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Abstract: In emergency rescue missions, rescue teams can use UAVs and efficient path planning
strategies to provide flexible rescue services for trapped people, which can improve rescue efficiency
and reduce personnel risks. However, since the task environment of UAVs is usually complex,
uncertain, and communication-limited, traditional path planning methods may not be able to meet
practical needs. In this paper, we introduce a whale optimization algorithm into a deep Q-network
and propose a path planning algorithm based on a whale-inspired deep Q-network, which enables
UAVs to search for targets faster and safer in uncertain and complex environments. In particular, we
first transform the UAV path planning problem into a Markov decision process. Then, we design a
comprehensive reward function considering the three factors of path length, obstacle avoidance, and
energy consumption. Next, we use the main framework of the deep Q-network to approximate the Q-
value function by training a deep neural network. During the training phase, the whale optimization
algorithm is introduced for path exploration to generate a richer action decision experience. Finally,
experiments show that the proposed algorithm can enable the UAV to autonomously plan a collision-
free feasible path in an uncertain environment. And compared with classic reinforcement learning
algorithms, the proposed algorithm has a better performance in learning efficiency, path planning
success rate, and path length.

Keywords: deep reinforcement learning; deep Q-network; whale optimization algorithm; multi-UAV;
path planning

1. Introduction

Due to the continuous development of multi-sensor data fusion technology and
autonomous flight control technology, Unmanned Aerial Vehicles (UAVs) have become an
important tool in the field of emergency rescue. Particularly, in the face of natural disasters
and emergencies, UAVs are widely used in search and rescue operations [1], for example,
the 9.0-magnitude earthquake in Japan in 2011 [2], the 8.1-magnitude earthquake in Nepal
in 2015 [3], and Hurricane Harvey in Texas in 2017 [4], which caused massive damage and
casualties. UAVs were used to assist rescue teams to provide necessary rescue services
for trapped people in danger. However, due to the lack of effective path planning, some
UAVs collided during the flight, resulting in mission delays and resource waste, and even
secondary disasters, which posed additional risks to both rescue workers and trapped
people. Therefore, effective and collision-free path planning is critical for the successful
rescue mission of UAVs. A better path planning strategy can avoid collisions between
UAVs or even with buildings or other obstacles, improve rescue efficiency, and ensure the
smooth progress of rescue operations [5].

The complexity of the rescue environment is the primary challenge of the path plan-
ning problem [6]. In general, obstacles (e.g., buildings, bridges, trees, gravel) in the disaster
area are relatively messy, and the geographical environment is complex. Planning a
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collision-free flight path for UAVs has practical significance in assisting rescue missions.
At present, some studies [7–10] (e.g., the A star algorithm, Dijkstra’s algorithm, and the
Bellman–Ford algorithm) have been used in collision-free path planning algorithms. These
algorithms evaluate the quality of the path with certain rules and heuristic functions on
the existing map and perform path planning by searching and optimizing to find the best
path. However, some disasters may change the inherent topography of the affected area
and damage the structure of buildings and infrastructure, which will cause unexpected
changes in the task area.

For this reason, it is more practical to study the path planning problem in an uncer-
tain task environment. In a disaster environment, the communications and navigation
infrastructure may not be able to function properly, requiring UAVs to perform tasks au-
tonomously without a GPS signal or effective communication with the ground command
centers [11], which will cause traditional path planning algorithms to fail to obtain the
latest maps and environmental information. In addition, unforeseen changes may occur in
disaster environments, such as road damage, obstacles, and personnel evacuations. These
changes will put forward higher requirements for path planning and navigation algorithms
that can adapt to environmental changes in real time and quickly re-plan paths to meet
these challenges. Traditional algorithms are usually designed based on specific maps and
road network structures. When the map changes, the algorithm may not be able to adapt to
the new environment. In order to meet these challenges, it is necessary to adopt more flexi-
ble and real-time path planning algorithms, such as the path planning algorithm based on
reinforcement learning. The path planning algorithm based on reinforcement learning has
the advantages of adaptability, real-time planning, and a learning ability. Researchers try to
introduce the reinforcement learning (RL) model into the path planning algorithm [12–14]
and learn flexible and feasible strategies through the continuous trial and error of the agent
in unknown environments.

However, training RL models requires a large amount of training data, training time,
and computing resources [15]. In addition, as the complexity of the task environment increases,
RL-based path planning algorithms face challenges when dealing with complex environmental
constraints (such as avoiding dangerous areas or other agents, energy constraints, and time
constraints). It is necessary to design appropriate state representation and action selection
strategies. The heuristic algorithm can provide prior knowledge for the reinforcement learning
model by considering and dealing with these complex constraints using certain rules and
heuristic functions. For example, the genetic algorithm [16] uses operations such as selection,
crossover, and mutation; the particle swarm algorithm [17] updates the velocity and position of
particles; and the bee colony algorithm [18] uses a local search and information exchange. These
algorithms then combine fitness functions and constraints to generate UAV path solutions that
adapt to the environment. These heuristic algorithms have advantages in terms of computa-
tional efficiency, data requirements, and solution speed, and they can effectively reduce path
redundancy and unnecessary trial and error.

To this end, we propose a multi-UAV path planning algorithm based on a whale-
inspired deep Q-network (WDQN). Specifically, we use the deep Q-network (DQN) as the
framework and design a comprehensive reward function to balance the three factors of
path length, obstacle avoidance, and energy consumption. Then, a deep neural network
is used to approximate the Q-value function, and the comprehensive reward function is
used to evaluate and reward the planned path in real time during training. In addition,
the WoA is introduced when training the DQN, and the WoA balances exploration and
exploitation to help the DQN model explore a wider range of actions and states, enabling it
to discover new and possibly better strategies. Moreover, the search strategy is dynamically
adjusted according to the fitness of the solution to help the DQN model to focus the search
on promising areas of the state–action space, thereby improving the convergence speed and
learning efficiency. Simulation experiments show that the proposed algorithm can enable
UAVs to explore unknown and complex environments and plan collision-free feasible paths.
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Finally, compared with the classic RL algorithm, the WDQN has a better performance in
learning efficiency, path planning success rate, and path length.

