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Abstract: Relay-aided Device-to-Device (D2D) communication combining visible light communica-
tion (VLC) with radio frequency (RF) is a promising paradigm in the internet of things (IoT). Static
relay limits the flexibility and maintaining connectivity of relays in Hybrid VLC/RF IoT systems.
By using a drone as a relay station, it is possible to avoid obstacles such as buildings and to com-
municate in a line-of-sight (LoS) environment, which naturally aligns with the requirement of VLC
Systems. To further support the application of VLC in the IoT, subject to the challenges imposed by
the constrained coverage, the lack of flexibility, poor reliability, and connectivity, drone relay-aided
D2D communication appears on the horizon and can be cost-effectively deployed for the large-scale
IoT. This paper proposes a joint resource allocation and drones relay selection scheme, aiming to
maximize the D2D system sum rate while ensuring the quality of service (QoS) requirements for
cellular users (CUs) and D2D users (DUs). First, we construct a two-phase coalitional game to tackle
the resource allocation problem, which exploits the combination of VLC and RF, as well as incor-
porates a greedy strategy. After that, a distributed cooperative multi-agent reinforcement learning
(MARL) algorithm, called WoLF policy hill-climbing (WoLF-PHC), is proposed to address the drones
relay selection problem. Moreover, to further reduce the computational complexity, we propose a
lightweight neighbor–agent-based WoLF-PHC algorithm, which only utilizes historical information
of neighboring DUs. Finally, we provide an in-depth theoretical analysis of the proposed schemes in
terms of complexity and signaling overhead. Simulation results illustrate that the proposed schemes
can effectively improve the system performance in terms of the sum rate and outage probability with
respect to other outstanding algorithms.

Keywords: drone relay-aided D2D communication; resource allocation; drones relay selection; visible
light communication (VLC); WoLF policy hill-climbing (WoLF-PHC)

1. Introduction

With the wide application of the Internet of Things (IoT) in various fields such as city,
industry, and transportation, a constant emergence of IoT devices (IoDs) are connected
via the Internet to exchange information about themselves and their surroundings. It is
expected that the number of IoDs will increase to 75.4 billion by 2025, more than 9-fold
the number in 2017 [1]. The proliferation of IoDs puts higher demands on the spectrum,
data rate, and latency for IoT communications. In response, device to device (D2D) com-
munication, where two nearby devices can exchange information directly, has been widely
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employed in IoT networks to improve spectrum efficiency and data rates, along with reduc-
ing transmission delays [2–4]. Depending on whether radio frequency (RF) resources are
shared between D2D users (DUs) and traditional cellular users (CUs), D2D communication
can be classified into two categories: underlay and overlay communication. In particular,
underlay D2D communication has been proven to provide a higher spectrum efficiency
and match spectrum sharing nature in IoT networks [5]. However, it will inevitably lead to
mutual interference between DUs and CUs. In addition to the absence of electro-magnetic
interference with existing RF systems, the emerging visible light communication (VLC)
offers many advantages, such as a broad spectrum, innate security, and license-free de-
ployment [6]. Yet, VLC is also susceptible to blockage and has severe path attenuation.
Therefore, combining RF and VLC bands for D2D communication has been regarded as an
enticing solution to mitigate the interference and overcrowding of the RF spectrum, thus
boosting the system capacity [7–9].

However, the envisioned benefits of D2D communication may be limited by long dis-
tances, obstacles, and inferior channel conditions, especially for VLC-D2D communication.
As a result, D2D communication is not well-suited for IoT applications that require wide
coverage and high reliability [10]. A promising response to this dilemma is to implement
relay-aided D2D communication, which is able to extend the communication range as
well as improve both reliability and flexibility [11]. That is, D2D communication can be
extended to a relay-aided manner when IoDs that need to communicate are far away from
each other or are blocked by obstacles. Such relay-aided systems are feasible for the large-
scale IoT without extra construction costs, like massive machine-type communication, the
cognitive IoT, and wireless sensing, as there are a large number of available IoDs (e.g., sen-
sors, actuators, drones) that can act as relays [12–14]. Unmanned aerial vehicles (UAVs)
have been widely used in both military and civilian applications [15,16]. Renhai Feng [17]
considers unmanned aerial vehicles (UAVs) to relay the maintenance data by visible light
communication (VLC) under the requirements of ultra-reliability and low-latency. Zhiyu
Zhu [18] and Yining Wang [19] enable UAVs to determine their deployment and user
association to minimize the total transmit power with VLC. In [20], the authors optimized
the UAV-assisted VLC framework that aims at minimizing the required number of UAVs
first and minimizing the total transmitted power second. In [21], the authors consider UAVs
equipped with a VLC access point and the coordinated multipoint (CoMP) capability to
maximize the total data rate and minimize the total communication power consumption si-
multaneously. In [22], the authors describe a UAV-assisted outdoor VLC system to provide
high-speed and high-capacity communication for some users who are blocked by natural
disasters or mountains, in where the UAV is set as a communication relay. However, to my
knowledge, there is no research on using drones as relays for joint resource allocation and
relay selection in a hybrid VLC/RF IoT system for D2D communication.

Accordingly, we concentrate on a large-scale drone relay-aided D2D communication
underlaying hybrid VLC/RF IoT system, where multiple CU, DU, and drone relays coexist.
Different from existing research, in this paper, we innovatively introduced drones as relay
stations to address the challenges posed by the constrained coverage, poor reliability, and
the lake of flexibility. More concretely, each DU corresponds to a pair of IoDs with inferior
channel condition, so a drone relay is needed to aid the communication. And this relay
can be selected from other idle IoDs. Besides, each DU and its relay are allowed to utilize
either VLC resource or orthogonal RF resource of a certain CU. Obviously, there are two
main variables that determine the system performance. One is the resource allocation for
each DU, which also actually decides the resource used by its corresponding relay. For
large-scale IoT, the number of DUs is typically higher than that of CUs. This means that
although the VLC resource is included, some DUs still share the same resource, causing
mutual interference among the DUs, the corresponding relays, and perhaps a certain CU.
Hence, how to fully leverage the combination of VLC and RF to alleviate the mutual
interference is a crucial issue. Another variable is the drone relay selection for each DU.
For large-scale IoT, a DU has multiple available relays. However, different relays bring not
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only different communication gains to the DU, but also different interferences to the users
sharing the same resource. Thus, how to select the relays to improve the overall system
performance is another important issue.

So far, there have been some works on resource allocation [23–27], relay selection [28–30],
and their joint optimization [31–37] for relay-aided D2D communication. However, there
is no research on using drones as relays for joint resource allocation and relay selection
for large-scale D2D communication in hybrid VLC/RF IoT system. Static relay limits
the flexibility and maintaining connectivity of relays in Hybrid VLC/RF IoT Systems.
By using a drone as a relay station, it is possible to avoid obstacles such as buildings
and to communicate in a line-of-sight (LoS) environment, which naturally aligns with
the requirement of VLC Systems. In addition, most works mainly consider small-scale
scenarios in which sharing resources among DUs is not required. Most of the optimization
methods proposed in these works are not suitable for large-scale scenarios, where resource
allocation and relay selection become more difficult for the following reasons.

1. Large-scale relay-aided D2D communication causes resource shortages, leaving each
resource shared by multiple DUs. The arising complex interference relationships make
the resource allocation for one DU also impact the performance of other DUs who
share the same resource. This motivates us to view the resource allocation process
for each DU as finding the optimal set of DUs for each resource, in which the mutual
interference is minimal.

2. Similarly, the interference relationships make the relay selection for all DUs within
the same set co-dependent. This prompts us to further consider allowing these DUs
to cooperate with each other for a higher collective gain.

3. Large-scale IoDs deployment inherently exacerbates the time complexity and sig-
naling overhead required for the optimization process, especially when it comes to
relay selection. The optimization schemes are desired to have low complexity due to
practical applications.

