × 25631 × 31 × 25631 × 31 × 256

Figure 3. Workflow of multi-scale feature fusion module.

To facilitate the deployment of tracker on edge devices with limited resources, the mod-
ified MobileNetV2 [39] is selected as the backbone network for ConcatTrk. The convolution
parameters of the backbone network are adjusted to ensure that the intermediate feature
maps from different levels possess the same spatial dimensions. Within ConcatTrk, the ex-
traction of intermediate features is focused on convolution layers 3, 5, and 7 of the backbone.
These layers are denoted as F3(·), F5(·), and F7(·), respectively.

Taking the search branch as an example, the three intermediate feature maps F3(X),
F5(X), and F7(X) are first concatenated in the channel dimension, as written in Equation (1).

F3,5,7(X) = concat(F3(X),F5(X),F7(X)) (1)

The shape of the F3,5,7(X) is 31× 31× 768, and then it is inputted to the transposed
convolution blocks for dimensionality reduction to obtain the multi-scale feature map ϕ(X),
and the final shape of ϕ(X) is 31× 31× 256, which is shown in Equation (2).

ϕ(X) = TransConv(F3,5,7(X)) (2)

3.2. Learnable Feature Matching Module

Correlation-type methods have demonstrated surprising capability, serving as a popu-
lar feature matching module in Siamese trackers. However, these methods are essentially
convolutional operations to calculate the similarity score between the template and the
search region, which are simple non-parametric processes. This leads to the inability of
correlation-type methods to learn the sample distribution from the training data and further
results in the loss of semantic information and degradation of tracking accuracy.

To remedy this drawback, we migrate and improve a concatenation-based matching
operator as our learnable feature matching module, noted in AutoMatch [40]. The in-
troduction of the learnable feature matching module does not significantly increase the
computational cost, but it is more discriminative. It contains an embedding module,
a feature response module, and an attention module, as shown in Figure 4.
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Template Feature φ 𝑍
15 × 15 × 256

Search Feature φ 𝑋
31 × 31 × 256

Response Map 𝑅
31 × 31 × 512

Template Feature Vector 𝑓 𝑍
1 × 1 × 256

Response Map with attention 𝑅∗

31 × 31 × 256

Embedding

Module

Concatenation
Conv &
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Figure 4. Workflow of the learnable feature matching module.

For an intuitive description, we do not consider the work process of template-constraint
branching at this time. First, the feature map ϕ(Z) from the template branch is input to the
embedding module, which consists of several convolution blocks; ϕ(Z) is embedded as
a 1× 1× 256 feature vector f (Z). Then, f (Z) is concatenated into each element of ϕ(X)
along the channel dimension and input to the feature response module to calculate the
response mapR. The concatenation and feature response operations are denoted by the
symbol ? in Equation (3).

R = f (Z) ? ϕ(X) (3)

When the template-constraint branch is working, the template feature vector f (Z) will
fuse the temporal information characterizing the latest appearance of the target into the
feature vector f t(Z) according to the tracking results of the previous frames. Therefore,
Equation (3) can be rewritten as Equation (4). The details about the template-constraint
branch are elaborated in Section 3.4.

R = f t(Z) ? ϕ(X) (4)

Importantly, the response mapR lacks spatial and channel attention. To address this
limitation, an attention module is employed to activate attention within R. Specifically,
the non-local layer [41] is utilized to capture intra-frame attention, whereas the SEMod-
ule [42] is leveraged to capture inter-channel attention. The resulting response map with
attention is denoted asR∗.

3.3. Predict Head

The predict head computes the categories directly for each location (i, j) in R∗ and
regresses to the target bounding box via an end-to-end approach. It is implemented by a
fully convolutional network, which is able to avoid tricky parameter tuning and reduce
human intervention.