The main contributions of this paper are as follows:

• We combine a WoA and DQN to propose a path planning algorithm for UAV-assisted
disaster rescue. The introduced WoA significantly improves the learning efficiency of
the DQN, and the designed comprehensive reward function effectively improves the
sparse reward problem of the RL algorithm in complex environments.

• We train the model with increasing scene complexity to improve the robustness and
generalization of the algorithm. During the training phase, we gradually increase
the number of obstacles in the task scene, so that the UAV can gradually adapt to the
complex environment and learn a better pathfinding strategy.

• Compared with the global path planning algorithm, this algorithm is suitable for
disaster areas with limited communication and has good scalability; that is, it can apply
the experience learned in the training process to unknown environments. In addition,
the comparative experiments with the classical RL algorithms show that the WDQN
has a better training efficiency and path planning ability.

The rest of the paper is organized as follows. In Section 2, we introduce research work
related to this paper. The construction of a disaster scenario and the formulation of the
rescue problem are described in Section 3. In Section 4, the WDQN-based multi-UAV path
planning algorithm proposed in this paper is described in detail. In Section 5, the relevant
parameters of the algorithm are introduced, and experiments are carried out to validate the
proposed algorithm. The full text is summarized in Section 5.

2. Related Works

Multi-UAV reliable communication and path planning in emergency rescue scenarios
are two current research hotspots [19–21]. On the one hand, the development of UAV
communication security is constantly advancing in the direction of encrypted commu-
nication technology [22], anti-jamming technology [23], and anti-attack technology [24].
On the other hand, the development of path planning for UAVs is shifting from methods
based on known maps to exploring unknown environments. In this paper, we assume that
the communication environment of multi-UAVs is reliable and focus on the collision-free
path planning algorithm in emergency scenarios. The following reviews the existing path
planning algorithms from two aspects, namely global path planning based on a fully known
environment and local path planning based on an uncertain environment [25].

2.1. Global Path Planning

Global path planning based on a completely known environment is a static planning
algorithm. Global path planning is to calculate the optimal path from the starting point
to the end point through an algorithm based on the known environmental map. Com-
mon global path planning algorithms include Dijkstra’s algorithm, the A* algorithm, the
sampling-based Rapidly Exploring Random Tree Star (RRT*) algorithm, etc.

Dijkstra’s algorithm is widely used in solving the shortest path problem in weighted graphs.
Dijkstra’s algorithm is an efficient choice, especially when the target is uncertain. However, its
time complexity and space complexity are relatively high, which is not suitable for complex
environments. In order to avoid the sequential bottleneck problem that may occur in Dijkstra’s
algorithm, Wang et al. [26] first used the extended hierarchical graph to model the dynamic
grid environment, then used the matrix alignment method to perform parallel exploration
in the simulated environment, and finally traced the safe path according to the navigator
matrix. This method shows a good performance in a large-scale dynamic grid environment.
The A* algorithm is currently one of the most widely used graph traversal and path exploration
techniques, which is an extension of the Dijkstra algorithm. The traditional A* algorithm has
the advantages of simple principles and a fast calculation speed. But as the map grows larger,
its computational load will increase exponentially, resulting in a high memory usage, long
computing time, and low exploration efficiency [27]. To this end, Guilherme et al. [28] proposed
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an improved A* algorithm for UAVs for target search and rescue, which introduced a truncation
mechanism to prevent UAVs from falling into the local optimum. The RTT* algorithm has great
advantages in search efficiency and search quality, and it has been successfully applied in the
field of unmanned driving and UAV navigation. Since the classic RTT* algorithm adopts a fixed
step size expansion strategy, setting the step size too large or too small will directly affect the
search results. To this end, Wang et al. [29] designed a dynamic step size strategy. When the
underground intelligent vehicle is far away from obstacles, a larger step size is used to speed
up the convergence speed; when it is close to obstacles, a smaller step size is used to ensure
the safety of the path. Hu et al. [30] first used the bidirectional extending random tree search
strategy to plan the static path and then pruned the random tree according to the change in
environmental information, so as to reduce the calculation amount of the RRT* algorithm in
uniform random sampling. Compared with the classic RRT algorithm, the improved algorithms
converge faster and have higher accuracy in path planning. But it is easy for them to fall into local
optimum, and the energy of the system is relatively large. Therefore, intelligent algorithms, such
as PSO and the WOA, are often used to improve efficiency and quality. Dong et al. [31] used the
Adaptive Whale Algorithm (AWOA) to optimize the deployment of UAVs, used the variable
length population strategy to find the optimal number of stopping points, and introduced
nonlinear parameters and partial mutation rules to balance exploration and exploitation, so
as to minimize the energy consumption of UAVs. Yu et al. [32] improved the PSO algorithm
through the simulated annealing algorithm, and proved by experiments that the algorithm can
plan high-quality paths for UAVs.

The performance of the global path planning algorithm is highly dependent on the
predicted environment information. When the task environment of UAVs undergoes
unpredictable changes, the paths planned by these methods will no longer be reliable.

2.2. Local Path Planning

Local path planning based on uncertain environments belongs to the dynamic program-
ming algorithm. When the environmental information is completely unknown or partially
known, this type of algorithm uses the local information obtained by UAVs to plan a collision-
free path. Classical local path planning usually introduces technologies such as the dynamic
window method (DWA), the artificial potential field method, and reinforcement learning. These
algorithms have a good robustness to environmental errors and noise.

Traditional DWA algorithms prefer to bypass the periphery of the dense obstacle area,
which increases the total distance. Additionally, the objective cost function fails when a
“C”-shaped obstacle is encountered, resulting in no path [33] being found. Tan et al. [34]
introduced the concept of the obstacle search angle to the traditional DWA. When the static
obstacle is not within a certain angle range of the agent’s forward direction, the impact on
the agent’s subsequent navigation is not considered, which improves the adaptability of
obstacle avoidance in different scenarios. The artificial potential field method simulates
the repulsive field generated by obstacles and the gravitational field generated by the end
point, so that the robot can avoid obstacles in the task environment and move forward
to the end point. This method is relatively simple in theory and operation, but there
are also problems, such as unreachable goals and the way it is easy to fall into the local
optimum [35]. To this end, Sun et al. [36] introduced the gravity barrier function in the
repulsion function and further restricted the flight boundary and flight speed of the UAV,
so as to avoid falling into the local optimum and improve the safety and stability of the
track route. However, the ability to deal with unknown task environments using methods
based on the artificial potential field method is limited.