Against this background, we present a joint optimization of resource allocation and
drones relay selection for large-scale relay-aided D2D underlaying hybrid VLC/RF IoT
system, aiming to maximize the D2D system sum rate while ensuring the quality of service
(QoS) requirements for CUs and DUs. First, inspired by the aforementioned perspective
of finding the optimal DU set for each resource, the resource allocation problem can be
modeled as a coalitional game. In particular, we construct a two-phase coalitional game
that allows each DU to explore and finally join a coalition while guaranteeing QoS. The
different coalitions that eventually form are exactly the optimal sets of DUs for different
resources. Afterwards, with a large number of DUs and available relays, we regard each
DU as an agent that can autonomously select a proper relay through learning. In this
way, the relay selection problem is modeled as a multi-agent problem and thus can be
solved in a distributed manner. Furthermore, given the aforementioned co-dependency
in relay selection among the DUs in the same coalition, we propose two cooperative
relay selection schemes based on multi-agent reinforcement learning (MARL) with low
complexity, termed WoLF policy hill-climbing (WoLF-PHC). These two proposed schemes
can not only overcome the inherent non-stationary of the multi-agent environment, but
also encourage the DUs to cooperate for a higher system sum rate. The main contributions
of this paper are summarized as follows:

1. The model of the drone relay-aided D2D communication underlaying hybrid VLC/RF
system for the large-scale IoT is given. Aiming to maximize the sum rate of the D2D
system while ensuring QoS, the joint optimization problem of resource allocation and
drones relay selection is formulated. The problem has a nonconvex and combinatorial
structure that makes it difficult to be solved in a straightforward way. Thus, we divide
it into two subproblems and solve them sequentially.

2. From the perspective of finding the optimal DU set for each resource, we construct a
two-phase coalitional game to tackle the resource allocation problem. Specifically, we
leverage the combination of VLC and RF to ensure QoS in the coalition initialization
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phase. We also incorporate a greedy strategy into the coalition formation phase to
obtain the global optimal sets of DUs.

3. In order to eliminate co-dependency, we first propose a cooperative WoLF-PHC-based
relay selection scheme, where the agents in the same coalition share a common reward.
Meanwhile, in any coalition, each agent’s policy can use the historical action informa-
tion of other agents to overcome the non-stationary of the environment. Interestingly,
combining the results of the resource allocation, we find that only the historical in-
formation of neighboring agents is sufficient to alleviate the instability. Hence, a
lightweight neighbor–agent-based WoLF-PHC algorithm with curtailed complexity is
further proposed.

4. We provide a theoretical analysis of the proposed schemes in terms of complexity and
signaling overhead. Also, we provide numerical results to indicate that the proposed
schemes outperform the considered benchmarks in terms of the sum rate and outage
probability. Moreover, we investigate the trade-off between the sum rate performance
and computational complexity.

The rest of this paper is organized as follows. Section 2 is the related works. In
Section 3, the system model is given and the problem is formulated. In Sections 4 and 5,
we present the proposed resource allocation and relay selection schemes, respectively. The
complexity and signaling overhead, and the simulation results are shown and analyzed in
Sections 6 and 7, respectively. Finally, Section 8 concludes the paper.

2. Related Works

With the potential to substantially increase system capacity, the novel D2D concept
combining VLC and RF communication was first proposed in [7]. In [38], a survey on
D2D Communication for 5 GB/6G Networks about concept, applications, challenges,
and future directions have been discussed. In [39], the authors provide a V2I and V2V
collaboration framework to support emergency communications in the ABS-aided internet
of vehicles. Up to now, several works have been proposed to study the resource allocation
for D2D communication in hybrid VLC/RF systems. In [8], an iterative two-stage resource
allocation algorithm was proposed based on the analysis of the interference generated
by D2D transmitters and those received by D2D receivers. With only limited channel
state information (CSI), the authors in [9] attempted to implement a quick band selection
between VLC and RF using deep neural networks. On this basis, refs. [25,26] included a
millimeter wave into the hybrid VLC/RF bands and formulated the multi-band selection
problem as a multi-armed bandit problem. However, the above works only considered the
overlay mode instead of the multiple DUs coexisting in the underlay mode, which is an
essential use-case in future networks. Only our previous work [40] considered this use-case
for D2D underlay communication and solved the resource allocation problem using the
coalitional game. The main difference between our work and previous work is that D2D
communication is extended to a relay-aided manner, which gives rise to new problems.

The relay-aided D2D communication appeared due to the demand to extend the
communication range as well as enhance both reliability and flexibility. As a matter
of fact, jointly optimizing resource allocation and relay selection for relay-aided D2D
communication in traditional RF systems has been widely studied. In [31], the joint
optimization problem of mode selection, power control, channel allocation, and relay
selection was decomposed into four subproblems and solved individually, aiming to
maximize the total throughput. However, the authors in [32] first addressed the power
control problem separately, and then solved the remaining joint problem using an improved
greedy algorithm. Similarly, ref. [33] addressed the power control problem first so that the
remaining joint problem could be converted into the tractable integer–linear programming
problem. In [34], taking into account both willingness and social attributes, a social-aware
relay selection algorithm was proposed, and then a greedy-based resource allocation
scheme was presented. Furthermore, in order to motivate users acting as relays, ref. [35]
assumed that the relays involved in assisting D2D communication could harvest energy
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from RF signals and formulated the optimization problem as a three-dimensional resource–
power–relay problem. The authors in [36] focused on an energy efficiency optimization
problem of relay-aided D2D communication under simultaneous wireless information
and the power transfer paradigm. Besides, ref. [37] derived an energy efficient oriented
joint relay selection and resource allocation solution for mobile edge computing systems
by using convex optimization techniques. Despite all this, these research works took
into consideration neither large-scale nor hybrid VLC/RF scenarios. Moreover, most
of the above works on relay selection adopted either the brute-force algorithm based
on designated regions or the distance-based algorithm, which have high computational
complexities and are not suitable for large-scale applications.

Given the dynamics of practical networks, reinforcement learning (RL) techniques
have been introduced to provide a solution to the relay selection problem. Ref. [41]
developed a centralized hierarchical deep RL-based relay selection algorithm to minimize
the total transmission delay in mmWave vehicular networks. Ref. [42] presented a multi-
featured actor-critic RL algorithm to maximize the data delivery ratio in energy-harvesting
wireless sensor networks. Also, ref. [43] incorporated the prioritized experience replay
into a deep deterministic policy algorithm and minimized outage probability without any
prior knowledge of CSI. The above works modeled the policy search process as a Markov
decision process, which is true if different agents update their policies independently at
different times. Nevertheless, if two or more agents update their policies at the same time,
a non-stationary multi-agent environment may occur [44]. How to reduce the action space
and computational complexity of multi-agent systems to improve the training speed while
ensuring a stationary multi-agent environment is a key issue.

In summary, there are four drawbacks in the above studies:

(1) The above works only considered the overlay mode instead of the multiple DUs
coexisting in the underlay mode, which is an essential use-case in future networks.

(2) Although some works focus on jointly optimizing resource allocation and relay selec-
tion for relay-aided D2D communication, these works did not take the large-scale IoT
or hybrid VLC/RF scenarios into consideration.

(3) Static relay is adopted in existing research, which limits the flexibility and maintaining
connectivity of relays in Hybrid VLC/RF IoT Systems. The dynamic relay-assisted
D2D communication system with wide coverage, high flexibility, good reliability, and
strong connectivity needs to be constructed.

(4) Most of the joint optimization methods proposed in these works are not suitable for
large-scale scenarios, and new methods with low complexities and signaling overhead
are forced to be developed.

3. System Model and Problem Formulation
3.1. System Description

We consider a drone relay-aided D2D communication underlaying hybrid VLC/RF
system for the large-scale IoT, as shown in Figure 1, which consists of M CU, N DU, and R
drone relays uniformly distributed in a square room. Note that a DU represents a D2D pair,
consisting of a transmitter (DU-TX) and a receiver (DU-RX). Let N = {1, . . . , n, . . . , N},
S = {1, . . . , s, . . . , N}, and D = {1, . . . , d, . . . , N} denote the set of DUs, DU-TXs, and DU-
RXs, respectively. Similarly,M = {1, . . . , m, . . . , M} and R = {1, . . . , r, . . . , R} represent
the set of CU and drone relays, respectively. In this paper, we assume that each CU has been
pre-allocated an orthogonal uplink RF resource, i.e., CU m has occupied the RF resource
cm. Combined with the VLC resource cM+1, there are M + 1 available resources and their
set is denoted as C = {c1, . . . , cm, . . . , cM, cM+1}. Meanwhile, each DU is allowed to reuse
a resource from the set C. To describe whether DU n ∈ N reuses resource cm ∈ C, we
introduce a decision matrix for resource allocation:

β ∈ (βcm
n )N∗(M+1) (1)
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where βcm
n is a binary variable. Specifically, βcm

n = 1 denotes that DU n reuses resource cm;
otherwise, βcm

n = 0.