This module can be decomposed into two subbranches: the branch that computes
the fore-background classification and the branch that regresses the target bounding box.
The input of the predict head is the response mapR∗ from the learnable feature matching
module. The classification branch outputs a classification mapMC with two channels,
where each position (i, j) represents the probability that the search area characterized by that
position is the fore-background. The regression branch outputs a regression mapMR with
four channels, where each position (i, j) represents a 4D vector (l, t, r, b), representing the
distance from the left, top, right, and bottom border of the target bounding box respectively.

Since this module contains both the classification task and the regression task, it is
critical to calculate the classification loss and the regression loss separately according to
their respective outputs. Consequently, the classification task is addressed using the cross-
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entropy loss, whereas the regression task is handled using the IoU loss. Thus, the total loss
function of the whole network is

L = Lcls + Lreg (5)

3.4. Template-Constraint Branch

The template-constraint branch is deployed as an additional module of the network in
tracking post-processing, which is used to capture and fuse the high-dimensional feature
representation of the target appearance that changes in the temporal order via concatenation.
The proposed template-constraint branch is simple yet effective, involving no complex
gradient iterations or deeper network architecture. It filters out contaminated template
images based on cosine similarity and updates high-quality template features online via
concatenation. The experimental results in Section 4.3.2 demonstrate that this branch only
slightly reduces tracking speed while delivering significant improvements in accuracy.

The template-constraint branch accepts the tracking result yi and the ith image Ii as
its input. It first obtains the resultant region resulti of the current frame by crop operation
and then performs the similarity discrimination. If the cosine similarity between resulti
and the initial search region Z is in the threshold interval [a, b], the multi-scale fused feature
vector f (resulti) will be concatenated with the current tracking template vector in the
channel dimension, inputted into the convolution module for dimensionality reduction,
and finally get the template feature vector f t(Z) fused with the temporal dimensionality
information. The value of f t(Z) will be updated periodically and will participate in the
prediction of the tracking network during the next threshold interval. The operation logic
of the branch is formalized in Equation (6).

f t(Z) =

{
TransConv(cat( f t(Z), f (resulti))), cossimilar(resulti, Z) ∈ [a, b]
f t(Z), otherwise

(6)

In particular, in the initial frame since the template constraint branch has not yet been
run, both ft(Z) and f (Z) represent meanings of the multi-scale feature vectors of the initial
target position.

The motivation for setting the threshold interval is to exclude undesirable cases of
minor changes and contamination of the target appearance features. In order to ensure
operational efficiency, the temporal constraint branch runs only after a fixed interval ξ.
The threshold interval [a, b] and update interval ξ are specified as hyperparameters and fur-
ther optimized by a hyperparameter search strategy in the fine-tuning phase after training.

4. Results and Comparison
4.1. Implementation and Training Details

ConcatTrk is implemented in PyTorch with Intel i9-9900X, 32G RAM, and Nvidia
RTX 3090 as the hardware environment for the training phase. The whole network is
trained on ImageNet VID and COCO datasets based on an end-to-end training approach.
The template image size is 127× 127 pixels, and the search image size is 255× 255 pixels.
In particular, the ground-truth classification label during the training phase is consistent
with SiamBAN [18].

The backbone network of the ConcatTrk is MobileNetv2 [39], which is pre-trained
on the ImageNet dataset. The training strategy of the whole network is SGD strategy,
the batchsize is set to 32, the whole training process contains 20 epochs, the learning rate
warming up strategy is used in the first 5 epochs to increase the learning rate from 0.001
to 0.005, and, in the last 15 epochs, the learning rate is continuously reduced to 0.00005,
weight decay is set to 0.0001, and momentum is 0.9.



Drones 2023, 7, 592 8 of 18

4.2. Results and Comparison

To evaluate ConcatTrk in detail, comparison experiments are performed on three
popular benchmarks, including OTB100 [28], UAV123 [27], and LaSOT [29]. Multiple scenes
along with the tracked target are presented in Figure 5, which serves as evidence that the
experiments on the three benchmarks validate the robustness of the tracker. ConcatTrk is
comprehensively compared with 18 other outstanding trackers, including SiamRN [43],
TransT [20], SiamBAN [18], SiamFC++ [44], SiamRPN++ [16], GradNet [25], etc.