In recent years, methods based on reinforcement learning have been widely used.
The Q-learning algorithm is one of the commonly used reinforcement learning methods,
in which UAVs can learn the optimal action strategy by interacting with the environment.
For example, Souto et al. [37] used Q-learning as a reinforcement learning technique to
control the UAV to move to the target, aiming to reduce its energy consumption in the
disaster area rescue process. However, the Q-learning algorithm faces challenges when
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dealing with continuous state and action spaces. To solve this problem, deep reinforce-
ment learning (DRL) is introduced into local path planning tasks. DRL not only has the
powerful perception and representation ability of a deep neural network when processing
high-dimensional decision-making information but also inherits the learning mechanism of
reinforcement learning in the interaction with the environment, which can realize real-time
path planning for agents [38]. Among them, the DQN is one of the most classic meth-
ods. Zhang et al. [39] transformed the trajectory optimization problem into a constrained
Markov decision process with a UAV as an agent and proposed a trajectory planning
method based on the deep Q-network. Although the DQN is effective in obstacle avoidance
and path planning, the algorithm has the problems of large randomness in action selection
and slow convergence during training. To this end, Huang et al. [40] proposed the Dueling
DQN algorithm based on the tree sampling mechanism. In addition, Wang et al. [41]
proposed a DDQN based on a greedy strategy to solve the problem of mountain rescue in
complex environments.

These algorithms enable UAVs to perform tasks in uncertain environments. Due to
the lack of a grasp on global information, the planned path may not be optimal or even
feasible. In addition, the path planning problem in an unknown environment needs to
consider multiple possible states and transition probabilities, which will lead to a high
computational complexity of the algorithm.

3. System Model

In order to simulate the real flight environment, a disaster search and rescue environ-
ment model is established first, which is the basis of UAV path planning. In this disaster
search and rescue environment, the operating environment of UAVs is considered a two-
dimensional nonlinear horizontal plane. The scientific issues considered in this paper are
described as follows. In a complex and unknown disaster environment, multiple UAVs
autonomously avoid unknown environmental obstacles during high-speed movement,
search, approach, and find trapped people in the shortest possible time, aiming to provide
reliable action routes and more time for rescue teams. Each UAV is considered a particle
moving in two dimensions, independently making new decisions at all times to find its tar-
get. As shown in Figure 1, we model the entire auxiliary rescue mission from three aspects:
environment information processing, value function acquisition, and action selection.

3.1. Environment Information Processing

The environmental information processing module converts the current environmental
information of the UAV into a state representation. In the search process, many objects
can be regarded as obstacles, such as trees, houses, mountains, etc. For the convenience
of discussion, Figure 1a is a simplified environment model of a multi-UAV auxiliary
rescue mission. We first divide the entire rectangular task area < = Hx × Hy into M

cells and denote the position of the i-th cell as
(

hi
x, hi

y

)
, where 1 < i < M. Let N denote

the number of UAVs participating in the disaster search and rescue mission, which are
distributed in the entire mission area. We use

(
pt

uxj, pt
uyj

)
∈ < to represent the position of

UAVj at time t, where 1 < j < N. In the case of a fixed scanning angle, the flight altitude
of the UAV is directly proportional to the coverage radius of the scanning area. Therefore,
for each cell, the UAV’s flight altitude can be adjusted based on a determined coverage
radius to achieve accurate coverage of each cell. In other words, the UAVj flight altitude
al j can be calculated based on the fixed scanning angle θ and coverage radius crj using

the formula alj = crj

/
tan
(

θ
2

)
. O is the set of obstacles in the environment, which are

randomly distributed in the task area. Let
(

poxk, poyk

)
∈ < denote the position of obstacle

k. Considering that the people on the ground will be trapped in the ruins when the house
collapses, the movement of the trapped people is often limited by the space environment,
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and it is assumed that the position of the trapped people does not change with time.
The coordinates of the trapped person j(1 < j < N) can be denoted by

(
ptxj, ptyj

)
.
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Q function

state

0a 3a 6a
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Figure 1. The schematic diagram of multi-UAV collaborative path planning based on reinforce-
ment learning.

3.2. Value Function Acquisition

The purpose of the value function acquisition module is to train a path planning policy
network for UAVs through learning algorithms. In this module, we build a neural network
to represent the Q function, which consists of an input layer, multiple hidden layers, and an
output layer. The input layer receives the current state representation as input, which
represents the currently known information about the environment and the state of each
UAV. The hidden layer maps the input to a higher-level feature representation through
the calculation of multiple layers of neurons and the processing of activation functions.
The output layer gives the Q-value of each possible action and selects the optimal action to
guide the UAV’s behavioral decision making. The details will be introduced in Section 4.

3.3. Action Selection

The UAV has a fixed field of view (FOV) and can randomly select any surrounding cells
to move during flight. As shown in Figure 1c, the movement of the UAV mainly includes the
following nine actions: east, south, west, north, southeast, southwest, northeast, northwest,
and hovering. The action selection module first selects the optimal action according to the
action value function and then transmits it to each UAV in the environment in the form
of coordinates.

4. Method

In order to reduce the frequency of blind trial and error for UAVs in the search
process, we design a whale-inspired deep Q-network. A WOA is used to accumulate
prior knowledge about action selection. In this section, we first briefly introduce the basic
principles of the WOA and DQN then introduce the proposed algorithm in detail.

4.1. Action Decision Based on WoA

The WoA is an optimization algorithm inspired by the foraging behavior of whales in
nature. Each UAV is considered a whale, and there are three hunting models for each whale,
which are the encircling model, the searching model, and the bubble-net attacking model.
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4.1.1. Encircling Model

At this time, the whale chooses to swim towards the optimal individual, and the posi-
tion update formula of the whale is as follows.

Xi(t + 1) = Xbest(t)− A · ‖C · Xbest(t)− Xi(t)‖, (1)


A = 2a · β1 − a

C = 2β2
a = 2− t/T

(2)

where t represents the current number of iterations, Xbest. represents the whale currently in
the optimal position, β1 and β2 represent random variables in the range of (0, 1), respec-
tively, and T represents the maximum number of iterations. The initial value of a is set to 2;
it will decrease to 0 as the number of iterations increases.