BS

CUm

CU1

CU interference in 1st-RF hop

CU interference in 2nd-RF hop

Rr DU-TXn

DU-RXn

DU-RX2

DU-TX2

DU-TXN
DU-RX1

DU-TX3

DU-RXN

DU-RX3

CU

DU

Drones 

Relay 

CU signal to BS

DU interference in 1st-RF hop

DU interference in 2nd-RF hop

BS

DU signal in 1st-RF hop

DU signal in 2nd-RF hop

DU interference in 1st-VLC hop

DU interference in 2nd-VLC hop

DU signal in 1st-VLC hop

DU signal in 2nd-VLC hop

R1

R2

R3

RN

Figure 1. Relay-aided D2D communication underlaying hybrid VLC/RF system model.

For the sake of practicality, it is supposed that each DU can only select one relay for
assistance and each relay is allowed to be attached to, at most, one DU at a time. To describe
whether DU n ∈ N transmits data with the help of relay r ∈ R, we introduce another
decision matrix for relay selection:

α ∈ (αn,r)N∗R (2)

where αn,r is a binary variable. Specifically, αn,r = 1 denotes that relay r aids DU n; other-
wise, αn,r = 0. Furthermore, the drone relays involved in the aid utilize the mixed VLC/RF
decode-and-forward protocol with a half duplex mode to transfer data, thus dividing the
data transmission into two-hops: (1) DU-TX s transfers data to the corresponding relay r
by reusing resource cm ∈ C; (2) the drone relay r forwards the data to the corresponding
DU-RX d by reusing cm.

In such a system, we focus on the analysis of the interference caused by resource shar-
ing. On the one hand, the DUs using the VLC resource are exposed to the interference from
the other DUs and their corresponding relays operating in VLC. On the other hand, users
who share the same RF resource, including one CU, several DUs, and their corresponding
relays, interfere with each other. Note that users exploiting different resources are not
mutually interfered. All types of interference are sketched in Figure 1. A detailed analysis
of the interference in two typical communication modes: VLC-D2D and RF-D2D, will be
presented in the following.

3.2. VLC-D2D Communication Mode

In the VLC-D2D communication mode, it is supposed that DU n = (s, d), n ∈ N , s ∈ S ,
d ∈ D utilizing resource cM+1 communicates in VLC with the assistance of relay r ∈ R.
According to [45], the VLC channel gain is given as:

Gi,j =
(k + 1)A

2πd2
i,j

cosk(φ)g f gc(ψ)cos(ψ) (3)
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where A is the detector area; di,j denotes the distance between the source i and destination
j; φ and ψ represent the angle of irradiance and incidence, respectively; k = −1

log2(cos(Φ1/2))

is the Lambertian order and Φ1/2 is the half-intensity radiation angle; g f is the gain of
the optical filter; and gc(·) is the optical concentrator gain, which is a function of ψ and is
denoted as:

gc(ψ) =

{
l2

sin2(Ψ)
0 ≤ ψ ≤ Ψ

0 ψ > Ψ
(4)

where l is the refractive index and Ψ is the semi-angle of the field-of-view of the photodiode.
In the 1st-hop VLC-D2D link, the signal to the interference plus noise ratio (SINR) of

relay r from DU-TX s is expressed as:

γ
cM+1
s,r =

κ2PV
s Gs,r

BVNV + IcM+1
s,r

(5)

where PV
s is the transmitted optical power of s; κ is the efficiency of converting the optical

signal to an electrical signal; NV is the noise power spectral density in VLC and BV is the
bandwidth of VLC; and IcM+1

s,r is the interference at r when receiving the signal from s,
which comes from other DU-TXs sharing VLC resource cM+1. However, IcM+1

s,r is difficult to
be expressed exactly because the set of DUs sharing the same resource may be different at
different periods. Inspired by [46], we replace the exact form γ

cM+1
s,r with the expected form

γ
cM+1
s,r , which can be approximately shown as:

γ
cM+1
s,r =

κ2PV
s Gs,r

BVNV + E[IcM+1
s,r ]

(6)

where the symbol E[·] indicates the expectation of [·], which can be formulated as:

E[IcM+1
s,r ] = ∑

s′∈AM+1\s

κ2PV
s′ Gs′ ,r

|AM+1| − 1
(7)

where AM+1 represents the set of DUs utilizing cM+1, and the operator |A| denotes the
cardinality of set A. Since DU n corresponds its DU-TX s one by one, n ∈ A and s ∈ A are
regarded as the equivalent hereinafter.

In the 2nd-hop VLC-D2D link, the expected SINR of the corresponding DU-RX d from
relay r is expressed as:

γ
cM+1
r,d =

κ2PV
r Gr,d

BVNV + E[IcM+1
r,d ]

(8)

where PV
r is the transmitted optical power of r; E[IcM+1

r,d ] is the expected interference gener-
ated by the relays assisting other DUs who reuse cM+1 and is measured as:

E[IcM+1
r,d ] = ∑

n′∈AM+1\n
∑

r′∈R\r
αn′ ,r′

κ2PV
r′ Gr′ ,d

|AM+1| − 1
. (9)

Due to the average, peak, and non-negative constraints on the modulated optical
signals, the classical Shannon equation can not be applied to the VLC. Although the exact
capacity of the VLC channel remains unknown, the dual-hop achievable data rate of DU n
can be approximated as [47]:

RcM+1
n (α) =

1
2

BVlog2(1 +
e

2π
min(γcM+1

s,r , γ
cM+1
r,d )). (10)
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3.3. RF-D2D Communication Mode

In the RF-D2D communication mode, we assume that DU n = (s, d), n ∈ N , s ∈ S ,
d ∈ D is assisted by r ∈ R with reusing the RF resource cm, m ∈ M. Moreover, we follow
the 3GPP recommendation for indoor D2D communication as defined in [48], i.e., the D2D
indoor path loss model is formulated as:

PL = 16log10(di,j) + 89.5. (11)

In the 1st-hop RF-D2D link, the SINR of relay r from DU-TX s is shown as:

γcm
s,r =

PR
s Hs,r

BRNR + Icm
s,r

(12)

where PR
s is the transmitted power of s; NR is the noise power spectral density in RF and BR

is the bandwidth of RF; H is the RF channel gain; and Icm
s,r is the sum interference received by

r, which contains two parts. The first part is the interference from other DU-TXs sharing cm,
which is denoted as Icm

s,r (D). Similar to the interference IcM+1
s,r , the interference in this part

cannot be accurately described due to the dynamics of resource allocation. The second part
is the interference from CU m, denoted as Icm

s,r (C), which is also difficult to calculate exactly.
This is because CUs do not always transmit data to the base station (BS) but probabilistically.
Consequently, we use the expected form γcm

s,r instead of γcm
s,r , which is given by:

γcm
s,r =

PR
s Hs,r

BRNR + E[Icm
s,r ]

(13)

where E[Icm
s,r ] denotes the expected sum interference and can be written as:

E[Icm
s,r ] = E[Icm

s,r (D)] + E[Icm
s,r (C)]

= ∑
s′∈Am\s

PR
s′Hs′ ,r

|Am| − 1
+ µmPR

mHm,r
(14)

where PR
m is the transmitted power of CU m; µm represents the communication activity

probability of m; and Am is the set of DUs exploiting cm.
In the 2nd-hop RF-D2D link, the expected SINR of the corresponding DU-RX d from

relay r is indicated as:

γcm
r,d =

PR
r Hr,d

BRNR + E[Icm
r,d ]

(15)

where PR
r is the transmitted power of relay r; E[Icm

r,d ] is the expected sum interference and is
calculated as:

E[Icm
r,d ] = ∑

n′∈Am\n
∑

r′∈R\r
αn′ ,r′

PR
r′Hr′ ,d

|Am| − 1
+ µmPR

mHm,d. (16)

Here, the data rate of DU n can be measured by Shannon’s capacity formula:

Rcm
n (α) =

1
2

BRlog2(1 + min(γcm
s,r , γcm

r,d)). (17)