(a)

(b)

(c)

Figure 5. Examples of diverse tracking scenes and tracked targets from the test benchmark. The three
subfigures (a–c) are selected from the UAV123, OTB100, and LaSOT datasets, respectively.

4.2.1. Evaluation Metrics

In the evaluation, we employed one pass evaluation (OPE) metrics to assess the success
score and precision score of the tracker on the test dataset. OPE initializes the first frame of
the test video sequence based on the ground truth bounding box and does not intervene in
the subsequent tracking process, even in cases of target loss. The calculation details for the
success score and precision score are described below.

The success score measures the accuracy of target localization by comparing the
intersection over union (IoU) between the predicted bounding box ŷi and the ground truth
bounding box yi. It is calculated as the ratio of the intersection area between ŷi and yi to
the union area. Specifically, for a given threshold T ∈ [0, 1] and a test set consisting of N
images, if the IoU of the bounding box in the ith frame exceeds T, the frame is considered
a success; otherwise, it is considered a failure. By plotting the curve of the proportion of
successful frames in the test set against the threshold T and calculating the area under
the curve (AUC), the success score can be obtained. This process can be expressed as
Equation (7).

SuccScore =
∫ 1

0

1
N

N

∑
i=1

µ(
ŷi ∩ yi

ŷi ∪ yi
− T)dT (7)
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The function µ(·) represents the step function used to filter the successfully tracked
image frames, which can be expressed as Equation (8).

µ(t) =

{
1 , t > 0
0 , otherwise

(8)

The success score serves as a quantitative measure of the tracker’s ability to accu-
rately localize the target throughout the sequence. The curve provides insights into the
tracker’s performance across a range of IoU thresholds, allowing us to assess its robust-
ness and sensitivity to different levels of overlap between the predicted and ground truth
bounding boxes.

The calculation method of the precision score is similar to that of the success score,
with the difference being that the precision score is computed based on the center location
error (CLE) between ŷi and yi in the ith frame.

4.2.2. Results of Tracking Speed

In order to evaluate speed performance on edge devices fairly, all trackers are deployed
on the edge computing platform Nvidia AGX Xavier and tested on the UAV123 dataset.
NVIDIA AGX Xavier is a high-performance system-on-a-chip (SoC) designed specifically
for AI applications, offering a range of capabilities. With power consumption ranging from
10 W to 30 W and computational power reaching up to 32TOPS, it delivers exceptional
performance. This makes it well-suited for deployment in diverse edge devices that demand
efficient execution of AI applications, including autonomous vehicles, robots, and drones.
AGX Xavier’s wide-ranging applications in these domains highlight its significance in
enabling advanced AI-driven functionalities in such edge devices.

Table 1 summarizes the performance of SOTA trackers. We compared the success score,
precision score, tracking speed (FPS), and FLOPs. ConcatTrk is able to obtain competitive
results while maintaining tracking speeds of 41 FPS. Figure 6 shows that ConcatTrk would
meet real-time tracking requirements (i.e., >30 FPS) on the edge device while obtaining
reliable tracking accuracy, which is not achieved by the other trackers.

Table 1. Comparisons with state-of-the-art trackers in terms of the success score, precision score,
FPS, and FLOPs on the UAV123 dataset. The best three performances are, respectively, shown in red,
green, and blue.