4.1.2. Searching Model

At this time, the whale randomly selects an individual to approach, and the position
update formula of the whale is as follows.

Xi(t + 1) = Xrand(t)− A · ‖C · Xrand(t)− Xi(t)‖, (3)

where Xrand is the position of the whale randomly selected in the current group.

4.1.3. Bubble-Net Attacking Model

Whales also need to constantly adjust their position when using bubble nets to drive
away prey. In this case, the position update formula of the whale is as follows.

Xi(t + 1) = ‖Xbest(t)− Xi‖ · ebl · cos(2πl) + Xbest(t) (4)

In the formula, b is a constant, and the default value is 1. l is a random number
uniformly distributed in the range (0, 1).

4.2. Path Exploration Based on DQN

RL is a machine learning method. The agent obtains feedback and rewards from the
environment by constantly trying different actions and gradually forms an optimal strategy.
The interaction process between the agent and the environment can be represented by the
quaternion (S, A, R, P, γ) of the Markov decision process (MDP), where S represents the
state space of the agent, A represents the action space of the agent, R = S× A represents
the immediate reward obtained by the agent after taking an action in the current state,
P : S× A× S → [0, 1] represents the transition probability of the agent from the current
state to the next state after taking an action, and γ is a discount factor.

The core idea of the DQN is to use a deep neural network (DNN) to approximate the
Q-value function used to evaluate the value of taking a specific action in a given state, thereby
maximizing the discounted cumulative reward R in the reinforcement learning environment.

Rt =
T

∑
i=t

γi−tr(si, ai) (5)

where γ ∈ [0, 1] represents the discount factor and r represents the instant reward obtained
at time t.

The DQN uses the basic idea of a Q-learning algorithm, which is to guide the agent to
take the best action in a given state by learning a value function Q(s, a). Unlike traditional
Q-learning, the DQN uses a DNN to approximate the optimal value function. Specifically,
a Q-network takes a state s as input and outputs a corresponding Q-value a to each action.
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By optimizing the parameters of the Q-network, it can accurately predict the cumulative
reward of performing each action in a given state; that is,

Q(s, a; θ) ≈ Q(s, a) (6)

And the Q-function is shown in Equation (7).

Qπ(s, a) = Eπ [Rt|St = s, At = a ] (7)

where θ represents the weight of the Q-network. The optimal Q-function is shown in
Equation (8).

Q∗π(s, a) = max
π

Qπ(s, a) = max
π

Eπ [Rt|St = s, At = a ] (8)

The function Q∗ returns the maximum reward of all strategies, which can be expressed
by the Bellman equation as follows.

Q∗π(s, a) = E[yt], (9)

yt = rt + γ max
at+1

Q
(
st+1, at+1; θ′

)
, (10)

where st+1 and at+1 represent the subsequent state and action in the next time step, respec-
tively. θ′ represents the weight of the target Q-network, and yt represents the target value.

In the DQN, the parameters θ of the Q-network are updated by optimizing the loss
function, that is, minimizing the mean square error between the target Q-value and the
current Q-value. The formula of the loss function is as follows.

Loss(θ) = E

[(
rt + γ max

at+1
Q
(
st+1, at+1; θ′

)
−Q(s, a; θ)

)2
]

(11)

We choose the gradient descent method to update the parameters of the Q-network to
gradually approximate the true Q-value function. The update formula of parameter θ is

θ = θ − α · ∇Loss(θ), (12)

∇Loss(θ) = ∇
(

rt + γ max
at+1

Q
(
st+1, at+1; θ′

)
−Q(s, a; θ)

)2
(13)

where a represents the learning rate, which is used to control the step size of the parameter
update. ∇ represents the gradient operation, and ∇Loss(θ) represents the gradient of the
loss function with respect to the network parameters. The network parameters are updated
iteratively, so that the Q-function gradually approaches the true Q-value function. Finally,
we can obtain the appropriate action through the well-trained network.

4.3. The Autonomous Path Planning Strategy Based on WDQN

For the path planning task, we proposes a whale-inspired DQN algorithm. The core
idea of the WDQN is to use the WOA to provide the DQN with the decision-making
experience required for training, improve the interaction efficiency between agents and the
environment, and accelerate the convergence speed of the DQN algorithm. The framework
of the WDQN algorithm consists of four parts, as shown in Figure 2. First of all, the input of
the proposed algorithm is a two-dimensional vector composed of the real-time position of
each UAV and the environment information. Second, we design a comprehensive reward
function to generate dynamic rewards in real time based on environment information,
which enables UAVs to have a good control performance. Then, each UAV is regarded as a
whale, and the corresponding fitness function value is calculated according to the reward
obtained during training. The action decision output by the WOA is added to the replay
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buffer of the Q-network for training, so that the model can obtain more valuable experience
in the early stage of training. Finally, we increase the complexity of the environment step
by step to improve the robustness and generalization of the algorithm.

 

 

 

 

 

 

upgrade the difficulty of the flight environmentObstacles

UAV nine directions of flight

DQN training process
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Update the optimal solution Update the positions of whales
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Figure 2. The framework of WDQN algorithm.

4.3.1. Reward Function

The setting of the reward function is crucial to the performance of reinforcement learning
algorithms. Choosing an appropriate reward function can effectively promote the convergence of
the algorithm, while an inappropriate one may make it difficult for the algorithm to converge [42].
In traditional reinforcement learning algorithms, a learner is rewarded only after completing
a task, and there is no reward for the previous series of behaviors. It has been pointed out
that this reward mechanism can lead to the sparse reward problem when faced with complex
environments [43]. When the set of environmental states is large, the learner encounters a
series of nonfeedback states before completing the task. Since effective rewards cannot be
obtained in time, the algorithm will be difficult to converge. To solve this problem, we design a
comprehensive reward function, as shown in Equation (14).

R = Rtarget + Ravoid + Rcost (14)

The reward function is divided into three parts: the target reward function Rtarget, obstacle
avoidance reward function Ravoid, and energy consumption reward function Rcost, which are
used to evaluate the directionality, safety, and efficiency of the model, respectively:

(1) The target reward function Rtarget is used to guide the UAV to quickly reach the
target position, which is calculated using the following formula.