Similarly, the expected SINR at BS b from CU m in the 1st-hop is shown as:

γ
(1)
m =

PR
mHm,b

BRNR + ∑s∈Am
PR

s Hs,b
|Am |

. (18)
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And the expected SINR at BS b from CU m in the 2nd-hop can be given by:

γ
(2)
m =

PR
mHm,b

BRNR + ∑n∈Am ∑r∈R αn,r
PR

r Hr,b
|Am |

. (19)

Therefore, the data rate of CU m can be calculated as:

Rm(α) =
1
2

BR
[
log2(1 + γ

(1)
m,b) + log2(1 + γ

(2)
m,b)

]
. (20)

3.4. Problem Formulation

Our goal is to maximize the D2D system sum rate while ensuring the QoS requirements
for the CUs and DUs. Thus, the joint optimization problem of resource allocation and relay
selection is formulated as:

max
α,β

N

∑
n=1

[
(1−β

cM+1
n )

M

∑
m=1

βcm
n Rcm

n (α)+β
cM+1
n RcM+1

n (α)
]

(21a)

s.t. Rm(α) ≥ RC
th, ∀m ∈ M (21b)

Rcm
n (α) ≥ RD

th,∀n ∈ N , cm ∈ C (21c)

βcm
n ∈ {0, 1}, ∀n ∈ N , cm ∈ C (21d)

∑
cm∈C

βcm
n = 1, ∀n ∈ N (21e)

αn,r ∈ {0, 1}, ∀n ∈ N , r ∈ R (21f)

∑
r∈R

αn,r = 1, ∀n ∈ N , ∑
n∈N

αn,r ≤ 1, ∀r ∈ R. (21g)

Constraint (21b) guarantees the QoS of the CUs while RC
th denotes the rate threshold of

the CU link. By analogy, constraint (21c) guarantees the QoS of the DUs while RD
th denotes

the rate threshold of the D2D link. Constraint (21d) shows that the resource allocation
decision βcm

n is a binary variable. Constraint (21e) ensures that each DU only reuses one
resource. Constraint (21f) indicates that the relay selection decision αn,r is a binary variable.
Constraint (21g) further ensures that each DU only employs one relay and each relay aids
at most one DU.

It is clear that the formulated problem possesses a non-convex and combinational
structure that makes it intractable to solve in polynomial time. Since both αn,r and βcm

n are
0-1 integer variables, an intuitive method is to enumerate all possible combination policies
and find out the optimal resource allocation and relay selection strategy. Nevertheless, the
time complexity of the exhaustive method is O

(
AN

R (M + 1)N), which cannot work out for
large-scale scenarios. To address the problem efficiently, we decompose the optimization
problem into two subproblems, i.e., resource allocation and relay selection, and tackle
them sequentially.

4. Coalitional Game Based Resource Allocation

Since an appropriate resource allocation solution has a large positive impact on the
system throughput improvement, we first address the resource allocation problem under
random relay selection to approach the maximum throughput quickly. It is worth noting
that the relays are randomly selected from the candidate relays, which are described in
Section 5.1. In this section, with random relays, a two-phase coalitional game is introduced
to solve the resource allocation problem.

4.1. Coalitional Game Formulation

We model the resource allocation problem as a coalitional game. Specifically, each CU
forms a coalition representing one RF resource, and an empty coalition is used to represent
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the VLC resource. Next, each DU independently and randomly chooses to join a coalition,
which means that the DU shares the same resource with other users in the chosen coalition.

In the game, G = (I ,V ,F ) with a non-transferable utility is defined. The set of players
I =M∪N consists of both the CUs and DUs. The coalition structure is denoted by the
set F = {F1, F2, . . . , Fm, . . . , FM+1}, where Fm is the m-th coalition, and all coalitions are
disjoint. That is, we have Fi ∩ Fj = ∅ for any i 6= j, and ∪M+1

m=1 Fm = I . The characteristic
function V denotes the coalition utility, which is expressed as:

V(Fm) =

{
0, Rm < RC

th, ∃m ∈ Fm or Rcm
n < RD

th, ∃n ∈ Fm

∑n∈Fm Rcm
n , otherwise

. (22)

Given the two coalitions Fi and Fj, if the switch operation of DU n can increase the
total throughput of the system, DU n will leave its current coalition Fi and participate in
the new coalition Fj. We say that DU n prefers being a member of Fj to Fi, which is denoted
by Fj B Fi. Thereby, the transfer rule is as:

Fj B Fi ⇐⇒ V(Fi \ {n}) + V(Fj ∪ {n}) > V(Fi) + V(Fj)

⇐⇒ CS(F ′) > CS(F )
(23)

where CS(F ) = ∑M+1
m=1 V(Fm) denotes the sum rate of the current coalition structure

F = {F1, . . . , Fi, . . . , Fj, . . . , FM+1}, and F ′ = {F1, . . . , Fi \ {n}, . . . , Fj ∪ {n}, . . . , FM+1} is
the new coalition structure.

According to Equation (23), the D2D system reaches the maximum throughput when
all DUs no longer perform switch operations. At this time, the final evolutionary coalition
structure F f in is the solution of the resource allocation problem. More concretely, the
different coalitions in F f in are exactly the optimal sets of DUs for different resources.

4.2. Coalition Formation Algorithm

Based on the coalition structure and transfer rule described above, we need to try
our best to satisfy the QoS requirements for all players so that more switch operations
can be performed to search for the global optimal solution. Therefore, we construct a
two-phase coalitional game composed of the coalition initialization phase and coalition
formation phase.

To ensure the QoS of the CUs and DUs, we design the following process for the
coalition initialization phase by leveraging the combination of VLC and RF.

(1) Initialize coalitions. In the relay-aided D2D network, the advantage of using the VLC
band is more prominent, as it can provide a high data rate. To be specific, VLC signals
are strongly attenuated with distance, so the interferences from other DU-TXs and
relays operating in the VLC are naturally suppressed. Moreover, VLC signals are
closely related to the D2D peer’s orientation in terms of irradiance and incidence
angles, thus reducing the amount of interferences received. Accordingly, all DUs
choose to be members of the coalition FM+1.

(2) Environment sensing. It is obvious that the DUs with a long distance or misaligned
orientation are not good candidates for utilizing the VLC resource. In addition, the
DUs in close proximity are also unsuitable for reusing the VLC resource due to the
heavy interference generated. In this regard, we can filter these DUs that require
reallocated resources by observing the data rate received per DU, which intuitively
reflects the above environmental factors.

(3) Guarantee the QoS. More concretely, we sort the data rate achieved by each DU in
descending order and filter out those with data rates below the threshold RD

th. In
other words, these DUs are more appropriate to exploit the RF resources. To this end,
a priority sequence Sn = (n1, n2, . . . , nk, . . . , nM), nk ∈ M is designed to guide the
switch operation of DU n, where nk with the smaller subscript k indicates that DU n
suffers less interference from CU nk. For simplicity, the priority order is determined by
the distance dnm between the n-th DU and m-th CU. The farther the dnm is, the higher
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priority of DU n sharing the resource of CU m is. Note that if CU nk no longer meets
the threshold RC

th due to DU n joining the coalition Fnk , then DU n should switch to
the next coalition Fnk+1 .

In the traditional coalition formation algorithm [49], a randomly selected DU n per-
forms switch operations in a random order based on a randomly initialized coalition
partition. According to the transfer rule in Equation (23), DU n leaves the current coali-
tion Fi and joins the new coalition Fj only when the system profit increases. However,
it only refers to the local information and may deviate from the global optimal solution.
Furthermore, the existence of users who do not satisfy the QoS demands compromises
the coalition utility, which may adversely affect the decision to switch operations. To this
end, by allowing DUs to carry out some exploratory operations with a chance probability,
we introduce a greedy strategy to search for the global maximum throughput of the D2D
system in our coalition formation phase. Considering the convergence rate of the algorithm,
the chance probability should decrease gradually with the increase of the number of switch
operations. Moreover, it should also depend on the system profit generated by the switch
operation. More concretely, it is recommended to reduce the probability of performing
the exploratory operation when the system penalty is high, i.e., the system profit is highly
negative. In this regard, the chance probability Pc is designed as [50]:

Pc(Lt) = exp
(CS(F ′)− CS(F )

Lt

)
(24)

where CS(F ′) − CS(F ) denotes the system profit, Lt = L0
log2(t+1) is the function of the

current number of switch operations t, and L0 is the constant value.
The detailed process of the coalition formation algorithm for resource allocation is

shown in Algorithm 1.