Tracker Succ. Score Pre. Score Avg. FPS FLOPs

TransT 0.660 0.852 5 16.7 G
SiamBAN 0.631 0.833 6 48.8 G

ConcatTrk(Ours) 0.623 0.807 41 3.4 G
SiamFC++ 0.617 0.799 13 17.5 G

SiamRPN++ 0.611 0.804 6 48.9 G
SiamDWfc 0.536 0.776 19 12.9 G

SiamFC 0.475 0.702 22 2.7 G
GradNet 0.376 0.555 18 4.2 G
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Figure 6. Comparisons with state-of-the-art trackers in terms of the success score, FPS, and model
FLOPs on the UAV123 dataset. The circle diameter is in proportion to the FLOPs.

ConcatTrk gains the best tracking speed (41 FPS), surpassing the best and the second-
best accuracy tracker TransT(4 FPS) and SiamBAN(8 FPS), while using 4.9× and 14.3×
fewer FLOPs, respectively. In comparison to GradNet, which also incorporates dynamically
updating target templates, ConcatTrk demonstrates tracking accuracy that is 1.65× higher
and speed that is 2.27× faster. The real-time tracking speed of ConcatTrk allows its deploy-
ment on edge devices, such as robots, cameras, and self-driving terminals, with higher
application value.

4.2.3. Results from UAV123

The UAV123 [27] dataset is an important benchmark in the field of aerial tracking,
consisting of 123 sequences taken from the perspective of UAV aerial photography. Each
sequence is labeled with specific challenging scenes, including scale variation, partial
occlusion, full occlusion, out-of-view, fast motion, camera motion, background clutter,
similar object, aspect ratio change, viewpoint change, low resolution, etc.

Quantitative evaluation of the UAV123 dataset is shown in Figure 7. In Figure 7a,b,
ConcatTrk is able to achieve comparable tracking accuracy. In terms of the success score,
compared with the best and second-best tracker TransT(0.660) and SiamBAN(0.631), Concat-
Trk(0.623) has a 5.6% and 1.3% accuracy degradation, respectively. In terms of the precision
score, ConcatTrk(0.807) has a 5.3% and 3.1% precision degradation, respectively. However,
ConcatTrk is able to trade an acceptable loss for more than 8× the tracking speed boost.

It is worth noting that ConcatTrk has an excellent result in the background clutter
scenario. Shown in Figure 7c,d, ConcatTrk(0.495/0.714) gains the top-1 success score
and precision score with 16.5% and 17.4% improvement over the TransT(0.425/0.608).
The reason is that the learnable position-by-position similarity calculation is able to obtain
similar responses with strong discriminative properties.
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Figure 7. Comparisons on UAV123 dataset. Subfigure (a,b) represent the success score plot and
precision score plot on UAV123 dataset, and subfigure (c,d) represents the success score plot and
precision score plot in the background clutter scenarios.

4.2.4. Results from OTB100

The OTB100 [28] dataset contains 100 challenging frame sequences captured from
everyday life scenes and labeled with 9 attributes to represent specific difficult scenes,
including illumination variation, scale variation, occlusion, deformation, motion blur,
fast motion, in-plane rotation, out-of-plane rotation, out-of-view, background clutter, and
low resolution.

We compared seven trackers, including SiamRN [43], TransT [20], GradNet [25],
SiamRPN [15], USOT [45], and SiamFC [14] to obtain success and precision plots with the
OPE evaluation method in Figure 8.
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Figure 8. Comparisons on OTB100 dataset. Subfigure (a,b) represent the success score plot and
precision score plot on OTB100 dataset. Subfigure (c,d) represent the success score plot and precision
score plot in the low resolution scenario.

In Figure 8a,b, compared with the SOTA tracker SiamRN(0.701), ConcatTrk(0.651) is
able to achieve a speedup of 483% with a 7.1% loss in accuracy. Compared with tracker
GradNet(0.639), ConcatTrk(0.651) is able to obtain an accuracy improvement of 1.88%.

In particular, ConcatTrk has excellent performance in the low resolution scenario,
where the success score (0.700) is only 0.28% lower than the 1st tracker SiamRN (0.702),
and the pre score (0.986) is only 1.3% lower than the 1st tracker GradNet (0.999). The reason
for this is that the position-by-position similarity calculation approach of the learnable
matching module is able to obtain similar responses with strong discriminative properties.