Rtarget =

{
1000, i f success f ul

β1 ·
(
dorigin

/
ddistance

)
· D, else (15)

dorigin =

√(
p0

uxj − ptxj

)2
+
(

p0
uyj − ptyj

)2
, (16)

dt
distance =

√(
pt

uxj − ptxj

)2
+
(

pt
uyj − ptyj

)2
, (17)

where β1 represents the weight of the target reward function, dorigin represents the initial
Euclidean distance between the UAV and the target node, dt

distance represents the Euclidean
distance between the UAV and the target node at time t, and D = dt−1

distance − dt
distance

represents the displacement of the UAV from time step t− 1 to t.
(2) The obstacle avoidance reward function Ravoid is a negative reward used to measure

the safe distance between the UAV and nearby obstacles. This function can guide the UAV
away from obstacles and ensure the safety of the planned path, which is calculated using
the following formula.

Ravoid =

{
−1000, i f collision

−β2 · exp(dnearobs), else
, (18)
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where β2 represents the weight of the obstacle avoidance reward function and dnearobs
represents the distance between the UAV and nearby obstacles. If there are no obstacles
around the current position of the UAV, then dnearobs = 0; otherwise, calculate the sum of
the Euclidean distances to all surrounding obstacles.

(3) To make the UAV tend to plan shorter paths, the Rcost is designed as a reward
function to measure the remaining energy, which is also a negative reward. It can be seen
from the following formula that the faster the search, the higher the reward.

Rcost = −β3 · exp
(

Bcost
/

Borgina
)
, (19)

where β3 represents the weight of the energy consumption reward function, Bcost represents
the current energy consumption value, and Borgina represents the initial energy value.

4.3.2. Complexity of Task Scene

In this paper, the reinforcement learning model is trained in the form of the complexity
of the task scene. In order to simulate the disaster-affected scene, we assume that the
task scene of UAVs contains Nobs obstacles (e.g., buildings trees, and vehicles), and use
a quaternion (x, y, l, w) to identify the attributes of each obstacle. Among them, x and y
represent the abscissa and ordinate of the obstacle center, respectively, and l and w represent
the length and width of the obstacle, respectively. Obviously, as the number of obstacles
increases, the complexity of the UAVs path planning increases. Therefore, we assume that
the complexity L of the task scene is proportional to the number of obstacles Nobs, and the
initial complexity of the training scene is L0 = 1. Specifically, Nobs is a random integer
in the interval [L, 2L]. In the initial stage of training, we use simple and easily avoidable
obstacles to enable the UAV to quickly learn basic path planning techniques. As the training
progresses, when the number Nsuc of UAVs that find the target is greater than 80% of the
total number of UAVs N, the complexity L of the scene will be upgraded, meaning that the
terrain becomes gradually more complex and the passage becomes narrower. Otherwise,
the difficulty remains the same. Namely,

L =

{
L + 1, i f Nsuc > 0.8 · N

L, else
(20)

4.3.3. WDQN for Multi-UAV Path Planning

In this paper, we use the Adam algorithm to adaptively adjust the learning rate and
optimize the model parameters by calculating the first-order moment estimation and
second-order moment estimation of the gradient, so as to speed up the convergence speed
of the model and improve the robustness and stability of the algorithm. The update formula
of the parameters is as follows.

θt = θt−1 − α ·
∧

mt√
∧
vt + σ

, (21)

where
∧

mt represents the value of the first-order moment estimator mt after bias correction,
∧
vt represents the value of the second-order moment estimator vt after bias correction,
and σ = 10e−8 is an offset used to prevent division by zero.

∧
mt =

mt

1− µt
1

, (22)

∧
vt =

vt

1− µt
2

, (23)

mt = µ1 ·mt−1 + (1− µ1) · ∇Loss(θ), (24)
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vt = µ2 · vt−1 + (1− µ2) · ∇Loss(θ), (25)

where µ1 and µ2 represent the exponential decay rates of the first-order moment estimation
and second-order moment estimation, respectively.

In order to guide the UAV to choose actions reasonably, we use the ε−greedy strategy to
balance exploration and utilization, thereby preventing the algorithm from falling into the
local optimum. Decreasing ε gradually during the training process makes the Q-network
perform more random exploration in the initial stage, which is beneficial to try more actions.
As the training progresses, gradually decrease ε to make it more inclined to choose the
optimal action for a better performance. The update formula of ε is as follows.

ε = max
(

εmin − 1
T

· t + 1, εmin

)
, (26)

where εmin represents the minimum value of the exploration rate.
In summary, we give a detailed description of the WDQN-based multi-UAV au-

tonomous path planning algorithm (see Algorithm 1).

Algorithm 1 Pseudocode of simulated WDQN

Input: Q-network weights θ, maximum iterations T, learning rate α, number of whales W,
discount factor γ;

Output: The optimal policy π;
1: Initialization the Q network, initialization the positions of UAV and the trapped people,

initialization the level of obstacles L, initialization Q network Q and target Q-network
Q′, initialization greedy probability ε, set t = 0;

2: for t < T do
3: while Puavs! = Pobstacles and Puavs! = Ppeople do
4: update ε according to Equation (26)
5: eps = random(0, 1)
6: if eps > 2ε then
7: at = arg maxaQ(st, at; θ)
8: else if ε < eps ≤ 2ε then
9: at selected according to WoA

10: else
11: at selected a random action
12: end if
13: execute action at and observe reward rt and new state st+1
14: store the transition (st, at, rt, st+1) into replay buffer
15: set st = st+1
16: if replay buffer is full then
17: sample random minibatch of transition (st, at, rt, st+1) from replay buffer
18: set target value yt according to Equation (10)
19: calculate the loss Losst according to Equation (11)
20: calculate gradient ∇Losst according to Equation (13)
21: update the first moment estimator according to Equation (24)
22: update the second moment estimator according to Equation (25)
23: calculate bias-corrected first moment estimator according to Equation (22)
24: calculate bias-corrected second moment estimator according to Equation (23)
25: update Q-network weights according to Equation (21)
26: every C steps set Q′ = Q
27: end if
28: end while
29: calculate level of obstacles L according to Equation (20)
30: end for
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5. Simulation Results and Analysis
5.1. Simulation Settings

In order to better explore and learn the optimal path planning in different environ-
ments, it is necessary to train the WDQN model first. In the training phase, we simulated
a 100 m× 100 m task area, in which we set up six randomly distributed UAVs and six
randomly distributed trapped people. In addition, we gradually increased the complexity
of the task scene to improve the training performance of the DQN. The initial complexity of
the model training is 1, which means that the initial number of obstacles in the task scene
is a random integer in the interval [1, 2]. The maximum complexity of the model training
is 10, and in this case the number of obstacles in the task scene is a random integer in the
interval [10, 20].