4.3. Theoretical Analysis

In this subsection, we provide the theoretical analysis in terms of convergence, stability,
and optimability.

Convergence: Starting from any initial coalition structure Fin, the proposed coalition
formation algorithm will always converge to a final coalition structure F f in.

Proof: For a given number of the CUs and DUs, the total number of the possible
coalition structure is finite. As stated before, to improve the D2D system sum rate, each
switch operation is allowed to sacrifice the immediate profit with a chance probability.
Nevertheless, the probability will approach zero as the number of switch operations
increases, denoted by lim

t→+∞
Pc(Lt) = 0, if CS(F ′) < CS(F ). That is, every switch operation

will eventually contribute to a higher profit, thus ensuring the convergence to a final
coalition structure.

Stability: The final coalition structure of our algorithmF f in = {F1, F2 . . . , Fm, . . . , FM+1}
is Nash-stable, which means that for any n ∈ N , n ∈ Fm ⊂ F f in, the condition Fm B Fm′ ,
∀Fm′ ⊂ F f in, Fm′ 6= Fm is always satisfied.

Proof: Supposing that F f in is not Nash-stable, there is at least a n ∈ N , n ∈ Fm and a
new coalition Fm′ , Fm′ ⊂ F f in, Fm′ 6= Fm that conform to the transfer rule Fm′ B Fm, and then
a new coalition structure F f in′ ,F f in′ 6= F f in is formed. This is in contradiction with the
premise that F f in is the final coalition structure. Therefore, the final coalition structure F f in
is Nash-stable.

Optimality: The Nash-stable coalition structure obtained by this algorithm corre-
sponds to the optimal system solution.

Proof: Regarding the renewal of the coalition structure as the evolution of the Markov
chain, we can prove that the Markov chain will enter a stationary state with the increase
of the number of iterations, so as to guarantee the optimability. The detailed proof can be
referred to [50].
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Algorithm 1: The Coalition Formation Algorithm for Resource Allocation

Initialization phase:
1: Initialize coalition structure Fin : Fm = {m}, m ∈ M, FM+1 = N ;
2: Collect data rate RcM+1

n of DU n in coalition FM+1;
3: Sort DUs in descending order of RcM+1

n , and get
the set of DUs with data rate below RD

th, denoted as Nth;
4: for DU n ∈ Nth do
5: According to priority sequence Sn, DU n joins coalition Fnk , k← 1;
6: while Rnk < RC

th do
7: if k < M then
8: DU n joins coalition Fnk , k← k + 1;
9: else
10: DU n joins back coalition FM+1;
11: break
12: end if
13: end while
14: end for
15: Get the initial coalition structure Fin;
Formation phase:
1: Set the current structure to Fcur ← Fin, t← 0;
2: repeat
3: Uniformly randomly choose DU n ∈ N and denote its coalition as Fi;
4: Uniformly randomly choose another coalition Fj ⊂ Fcur, Fj 6= Fi;
5: if The switch operation from Fi to Fj satisfying Fj B Fi then
6: The chosen DU leaves coalition Fi, and joins coalition Fj;
7: Update t← t + 1 and current structure as follows:

Fcur ← Fcur \ (Fi ∪ Fj)
⋃
(Fi \ {n})

⋃
(Fj ∪ {n});

8: else
9: Draw a random number P uniformly distributed in (0, 1], and

calculate the chance probability Pc;
10: if P < Pc then
11: Allow Dn to join Fj, update t← t + 1 and current structure as:

Fcur ← Fcur \ (Fi ∪ Fj)
⋃
(Fi \ {n})

⋃
(Fj ∪ {n});

12: end if
13: end if
14: until The coalition structure converges to the final Nash-stable F f in.

5. MARL-Based Relay Selection

After obtaining the resource allocation solution, we discuss how to select the optimal
relay for each DU to further improve the D2D system sum rate. Considering the large
number of DUs and relays, it may not be practical to accomplish relay selection with a
centralized method due to its high signaling overhead. In this regard, each DU can be
considered as an agent and independently selects a relay for assistance, which constitutes
a multi-agent system. However, the interferences among some DUs for the large-scale
IoT make the relay selection for these DUs co-dependent. That is, a DU needs to consider
the relay selection behaviors of other DUs within the same coalition when selecting a
relay. In this section, in order to eliminate the co-dependency, we introduce a distributed
cooperative MARL-based algorithm, named WoLF-PHC, which encourages the DUs to
cooperate for a higher system sum rate.

5.1. Modeling of Multi-Agent Environments

By solving the resource allocation problem in Section 4, N DUs are grouped into
M+1 coalitions. Note that DUs in different coalitions are not mutually interfered, which
implies that the DUs in coalition Fm ⊂ F f in do not need to consider the relay selection
behaviors of the DUs in other coalitions Fm′ , ∀Fm′ ⊂F f in, Fm′ 6= Fm. Hence, without a loss of
generality, we focus on the relay selection problem for the DUs in coalition Fm and conduct
the modeling analysis hereafter.
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In the formulation of the MARL problem, all DUs as agents are independently refining
their relay selection policies according to their own observations of the global environment
state. Nevertheless, if two or more agents update their policies at the same time, the multi-
agent environment appears non-stationary, which violates the Markov hypothesis required
for the convergence of RL [51]. Here, we consider modeling the problem as a partially
observable Markov game. Formally, the multi-agent Markov game in Fm is formalized
by the 5-tuple < Nm,Sm,Znm ,Anm , Rm >, where Nm ⊂ N is the set of DUs in Fm, and
|Nm| is the total number of DUs in Fm; Sm is the global environment state space; Znm is
the local observation space for DU nm ∈ Nm, determined by the observation function O
as Znm = O(Sm, nm); Anm is the action space for DU nm; Rm is the immediate reward that
is shared by all DUs in Fm to promote cooperative behavior among them. As depicted
in Figure 2, at each step t, given the current environment state Sm

t , each DU nm takes an
action anm

t from its action spaceAnm
t according to the observation Znm

t and its current policy
π(anm

t |Z
nm
t ), forming a joint action am

t . Thereafter, the environment generates an immediate
reward Rm

t+1 and evolves to the next state Sm
t+1. Then, each DU receives a new observation

Znm
t+1. To be specific, at each step t, for DU nm, the observation space Znm

t , action spaceAnm ,
and reward Rm

t+1 are defined as follows:

Relay-Aided D2D Underlay 

Communications Environment

 in Coalition Fm

action at

nm

…

Joint action at
m

Reward Rt
m

Zt+1

Nm

Zt+1

nm

Observation Zt

nm

Observation Zt

Nm

Rt+1
m

DU agent Nm

DU agent nm

action at
Nm

Figure 2. The agent–environment interaction in the MARL formulation of the relay selection in
relay-aided networks.

Observation space: The state space observed by nm can be described as Znm
t = am

t−1,
which includes the historical actions of all DUs in Fm at the previous step. One of the
motivations behind this is that if we know the actions taken by all agents, the multi-agent
environment becomes stationary [52]. Furthermore, each DU can fully learn to cooperate
with other DUs to achieve the global optimal reward in this way.

Action space: The action space of nm can be described as Anm = [r : ∀r ∈ R], which
represents that the DU can select a relay (The terms select a relay and take an action will
be used interchangeably throughout the paper.) from the set of relays R for assistance.
Accordingly, the dimension of the action space is the total number of relays R. In order to
reduce computational complexity, we limit the number of available relays by delineating
the area. For DU nm, let the distance between DU-TX sm and DU-RX dm be Dm

sd. As shown
in Figure 3, we create two circles of radius Dm

sd and place sm and dm at the center of each
circle, thus forming an overlapping area. The relays that are located inside the overlapping
area are considered as the candidate relays. Subsequently, Anm can be reduced to:

Anm = [r : Dm
sr ≤ Dm

sd, Dm
rd ≤ Dm

sd, ∀r ∈ R] (25)

where Dm
sr denotes the distance between sm and r; Dm

rd is the distance between r and dm.
Besides, we assume that the candidate relays for each DU do not overlap.
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DU-TX  sm

DU-RX  dmm

sdD

Drones 

Relay r 

Figure 3. The delineated area of candidate relays.