4.2.5. Results from LaSOT

LaSOT [29] is a recently released large-scale single object tracking benchmark with a
total of 280 tracking sequences containing numerically challenging scenes and more than
70 classes of targets, with high quality manual annotation for each frame. The LaSOT
dataset places higher demands on the spatial discriminability and long-term generalization
of trackers.

We compared several SOTA trackers, including TransT [20], SiamBAN [18], C-RPN [21],
ROAM [46], SiamDW [47], GradNet [25], and USOT [45], and plotted success and precision
plots under the OPE evaluation method. As shown in Figure 9, the success score of
ConcatTrk (0.470) has a gap with the top-1 tracker TransT(0.642). However, ConcatTrk
gains comparable results with SiamBAN(0.514), proving that SiamSTC achieves a balance
between tracking performance and efficiency.
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Figure 9. Comparisons on LaSOT dataset. Subfigure (a,b) represent the success score plot and
precision score plot on LaSOT dataset.

4.3. Ablation Experiment
4.3.1. Impact of Learnable Feature Matching Module

The motivation for introducing the learnable feature matching module is to address
the limitation of the correlation-type methods that cannot learn the sample distribution
from the training data to improve the discriminability of the response maps.

To ensure a fair comparison, we establish a baseline using the ConcatTrk network
without the multi-scale feature fusion module and template-constraint branch; detailed
studies are conducted on the OTB100 dataset. Our learnable feature matching module is
compared with two commonly used alternatives: depth-wise correlation [16] and pixel-wise
correlation [23].

As shown in Table 2, the learnable feature matching method is capable of bringing
improvement to tracking accuracy. In particular, the improvement is more significant in
challenging scenarios such as low resolution, out-of-view, and scale variation.

Table 2. Ablation experiments on the learnable feature matching module. The best two performances
are, respectively, shown in red and green. The ∆ denotes the improvement in comparison with the
second-best tracker.

Attributes ALL Low-Resolution Out-of-View Scale-Variation

Succ. Score Pre. Score Succ. Score Pre. Score Succ. Score Pre. Score Succ. Score Pre. Score

Depth-wise XCorr [16] 0.586 0.798 0.597 0.826 0.454 0.654 0.575 0.775
Pixel-wise XCorr [23] 0.610 0.801 0.553 0.761 0.487 0.660 0.589 0.787

LFM(Ours) 0.613 0.808 0.698 0.988 0.537 0.683 0.622 0.816

∆(%) +0.491 +0.874 +17.01 +19.61 +10.267 +3.484 +5.603 +3.685

4.3.2. Impact of Template-Constraint Branch

The template-constraint branch is created to continuously capture and update target
feature changes for an improved feature representation, leading to better accuracy and
discrimination of the tracker. The effectiveness of the branch is evaluated on the OTB100
dataset by comparing the accuracy of the tracker with and without the template-constraint
branch as well as investigating its impact on tracking speed. The results are denoted
by ConcatTrk and ConcatTrk-noTCB to indicate whether the template-constraint branch
is used.

As shown in Table 3, in terms of speed, the introduction of the template-constraint branch
brings about 3.5% speed loss to the tracking network; in terms of accuracy, the template-
constraint branch can bring 3.99% accuracy gain to the tracking model. Moreover, in most of
the challenging scenarios, the tracker can obtain the accuracy gain brought by the template-
constraint branch, especially in the scenarios of illumination variation and background clutter.
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Table 3. Ablation experiment on the template-constraint branch. The ∆ denotes the improvement in
comparison with ConcatTrk-noTCB. The better performance is highlighted in red.