A whole task environment consists of four parts: background, obstacles, UAVs, and
targets. Figure 3 shows three examples of initial task environments with different complex-
ities in a 100 m× 100 m task area at the test time. It can be seen that the red pentagrams
represent targets, the Y-shaped marks of different colors represent UAVs with different
numbers, and the black rectangles represent obstacles.

 

 

 

 

 

 

 

(a) Level 1

 

 

 

 

 

 

 

(b) Level 5

 

 

 

 

 

 

 

(c) Level 10

Figure 3. Examples of initial task environments with different complexities.

This paper uses the machine learning library PyTorch to build and train the WDQN.
Table 1 describes the main parameters involved in the training phase of the model. At the
beginning of each episode of the model training phase, the task environment is randomly
initialized, including the positions of entities such as UAVs, targets, and obstacles. Each
episode is terminated when the UAV hits an obstacle or runs out of battery or successfully
finds the target.

Table 1. Summary of hyperparameters involved in training phase

Symbol Description Value

T maximum episode 10,000
α learning rate 0.001
γ discount factor 0.9

batsize batch size 128
bu f size buffer size 100,000

εmin
the minimum of the

exploration rate 0.1

µ1
exponential decay rate of the

first moment estimate 0.9

µ2
exponential decay rate of the

second moment estimate 0.999

The constants β1, β2, and β3 in Equations (15), (18), and (19), respectively, represent
the weights of the target reward function, the obstacle avoidance reward function, and
the energy consumption reward function. The value range of these parameters is usually
between [0, 1], and β1 + β2 + β3 = 1, indicating the importance of the corresponding
reward function. When β1 = 0, the target reward function does not work, and the path
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planning algorithm will not give priority to reaching the target position but may pay more
attention to the optimization of obstacle avoidance and energy consumption. When β2 = 0,
the obstacle avoidance reward function does not work, and the algorithm is prone to
collisions. When β3 = 0, the energy consumption reward function will not work, and the
algorithm will not give priority to the energy consumption index, which will easily increase
the path cost. Therefore, appropriate values of β1, β2, and β3 should be selected to meet
the requirements of the task.

The performance of the WDQN algorithm with different reward function weight
combinations is shown in Table 2. It shows the data obtained by taking the average value
of 50 experiments in the scene of 100 × 100, with an obstacle complexity level of 7 and the
number of targets set to six. Since this paper is applied in the emergency rescue scenario, it
is most important to find a path to the trapped people; that is, the value of β1 should not be
too small. When the value of β2 is too small, the ability of the algorithm to avoid obstacles
will be reduced. And when the value of β3 is too small, the path cost of the algorithm
will increase. Therefore, comprehensively considering the three indicators of success rate,
collision rate, and path length, we set β1 = 0.7, β2 = 0.2, and β3 = 0.1. In this case, the
algorithm achieves the best results.

Table 2. The performance of the WDQN algorithm with different reward function weight
combinations.

β1 β2 β3 Success Rate Collision
Rate

Average
Path Length

0.5 0.4 0.1 85.1% 3.3% 512.93
0.5 0.3 0.2 83.8% 6.7% 447.21
0.5 0.2 0.3 73.3% 19% 367.33
0.5 0.1 0.4 61.7% 33.7% 301.79
0.6 0.3 0.1 90% 8.7% 331.71
0.6 0.2 0.2 73.3% 16.7% 298.62
0.6 0.1 0.3 73% 23% 256.65
0.7 0.2 0.1 96.8% 3.67% 262.75
0.7 0.1 0.2 93% 14% 260.85

The learning rate is a very important hyperparameter in the deep learning algorithm,
which has an important impact on the training performance of the reinforcement learn-
ing model. In order to select appropriate parameters, we conducted seven independent
experiments to compare the training performance of the WDQN under different initial
learning rate settings, as shown in Figure 4. In terms of changes in the cumulative reward
curve, when the learning rate is 0.01, the performance of the model is the worst. When the
learning rate is 0.001, the training performance is the best. When the learning rate is lower
than 0.001, the performance of the model gradually decreases, and the convergence of the
cumulative reward function becomes worse. Therefore, we set the learning rate α to 0.001
in subsequent experiments.

5.2. Effectiveness of WDQN Algorithm

In this part, we tested the effectiveness and generalization of the proposed algorithm
in three aspects: task scenes with different complexities, task targets with different numbers,
and task areas with different sizes.
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Figure 4. The rewards with different rates.

5.2.1. Experiments with Different Task Scene Complexities

Figure 5 shows the effectiveness tests of the proposed algorithm under three different
task scene complexity settings, which are the test results of the corresponding task environ-
ments in Figure 3. The size of the test scene is fixed at 100 m× 100 m. The number of UAVs
and targets is six, and they are randomly distributed in the test scene. The black rectangle
is used to simulate obstacles. As the complexity of the task scene increases, the proportion
of obstacles occupying the entire task area gradually increases. It can be seen from Figure 5
that although the difficulty of obstacle avoidance gradually increases the proposed algo-
rithm can still enable UAVs to successfully avoid obstacles and find these targets. In the
figure, the red pentagrams represent targets, the black rectangles represent obstacles, the
Y-shaped marks of different colors represent UAVs with different numbers, and the line
segments represent the paths taken by the UAVs. Since each UAV can only obtain the local
information it is close to during the pathfinding process, it cannot predict the distribution
of obstacles in the task environment. The final path of the UAV is usually not the shortest
path to the target. This is normal and understandable in local path planning algorithms.

 

 

 

 

 

 

 

(a) Level 1

 

 

 

 

 

 

 

(b) Level 5

 

 

 

 

 

 

 

(c) Level 10

Figure 5. Path planning in three task scene of different complexities.