Reward: To encourage each DU to learn to collaborate with other DUs and thus
maximize the D2D system throughput, the DUs in the coalition Fm share a common reward
Rm

t+1, which is defined as:
Rm

t+1 = ∑
nm∈Nm

Rcm
nm(α

m
t ) (26)

where αm
t ∈ (αnm ,r)Nm∗R is the decision matrix for relay selection at the current step t in

coalition Fm, which depends on the joint action am
t . That is, if anm

t = r∗, then we have
αnm ,r∗ = 1 and αnm ,r = 0, ∀r ∈ R, r 6= r∗.

5.2. WoLF-PHC

In a multi-agent environment, each agent is part of the other agent’s environment,
leading to a non-stationary environment. Directly applying a classical single-agent RL
(e.g., Q-learning and policy gradient) in the multi-agent case may cause severe oscilla-
tions and eventually make the results hard to converge [53]. In contrast, WoLF-PHC, as
an extension of Q-learning, adopts the principle of fast learning when losing and slow
learning when winning, which allows agents to learn moving targets with both guaranteed
rationality and convergence [54]. Hence, we apply the WoLF-PHC to enable the DUs to
learn their own relay selection decisions in a multi-agent system.

In the WoLF-PHC, each DU continuously interacts with the environment and other
DUs in the same coalition to update the Q-value. To simplify the representation, for DU
nm ∈ Fm, the local observation Znm

t , action anm
t , and action space Anm

t at the current step t
are simply denoted as Z , a and A, respectively; the reward received Rm

t+1, new observation
Znm

t+1, and action anm
t+1 at the next step are denoted as R′, Z ′ and a′, respectively. Let Q(Z , a)

be the estimated Q-value with action a in state Z during the learning process. As with the
Q-learning algorithm, the update rule of the Q-value can be expressed as:

Q(Z , a)← Q(Z , a) + δ[R′ + β max
a′∈A

Q(Z ′, a′)−Q(Z , a)] (27)

where δ ∈ (0, 1] represents the learning rate, and β ∈ (0, 1] is the discount factor.
To learn the optimal Q-value, the DU updates its own relay selection policy π(Z , a)

that describes the probability of taking action a in state Z . As a generalization of the widely
used greedy algorithm, the policy hill-climbing (PHC) algorithm increases the probability
of taking the highest valued action while it decreases the probability of other actions
according to the learning parameter θ [55]. Moreover, the policy should be restricted to a
legal probability distribution. Thus, the updated rule of policy π(Z , a) can be calculated as:

π(Z , a)← π(Z , a) + ∆Z ,a (28)
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where

∆Z ,a =

−min(π(Z , a), θ
M−1 ), a 6= arg max

á∈A
Q(Z , á)

∑á 6=a min(π(Z , á), θ
M−1 ), otherwise

(29)

where M is a constant coefficient.
In essence, the key contribution of the WoLF-PHC is the variable learning parameter θ

consisting of two parameters: θw and θl , with θw < θl . They are employed to update the
policy, which depends upon whether the current policy π(Z , a) is winning or losing. To
this end, the average policy denoted as π̄(Z , a) is introduced to judge the win–lose of the
current policy and can be formulated as:

π̄(Z , a)← π̄(Z , a) +
π(Z , a)− π̄(Z , a)

C(Z) (30)

where C(Z) represents the number of occurrences of the state Z observed by the DU,
which is updated by:

C(Z)← C(Z) + 1. (31)

By comparing the expected payoff of the current policy with that of the average policy
over time, the DU can choose its appropriate learning parameter θ from θw and θl . If the
expected value of the current policy is larger, θw is applied to update the policy cautiously;
otherwise, θl is utilized to learn quickly. Accordingly, the learning parameter θ can be
described as:

θ =

{
θw, ∑a∈A π(Z , a)Q(Z , a) > ∑a∈A π̄(Z , a)Q(Z , a)
θl , otherwise

(32)

The detailed process of the WoLF-PHC algorithm for relay selection is given in
Algorithm 2.

Algorithm 2: The WoLF-PHC Algorithm for Relay Selection

1: Set δ, β, θw, θl ;
2: for each coalition Fm, m ∈ M∪ {M + 1} do
3: Initialize for each DU nm ∈ Fm:

Q(Z , a)← 0, π(Z , a)← 1
|A| , C(Z)← 0;

4: for each step t do
5: for each DU nm do
6: Receive current local observation Z and update C(Z) by using (31);
7: Select relay a at random with probability policy π(Z , a);
8: end for
9: All DUs take actions and receive immediate reward R′;
10: for each DU nm do
11: Receive next observation Z ′;
12: Update Q-value Q(Z , a) as well as Q-table by using (27);
13: Update average policy π̄(Z , a) by using (30);
14: Update relay selection policy π(Z , a) by using (28), (29) and (32);
15: Update observation Z ← Z ′;
16: end for
17: end for
18: for each DU nm do
19: Find the optimal relay r∗ = arg max Q, and set αnm ,r∗ = 1;
20: end for
21: end for
22: Output the optimal decision matrix: α∗ ∈ (αn,r∗ ), ∀n ∈ N .
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5.3. Neighbor–Agent-Based WoLF-PHC

In the WoLF-PHC, we define the observation space of agent nm as the past joint
action of all agents within coalition Fm, so as to guarantee the stability of the multi-agent
environment. Before reselecting relays, when the number of the DUs and resources are 10
and four, we visualize the geographic location of all the DUs and the result of the resource
allocation, as shown in Figure 4, where different colors represent different resources. It
can be seen that the closer DUs use different resources, while the more distant DUs share
the same resource. In other words, the DUs in a coalition are far apart from each other.
In the case of limited range D2D communication, the interference between any candidate
relay of DU nm and a remote DU nr

m can be considered the same and negligible. Similarly,
the interference between any candidate relay of nr

m and nm can be considered the same.
Thus, the relay selection decisions of nm and nr

m are independent of each other. That is, it
is not necessary to have all agents’ historical actions to ensure stability; only the actions
of neighboring agents is enough. Accordingly, we propose a lightweight algorithm that
allows the target agent to observe the actions of a fixed number of neighboring agents,
named neighbor–agent-based WoLF-PHC.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

D2D transmitter
D2D receiver

Figure 4. DUs geographic location and resource allocation results visualization.

In the neighbor–agent-based WoLF-PHC, for the target agent nm, we define the nearest
λ agents to target nm within a coalition as the neighboring agents of nm. Moreover, the
observation space Znm is changed from the joint action am

t−1 to the joint action of neighbors
am,nb

t−1 , where am,nb
t−1 = {ai

t−1, i ∈ N nb
nm} comprises the actions of λ + 1 agents in the neighbor-

ing set N nb
nm ⊂ N

m, which incorporates nm itself and its neighboring agents. Note that if
|N nb

nm | = |N
m|, the neighbor–agent-based WoLF-PHC is the same as the WoLF-PHC.

6. Complexity and Signaling Overhead Analysis
6.1. Complexity Analysis

The complexity of the proposed joint resource allocation and relay selection algorithm
can be analyzed from the following two parts.

One part of the complexity comes from the resource allocation scheme based on
the coalitional game. The computational complexity of the resource allocation scheme
is O(Iin), where Iin is the number of inner iterations required to converge to the final
coalition structure.
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Another part of the complexity arises from the relay selection scheme based on the
WoLF-PHC or neighbor–agent-based WoLF-PHC. For each agent n ∈ N , the computational
complexity is calculated as O(|Zn|2|An|), where |Zn| < N is the observation space size
of n, and |An| < R is the action space size of n. As for the WoLF-PHC, the overall
complexity is, at most, O(N(Z∗)2A∗), where Z∗ = maxn∈N |Zn| denotes the largest size of
the observation space, and A∗ = maxn∈N |An| is the largest size of the action space. As for
the neighbor–agent-based WoLF-PHC, the overall complexity is at most O(N(λ + 1)2A∗),
where the setting parameter λ is much less than Z∗ in general.