Succ. Score Pre. Score FPS

ConcatTrk 0.651 0.871 140
ConcatTrk-noTCB 0.626 0.828 145

∆(%) +3.99 +4.71 −3.5%

4.4. Real-World Test

In this section, ConcatTrk is further deployed on a drone platform, as illustrated
in Figure 10, to validate its practicality in real-world applications. The real-world test
aims to evaluate the power consumption of ConcatTrk and to verify its robustness in
challenging scenarios. During the testing process, TensorRT was not utilized to accelerate
model computation.

AmovLab P450 Drone

Intel RealSense D435i Camera

Nvidia AGX Xavier Processor

Figure 10. Drone platform in a real-world test.

Experimental Environment. In terms of hardware, the drone platform is based on the
AmovLab P450. The platform is equipped with an Intel RealSense D435i camera as the
image acquisition device, capable of capturing RGB images at a resolution of 1920 × 1080.
Additionally, the platform is integrated with the Nvidia AGX Xavier as the onboard
embedded processor, providing CPU and GPU computational resources. Regarding the
software environment, the operating system is Ubuntu 18.04. Robot operating system
(ROS) [48] is employed for inter-module message passing and functionality invocation on
the drone, such as flight control, image acquisition, and visualization results publishing.

Power Consumption. We utilized the jtop toolkit to record the average power con-
sumption of the drone under no-load conditions and during the execution of ConcatTrk
to evaluate its energy consumption during real-world testing. The detailed results are
presented in Figure 11. Under unloaded conditions, the drone only activated necessary
functional modules and camera sensors. The working conditions additionally launched
ConcatTrk on top of the no-load conditions. In this setting, the average total power con-
sumption was approximately 7957 mW under no-load conditions and 12,895 mW under
working conditions. It can be observed that ConcatTrk contributed to a power consumption
of approximately 4938 mW, with the majority of the power being consumed by the CPU,
GPU, and power module, accounting for 80.3% of the overall increase.
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Figure 11. Power consumption of the drone platform in a real-world test. The power consumption of
the entire system is divided into five components: CPU, GPU, SOC, VDDRQ, and SYS5V. Specifically,
SOC represents the power consumption of the internal SOC processor, VDDRQ represents the
power consumption of the power module, and SYS5V represents the power consumption of other
components in the system.

Challenging Scenarios. Figure 12 illustrates the visualized results of the real-world
test, where we introduced representative challenging scenarios, including partial occlusions
(frames #301, #514), lighting variations (frames #408, #446, #514), deformations (frames #63,
#150), and out-of-plane rotations (frames #3, #63, #246, #408). Due to ConcatTrk’s efficient
network architecture, it is capable of maintaining reliable tracking performance even in
complex scenarios.

(a) #3 frame (b) #63 frame (c) #150 frame (d) #246 frame

(e) #301 frame (f) #408 frame (g) #446 frame (h) #514 frame

Figure 12. Visualization results of the real-world test on the drone platform with various challenging
scenarios. The caption of the subfigures represent their order in the video sequence.

Furthermore, in practical deployment, the image capture and visualization processes
may impact the performance of the tracker. However, ConcatTrk maintains a real-time
tracking speed of 37.6 FPS. Overall, ConcatTrk demonstrates outstanding potential for
real-world applications, enabling efficient operation on UAV AI platforms.

5. Conclusions

In this paper, a lightweight end-to-end Siamese tracker, ConcatTrk, is proposed for
efficient tracking while maintaining real-time speed on edge devices. ConcatTrk includes a
learnable feature matching module that enhances tracking accuracy by acquiring matching
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experience from training data, and it outperforms non-parametric correlation-type methods.
Additionally, the tracker includes a template-constraint branch that adjusts the search
region in post-processing and dynamically captures changes in target appearance features,
allowing for more robust and accurate performance in long-term tracking tasks. Extensive
experiments have proven that ConcatTrk achieves excellent tracking efficiency on several
challenging benchmarks. Real-world tests also revealed that ConcatTrk has outstanding
application value. We hope our work will contribute to the application of object tracking
methods in resource-constrained scenarios.
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