In order to test the execution time of path planning in task scenes of different complex-
ities, we conducted 30 experiments with different complexity settings and recorded the
execution times. The average execution time in level 1 is 225.21 s, the average execution
time in level 5 is 126.52 s, and the average execution time in level 10 is 173.33 s. It can be
seen that although fewer obstacles can reduce the limitation of the path planning algorithm
it may increase the computational complexity and execution time of the algorithm. This is
because the algorithm needs to consider more path selections and calculations to find the
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optimal path. And as the complexity of the task scenario increases, the execution time is
normally distributed.

5.2.2. Experiments with Different Numbers of Task Targets

Figure 6 shows the test results of the proposed algorithm under three settings with
different numbers of task targets. The size of the test environment is still 100 m× 100 m,
and the test scene complexity is fixed at 10. The red pentagrams represent targets, the
black rectangles represent obstacles, the Y-shaped marks of different colors represent
UAVs with different numbers, and the line segments represent the paths taken by the UAVs.
The number of UAVs and targets is gradually increasing, and they are randomly distributed
in the mission area. It can be seen that the proposed algorithm has good scalability in the
number of task targets. When the number of task targets in the test scene is more or less
than that of the training scene, the proposed algorithm can still plan a safe and feasible
path for each UAV.

 

 

 

 

 

 

 

(a) two task targets

 

 

 

 

 

 

 

(b) five task targets

 

 

 

 

 

 

 

(c) seven task targets

Figure 6. Path planning in different numbers of task targets.

In order to test the execution time of path planning with different numbers of task
targets, we conducted 30 experiments with different numbers of task targets and recorded
the execution time. The average execution time with two task targets is 15.95 s, the average
execution time with five task targets is 71.39 s, and the average execution time with
seven task targets is 193.65 s. It can be seen that as the number of task targets increases
the execution time also increases.

5.2.3. Experiments with Different Sizes of Task Area

Figure 7 shows the test results of the proposed algorithm in three different sizes of
task area. Since it is difficult to accommodate too many obstacles in a small-sized task
area, we fixed the test scene complexity to 9, set the number of UAVs and targets to three,
and randomly distributed them in the task area. The red pentagrams represent targets,
the black rectangles represent obstacles, the Y-shaped marks of different colors represent
UAVs with different numbers, and the line segments represent the paths taken by the UAVs.
The sizes of the three test scenes are set to 60 m× 60 m, 160 m× 160 m, and 200 m× 200 m,
respectively. It can be seen that the proposed algorithm has good scalability in the size of
the task area. When the test scene is larger or smaller than the training scene, the proposed
algorithm can still plan a safe and feasible path for each UAV.

In order to test the execution time of path planning under different task area sizes,
we conducted 30 experiments for different task area sizes and recorded the execution time.
The average execution time in the 60 × 60 area is 27.26 s, the average execution time in the
160 × 160 area is 70.73 s, and the average execution time in the 200 × 200 area is 239.31 s. It
can be seen that as the size of the task area increases the execution time also increases.
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Figure 7. Path planning under different task area sizes.

5.3. Comparison and Analysis

In order to further evaluate the proposed WDQN-based path planning algorithm, we
conducted multiple comparative experiments involving mainstream reinforcement learning
models including Q-learning, the DQN, the DDQN, and the Dueling DQN. During the
experiments, we focused on four metrics: the reward and loss in the training phase, the
success rate, and the average path length in the testing phase.

5.3.1. Reward

The cumulative reward is the feedback signal provided to the agent in the task envi-
ronment, which is used to guide the agent to learn and adjust its behavior. Rewards can
be positive, negative, or zero, representing encouraging, punishing, or neutral evaluations
of the agent’s actions. In our experiments, the initial reward is set to a sufficiently small
value. To measure the cumulative reward, we train these reinforcement learning models
under the same experimental settings. The figure below shows the change curves in the
cumulative reward obtained by each algorithm during the training phase.

First of all, observing the convergence of each curve in Figure 8, it can be found
that there are unstable fluctuations in the curves of Q-learning and the DQN, and the
convergence of the DDQN, Dueling DQN, and WDQN is relatively good, which shows that
the proposed algorithm is easy to train. Then, observing the level of the reward value, it
can be found that when the training tends to be stable (i.e., after 8000 episodes), the average
reward obtained by UAVs in Q-learning and the DQN from the task environment is
relatively low, while the average reward obtained by UAVs in the Dueling DQN and
WDQN is relatively high, indicating that actions taken by UAVs can achieve better scores
in path planning tasks. Finally, observing the training reward of the first 2000 episodes,
it can be seen that the proposed WDQN can obtain a higher cumulative reward faster.
This is because the introduction of the WOA enriches the action decisions in the replay
buffer of the DQN and greatly speeds up the learning efficiency of the model. However,
the learning progress of several other methods, especially Q-learning and the DQN, is
relatively slow, and it is difficult to complete the path planning task in a short period of
time. From the analysis of the above three points, it can be seen that the proposed model
is superior to other reinforcement learning models in terms of stability, action decision
quality, and learning efficiency.
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Figure 8. The reward curves of WDQN, Q-learning, DQN, DDQN, and Dueling DQN algorithm.

5.3.2. Loss

In reinforcement learning, the loss is a metric used to measure the discrepancy between
the expected future reward and the actual observed reward. The goal of the UAV is to find
the optimal path planning strategy by minimizing the loss function, so that the maximum
reward can be obtained in the long-term accumulation process. In our experiments, the ini-
tial loss is set to a sufficiently large value. To measure the loss, we train these reinforcement
learning models under the same experimental settings. The figure below shows the change
curve of the loss obtained by each algorithm during the training phase.

First of all, observing the convergence of each curve in Figure 9, it can be found that
the loss functions of Q-learning and the DQN have not achieved a satisfactory convergence,
and the convergence efficiency of the DDQN, Dueling DQN, and WDQN is relatively high.
Then, observing the value of the loss, it can be found that when the training tends to be
stable (that is, after 8000 episodes) the loss of UAVs in the Q-learning and DQN algorithms
is relatively high, indicating that there is a certain gap between the obtained path planning
strategy and the expected planning effect. The loss of UAVs in the WDQN is the lowest,
which shows that the proposed algorithm can show a better performance in path planning
tasks. Finally, observing the changes in the loss of the first 2000 episodes, it can be seen
that the proposed algorithm greatly reduces the loss of UAVs in a short period of time,
which is due to the auxiliary effect of the WOA on the DQN model. The loss of other
methods, especially Q-learning and the DQN, is maintained at a high level in the early
stage, indicating that their early exploration and learning capabilities are relatively poor,
and more episodes of training are needed to adapt to the rules of the path planning task.
From the analysis of the above three points, it can be seen that the proposed model has more
advantages than other reinforcement learning models in terms of stability, path planning
quality, and learning efficiency.