Therefore, the total complexity of our proposed algorithms is O(IinN(Z∗)2A∗) or
O(IinN(λ + 1)2A∗). To obtain the global optimal solution, apart from solving subprob-
lems sequentially, an ideal algorithm usually requires multiple outer iterations until the
D2D sum rate no longer rises. As a result, the complexity of the ideally proposed algo-
rithms (IPA) isO([IinN(Z∗)2A∗]Iou) orO([IinN(λ + 1)2A∗]Iou), where Iou is the number of
outer iterations.

However, the relays reselected by any agent come from its corresponding delineated
area, i.e., the candidate relays are close to each other, which leads to less impact of reselecting
relays on the resource allocation solution. In this way, the performance of our proposed
algorithms with lower complexity is considered to be approximate that of IPA. Hence, it is
more suitable to apply our proposed algorithms rather than IPA to large-scale scenarios.

6.2. Signaling Overhead Analysis

The signaling overhead of our proposed algorithm should also be analyzed in two parts.
On the one hand, since the resource allocation mechanism is implemented in a central-

ized manner, the signaling overhead mainly comes from the process of acquiring CSI, which
can be classified into transmission and interference CSI. Concretely, in the relay-aided D2D
network, the transmission CSI includes the links from CUs to the BS, from DU-TXs to the
corresponding relays, and from these relays to DU-RXs; the interference CSI includes the
links from CUs to the relays and DU-RXs, and from DU-TXs to the BS. When the number
of CUs, DUs and relays are M, N and R, respectively, we can conclude that the signaling
overhead for the CSI measurement in a centralized manner is O(2NR + MR + 2N + 2M)
by using the evaluation method in [56]. In contrast, the signaling overhead for CSI mea-
surements can be reduced to O(2NR) in a distributed manner, which usually comes at
the expense of the global system performance. Note that the number of R is generally
assumed to be larger than that of N and M, so as to ensure the reliability of relay-aided D2D
communication. Thus, the difference in signaling overhead between these two manners is
not significant.

On the other hand, the distributed relay selection mechanism is performed indepen-
dently in each coalition without exchanging information among coalitions, which greatly
reduces the signaling overhead. However, for the DUs within any coalition, in order to
encourage the DUs to achieve the global optimal reward in a collaborative way, each DU
needs to upload its own historical information to the BS, including the actions taken and
data rate obtained. Then, the BS broadcasts the actions of all DUs within a coalition along
with a common reward. All the above information exchanged between the DUs and BS
are numerical data with a size of only a few kilobytes, which leads to a small signaling
overhead. Consequently, this part of the overhead is negligible compared to that incurred
by the former centralized resource allocation mechanism.

In summary, the signaling overhead of our proposed algorithm approximates
O(2NR + MR + 2N + 2M).

7. Numerical Results

In this section, we present numerical results to evaluate our proposed algorithm. In
our simulation, we consider a 30 m × 30 m room in which CUs utilize RF resources for
uplink communication, and relay-assisted DUs want to implement the applications that
require high rate communication; the DUs can choose either the VLC-D2D or RF-D2D
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communication mode. Furthermore, the distance between the transmitter and receiver of
each DU is uniformly distributed and the upper bound is 10 m, which makes cooperation
gain obtained by the combination of VLC and RF the most notable [7]. Moreover, the idle
relays available are evenly distributed and the number is fixed at 50 [57]. To model the
realistic VLC-D2D communication channel, we assume that the irradiance and incidence
angle follow a Gaussian distribution with a mean value of 0◦ and a standard deviation of
30◦ [7]. We repeat the simulations 200 times independently and average the results, thus
mitigating the randomness of the above parameters. Considering the QoS requirements, the
minimum rate thresholds of the CUs and DUs are set to 10 Mbps and 20 Mbps, respectively.
Additional detailed simulation parameters can be seen in Table 1.

Table 1. Simulation Parameters.

General Parameters

Communication activity probability of CUs, µm 0.7

RF Parameters

System bandwidth in RF, BR 20 MHz
Noise Power Spectral Density in RF, NR −174 dBm/Hz

Transmitted power of CUs/DUs/relays, PR
m/PR

s /PR
r 400/200/200 mW

VLC Parameters

Physical area of photodiode, A 10−4 m2

The gain of the optical filter, g f 1
Refractive index, l 1.5

Half-intensity radiation angle, Φ1/2 60◦

Field-of-view of photodiode, Ψ 60◦

O/E conversion efficiency, κ 0.53 A/W
System bandwidth in VLC, BV 20 MHz

Noise Power Spectral Density in VLC, NV 10−21A2/Hz
Transmitted optical power of DUs/relays, PV

s /PV
r 200/200 mW

WoLF-PHC Parameters

Learning rate, δ 0.2
Discount factor, β 0.8

Learning parameter (win), θw 0.4
Learning parameter (lose), θl 0.8

7.1. Performance Analysis of PCG-Based Resource Allocation

At first, by comparing with the exhaustive algorithm (EA), we further demonstrate the
optimability of the proposed coalitional game (PCG)-based resource allocation in practice.
Meanwhile, we give the performance comparison between the proposed joint resource
allocation and relay selection algorithm, namely PCG-WP, and the corresponding IPA. In
this case, we present the D2D system sum rate comparison under the above algorithms by
varying the number of CUs and DUs. Given the high complexity of EA and IPA, we fix the
number of DUs at eight in Figure 5, and fix the number of CUs at two in Figure 6. From
these two figures, on the one hand, we can observe that the sum rate of the D2D system
achieved by PCG is almost close to that implemented by EA, which demonstrate that our
proposed PCG can achieve a sum rate close to EA, but with a lower complexity. On the
other hand, the sum rate gap between PCG-WP and IPA is insignificant. Concretely, the
sum rate of IPA is at most 10% larger than that of PCG-WP.
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Figure 5. Sum rate under EA/PCG and IPA/PCG-WP vs. number of CUs.
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Figure 6. Sum rate under EA/PCG and IPA/PCG-WP vs. number of DUs.

7.2. Performance Analysis of WoLF-PHC for Relays Selection

Then, based on the final coalition structure obtained by PCG, we employ RL algorithms
to reselect relays for the DUs in each coalition. In this simulation, we use Q-learning (QL) as
a comparative algorithm to evaluate the convergence performance of our proposed WoLF-
PHC (WP). In addition, we also show the convergence performance of the algorithms only
exploiting local information, including the neighbor–agent-based WoLF-PHC (NWP) and
the neighbor–agent-based Q-learning (NQL). For the sake of simplicity, we define the NWP
working with λ neighboring users as NλWP, and the same goes for NλQL.

Figure 7 compares the convergence of the above four approaches in terms of the total
reward performance when the number of DUs is 10 and the number of CUs is one. The total
reward is the sum of the rewards received by all coalitions. From Figure 7, the proposed
WP converges to the maximum total reward of about 1150 at nearly 2700 steps, while the
N3WP converges to the close-to-maximum reward of about 1070 at a faster convergence
rate of around 1500 steps. Therefore, the use of N3WP increases the convergence speed by
approximately 44.4% in the case of a total reward loss of 6.9%. By contrast, both the QL
and N3QL fail to converge and exhibit poor performance, despite the N3QL seeming to be
more stable (less fluctuations) than the QL. On the one hand, capitalizing on the “wining or
learning fast” mechanism, the WP-based approaches present a much better convergence
performance than the QL-based approaches. On the other hand, the approaches that
utilize local information (N3WP and N3QL) can greatly reduce the state space, thereby
accelerating the convergence speed but sacrificing the tolerable performance, while the
complexity of IPA grows exponentially. This result further confirms the feasibility of
replacing IPA with PCG-WP.
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Figure 7. Convergence performance of QL and WP based algorithms.

7.3. Performance Comparison

Next, we compare the two proposed schemes, PCG-WP and PCG-N3WP, with the
following five baseline schemes:

(1) Random algorithm (RA). In this scheme, each D2D pair assisted by a randomly
selected relay can randomly use either the VLC resource or RF resource of any CU.

(2) PCG-based resource allocation and random relay selection (PCG-RD). For investi-
gating the potential gain of the joint optimizing of resource allocation and relay
selection, the PCG-RD that optimizes only the resource allocation is considered as a
comparative algorithm.

(3) Random resource allocation and WP-based relay selection (RD-WP). Similar to the
PCG-RD above, the RD-WP that optimizes only the relay selection is regarded as a
comparative algorithm to analyze the joint optimization gain.

(4) Traditional coalitional game [49] and WP-based relay selection (TCG-WP). In this
scheme, the resource allocation problem is addressed by the traditional coalitional
game with random initialization and formation, and the WP method is used for
relay selection.

(5) Best response dynamics (BRD) in [58]. Compared with our proposed cooperative
scheme, each DU in this scheme is selfish and aims at maximizing its own throughput
performance. In both the resource allocation and relay selection stage, every DU simul-
taneously optimizes its actions with respect to the action profile, which is composed
of the actions played by the other DUs in the same coalition at the previous time.

In Figure 8, we evaluate the impact of the number of CUs on the D2D system sum
rate under different schemes. Here, the number of DUs is enlarged to 14 and the number
of CUs varies from one to eight. As the number of CUs increases, the performance of
both the RA and RD-WP declines slightly and then levels off, although that of the RA
exhibits slight fluctuations on the curve due to randomness. The performance degradation
is due to the short distance (up to 10 m) between the transceivers of each D2D pair, which
makes the VLC superior to the RF. When the number of CUs equals one, the probability of
randomly selecting VLC resources for every DU is up to 50%, so the sum rate of both RA
and RD-WP reaches the maximum. However, the performance of the remaining schemes
improves with the increase in the number of CUs, thanks to the rational resource allocation.
Among them, the BRD with the selfish nature exhibits the worst performance, while the
cooperative PCG-WP obtains the best one. This is because each DU in BRD optimizes its
own profit, regardless of the interference introduced to other DUs. When three CUs are
involved, the sum rate of PCG-WP is larger than that of PCG-N3WP, TCG-WP, and BRD
of about 5.2%, 13.3%, and 27.2%, respectively. As the number of CUs increases further,
which implies that the number of DUs within a coalition decreases, PCG-N3WP becomes
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enough to characterize global information and thus achieve almost the same throughput
as PCG-WP. Meanwhile, the sum rate gap between PCG-WP and TCG-WP is gradually
narrowing. This is due to the fact that the switch operations in TCG-WP are no longer
limited by QoS constraints in the case of adequate resources. In addition, when the number
of CUs is five, PCG-WP outperforms PCG-RD and RD-WP by about 19.0% and 44.5%,
which highlights the gain of joint optimization.

Moreover, in Figure 9, we focus on the system performance in terms of the outage
probability, which is calculated as the ratio of users who do not meet the QoS demands
to the total system users. As can be seen, the outage probability declines sharply as the
number of CUs increases. The underlying reason is that more CUs will naturally contribute
to a lower interference. When the number of CUs equals one, BRD shows the worst-case
due to the ping-pong effect between the VLC resource and RF resource of the CU. As
the number of CUs grows, however, its performance surpasses that of RD because the
probability of the ping-pong effect decreases. In combination with Figure 8, it can be
noticed that BRD outperforms RD-WP in terms of the sum rate performance, while its
outage performance is slightly worse than that of RD-WP. This is due to the selfish nature
of BRD, i.e., improving the rate of some DUs at the expense of others. More importantly,
PCG-N3WP achieves almost the same and lowest outage probability as PCG-WP. Note
that TCG-WP initially exhibits a poor performance, and its performance exceeds that of
our proposed PCG-WP and PCG-N3WP when the number of CUs is larger than seven. It
makes sense that when resources are sufficient, an affordable individual DU performance
can be sacrificed for the sake of the overall system performance in our schemes.
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Figure 8. Sum rate of different methods vs. number of CUs.
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Figure 9. Outage probability of different methods vs. number of CUs.

Figure 10 depicts the comparison of the D2D system sum rate for different mechanisms
in the resource-lacking system by fixing the number of CUs at two and varying the number
of DUs from four to 18. It is shown that the increase in the number of DUs can boost the
total throughput, and PCG-WP always achieves the highest total throughput. Moreover,
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with the aggravation of traffic congestion, the gap between PCG-WP and other competitive
schemes is growing. When 18 DUs are involved, PCG-WP results in a 129.2% higher total
throughput than the baseline RA. Another observation is that when the number of DUs
is larger than 12, the performance of all schemes except the proposed PCG-WP and PCG-
N3WP shows little improvement. This can be inferred that without the effective joint gain
of the resource allocation and relay selection, the gain from increasing the number of DUs
alone no longer compensates for the loss from the resulting severe interference. Concretely,
in the context of insufficient resources, PCG has more prominent advantages over TCG in
finding the optimal solutions. The reason is that the QoS requirements of users restrict TCG
to perform switch operations, which leads to deviation from the optimal solution. While
PCG satisfies the QoS demands as much as possible in the initialization stage, the greedy
policy further allows the system to explore more operations in the formation stage, so as
to bring the sum rate performance enhancement. The last observation is that when the
number of DU increases, the advantage of exploiting global information for relay selection
becomes obvious.

In Figure 11, we can observe that the outage probability goes up as the number of
DUs increases because of the fierce competition for resources and relays. In contrast to
Figure 9, the performance of BRD is slightly better than that of RD-WP, which suggests that
an efficient resource allocation scheme may be more important than an appropriate relay
selection scheme in the resource-scarce environment, and vice versa. In addition, increasing
the number of DUs makes the gap between PCG-WP and other algorithms become notable.
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Figure 10. Sum rate of different methods vs. number of DUs.
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Figure 11. Outage probability of different methods vs. number of DUs.

Moreover, we study the impact of the number of neighboring users λ on the system
performance in terms of the sum rate of the D2D system and convergence rate. The
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convergence rate is indicated by the reciprocal of the number of iterations to converge.
In Figure 12, the number of CUs remains as two and the number of DUs equals 18. As
expected, if λ decreases, the sum rate decreases as well, while the convergence rate increases
greatly. More specifically, the decrease in λ from seven to three decreases the sum rate
by 10.3%, and also decreases the number of iterations to converge by 82.9%. Obviously,
PCG-NWP trades a smaller throughput loss for a significantly faster convergence rate. In
this regard, users can make a trade-off between throughput and convergence performance
according to preferences and practical constraints.
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Figure 12. System performance for different number of neighboring users λ.

7.4. Summary of Main Results

In order to present the results of this article more clearly, this section summarizes the
main conclusions as follows:

(1) In the stage of Resource Allocation, our proposed PCG can achieve a sum rate close to
EA, but with a lower complexity.

(2) Compared with WoLF-PHC (WP), the neighbor–agent-based WoLF-PHC (N3WP)
increases the convergence speed by approximately 44.4% in the case of a total reward
loss of 6.9%.

(3) Our proposed WP presents a much better convergence performance than the QL-based
approaches.

(4) The approaches that utilize local information (N3WP and N3QL) can greatly reduce
the state space, thereby accelerating the convergence speed.

(5) Just randomly optimizing the Resource Allocation or Relays Selection policy cannot
make the overall performance maximization. Appropriate methods applied to joint
optimization are indispensable.

(6) In the resource-lacking system, our proposed WP or NWP shows greater advantages.

8. Conclusions

In this paper, we proposed an efficient joint resource allocation and drone relay se-
lection algorithm with a low complexity and signaling overhead for large-scale IoT. With
randomly selected relays from a delineated area, the two-phase coalitional game-based algo-
rithm was proposed to solve the resource allocation problem. Then, the WoLF-PHC based
algorithm was proposed to solve the relay selection problem. Meanwhile, the lightweight
neighbor–agent-based WoLF-PHC was introduced to further reduce the complexity. Simu-
lation results demonstrated that our algorithms outperformed the considered benchmarks,
especially in traffic congestion scenarios. Moreover, the appropriate number of neighboring
users can be chosen based on preferences and practical constraints when applying our relay
selection algorithm.
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The following abbreviations are used in this manuscript:

D2D Device-to-Device
VLC Visible Light Communication
IoT Internet of Things
QoS Quality of Service
WoLF-PHC WoLF policy hill-climbing
MARL Multi-agent Reinforcement Learning
UAVs Unmanned Aerial Vehicles
VLC/RF Visible Light Communication/Radio Frequency
RL Reinforcement Learning
EA Exhaustive Algorithm
PCG Proposed Coalitional Game
RA Random Algorithm
PCG-RD PCG based Resource Allocation and Random Relay Selection
RD-WP Random Resource Allocation and WP based Relay Selection
TCG-WP Traditional Coalitional Game and WP based Relay Selection
BRD Best Response Dynamics
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