5.3.3. Success Rate

The success rate of a path planning algorithm refers to the probability of planning a
feasible path in an unknown test environment. To compare the success rate of these five
well-trained reinforcement learning models, we conduct 1000 independent tests under three
different scene complexity settings. Each test starts with changing the task environment,
which means reinitializing the positions of objects, such as UAVs, targets, and obstacles
within the 100 m × 100 m mission area. In this part, the success rate can be obtained
by calculating the ratio between the number of feasible paths and the number of tests.
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The figure below shows the success rate of five well-trained models for path planning
under different scene complexity settings.

 

 

 

 

 

 

 
Figure 9. Comparison of loss during episodes.

First of all, observing the test results under the level 1 scene complexity setting, it can
be seen from Figure 10 that the success rate of the path planning algorithm based on the
WDQN is as high as 99.5%. Among the remaining four comparison methods, the success
rates of Q-learning and the DQN are relatively good. This is because the network structure
of these two models is simple, and the demand for training data is not large, so they are
suitable for dealing with path planning problems in simple task scenes.

Then, observing the test results under the level 5 scene complexity setting, it can
be seen that the relatively simple learning method of the Q-learning algorithm limits
its performance in complex scenes, and its success rate is the lowest. Due to the more
effective exploration and learning in the training phase, the WDQN and Dueling DQN
show higher performances. Between the two algorithms, the success rate of the WDQN
exceeds 95%. Finally, under the level 10 scene complexity setting, the performances of
all five reinforcement learning models in the path planning task decrease. Among them,
the success rate of the Dueling DQN is close to 70%, and the success rate of the DDQN, the
DQN, and Q-learning is below 50%. Under this setting, the performance of the WDQN
proposed in this paper is least affected by scene complexity, and its success rate still remains
above 90%. Overall, our algorithm has good robustness under different scene settings
and can perform path planning tasks with a high success rate.

5.3.4. Average Path Length

The average path length of a path planning algorithm refers to the average length of
feasible paths planned in an unknown test environment. A short average path length means
less distance, less time, and less energy consumption for the UAV to fly. To compare the
average path lengths of these five well-trained reinforcement learning models, we conduct
1000 independent tests under three different scene complexity settings, and each test starts
with changing the task environment. In order to ensure the fairness of the experiments,
we set the number of UAVs and targets as one, the initial position of the UAV is fixed as
[0,0], and the position of the trapped target is fixed as [95,95]. In addition, each algorithm
has obstacles with the same properties when changing the task scene; that is, the number,
location, and size of obstacles remain consistent. In this part, the average path length can be
obtained by calculating the ratio between the total length of feasible paths and the number
of feasible paths. Figure 11 shows the average path length of five reinforcement learning
models under different scene complexity settings.
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Figure 10. Comparison of success rates of different algorithms across varying difficulty levels.

According to the changes in the three sub-images, it can be seen that, in order to avoid
obstacles, the average path length of these algorithms will increase as the scene complexity
increases. In the tests of a single-UAV single-target search, the effective paths planned by
Q-learning and the DQN are relatively long, and the success rate is low. It is difficult for
these two algorithms to plan a satisfactory rescue route in a complex environment. Both the
DDQN and Dueling DQN show similar performance in terms of success rate and effective
path length. The WDQN algorithm proposed in this paper can plan the shortest path with
a high success rate. Under these three levels of scene complexity settings, the average paths
are 230.19 m, 262.755 m, and 318.153 m, respectively.
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Figure 11. Comparison of average path lengths and success rates of different algorithms across
varying difficulty levels.

6. Conclusions

In this paper, we study the path planning problem of multiple UAVs in emergency
rescue scenarios based on the RL model and propose the WDQN-based path planning
algorithm. The WDQN overcomes the limitations of traditional path planning algorithms
in uncertain task scenes and improves the learning efficiency of RL models, enabling the
UAV to autonomously plan a feasible collision-free path in an uncertain scene. Through
continuous trial and error and studying feedback from the environment, the model gradu-
ally adapts and explores feasible collision-free paths in different scenes. In addition, we
train the Q-network by gradually increasing the difficulty of obstacle avoidance, which
enhances the robustness of the algorithm. In order to test the effectiveness of the proposed
algorithm, we conduct experiments under different difficulty levels of obstacle avoidance,
different numbers of task targets, and different scales of task areas. The results show
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that the proposed algorithm can successfully find targets and plan safe and feasible paths
in all task scenes. Moreover, compared with several other RL algorithms, the proposed
algorithm shows a better performance in terms of training efficiency, task completion rate,
and average path length.

In three-dimensional space, the UAV needs to consider movement in both the horizon-
tal and vertical directions, as well as different angles of rotation. This increases the number
of actions in the UAV’s action set to 27, which in turn increases the complexity of the action
set and leads to a larger search space in the path planning algorithm. In addition, the jitter
can lead to instability in the UAV’s path, resulting in an increased energy consumption
and flight risks, particularly in three-dimensional space. Consequently, in future work,
we plan to propose a path planning strategy to address the complexity of a real-world
three-dimensional environment, aiming to reduce the search space, accelerate the path
planning process, and generate high-quality paths.

Furthermore, UAV path planning in large-scale mission environments is also a chal-
lenging problem. First of all, in large-scale task scenarios, UAVs need to plan paths in
complex environments, avoid obstacles, and take into account factors such as task priorities
and time constraints. This requires path planning algorithms to efficiently handle large-
scale maps and tasks while ensuring the safety and efficiency of the path. In future work,
we will consider dividing the large-scale region into multiple small task regions, decom-
posing the complex path planning problem into multiple relatively simple sub-problems.
By decomposing the problem, we will reduce the computational complexity and the diffi-
culty of path planning and design appropriate allocation algorithms and mechanisms to
achieve intra-regional and inter-regional path planning and collaboration.
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