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Abstract: The Hainan gibbon (Nomascus hainanus) is one of the most endangered primates in the
world. Infrared and visible images taken by drones are an important and effective way to observe
Hainan gibbons. However, a single infrared or visible image cannot simultaneously observe the
movement tracks of Hainan gibbons and the appearance of the rainforest. The fusion of infrared
and visible images of the same scene aims to generate a composite image which can provide a more
comprehensive description of the scene. We propose a fusion method of infrared and visible images of
the Hainan gibbon for the first time, termed Swin-UetFuse. The Swin-UetFuse has a powerful global
and long-range semantic information extraction capability, which is very suitable for application in
complex tropical rainforest environments. Firstly, the hierarchical Swin Transformer is applied as
the encoder to extract the features of different scales of infrared and visible images. Secondly, the
features of different scales are fused through the l1-norm strategy. Finally, the Swing Transformer
blocks and patch-expanding layers are utilized as the decoder to up-sample the fusion features to
obtain the fused image. We used 21 pairs of Hainan gibbon datasets to perform experiments, and the
experimental results demonstrate that the proposed method achieves excellent fusion performance.
The infrared and visible image fusion technology of drones provides an important reference for the
observation and protection of the Hainan gibbons.

Keywords: observation methods; UAV; image fusion; Hainan gibbon; swin transformer; skip connection

1. Introduction

Primates are the closest biological relatives of human beings. Human evolution, animal
behavior, and emerging unknown diseases are closely related to primates [1]. Unfortunately,
the deterioration of the ecological environment threatens the extinction of approximately
60% of primate species worldwide [1]. The Hainan gibbon (Nomascus hainanus) is the rarest
primate species in the world [2]. Habitat transformation, natural forest cover, landscape
shape index, and distance to the nearest roads—Zhang et al. [3] pointed out that these four
factors led to a dramatic decline of Hainan gibbons. There are only 37 remaining Hainan
gibbons in the world, living in approximately 15 square kilometers of forest fragments in
the Bawangling National Nature Reserve in Hainan province, China [4]. The Hainan gibbon
is an “extremely endangered” species and is in danger of extinction. For the endangered
Hainan gibbons, it is vital to create effective monitoring and conservation techniques.

T. Turvey et al. [5] estimated the number of Hainan gibbons by interviewing 709 vil-
lagers and conducting field surveys, but such large-scale surveys cost a lot of time, resources,
and manpower. Dufourq et al. [6] developed a call monitoring device to detect the calls
of different Hainan gibbons, but this method could not capture the appearance of Hainan
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gibbons. Chan et al. [7] built several artificial canopy bridges over the forest for the Hainan
gibbons to pass through. Wang et al. [4] used an infrared-triggered camera to recognize
Hainan gibbons, but the camera was only able to capture a fixed, small range of images.

In recent years, drones have become an important research tool for wildlife observation.
Drone surveys have the advantages of precise size estimation, less disturbance, and broader
area coverage [8]. Zhang et al. [9] estimated the population density of Hainan gibbons using
a single infrared sensor drone. The authors in [8] used a drone to research the waterbird
populations, ungulates, and non-human primates. Degollada et al. [10] identified fin whales
(Balaenoptera physalus) using a drone. The authors in [11] used a drone to identify black-
necked swans (Cygnus melancoryphus). In addition, Povlsen et al. [12] observed European
hares (Lepus europaeus) using a drone. Keshet et al. [13] used a drone to determine animal
damage of crops. The use of drones for wildlife surveys is promising. However, these
above methods of drone-based surveys were only based on a single infrared or visible
image, which may lead to some deviations in observation.

Infrared (IR) and visible image fusion provides a new method for observing the
movement tracks of Hainan gibbons and the appearance of the rainforest. When there
is insufficient light, dense fog, or forest blocks, one can determine the body size and
estimate the population parameters of gibbons based on the thermal radiation information
of gibbons in IR images. However, visible images can hardly provide useful information
about gibbons in these situations. This is because dense fog or forests block most gibbon
tracks. Hainan gibbons generally inhabit high-altitude tree canopies [14] and feed on fleshy
fruits and leaves [15]. One can observe the adequacy of the amount of fruits and leaves
based on visible light images as it relates to the gibbon’s food sources. In addition, one can
determine whether the ecosystem has been damaged based on visible images. However,
since IR images are radiation images, they cannot provide a complete appearance of the
ecosystem. IR and visible image fusion is the combination of the advantages of the two
images to generate an information-rich fused image. The fused images can not only observe
gibbon body size and estimate gibbon population parameters but also provide a detailed
appearance of the ecosystem at the same time. A single IR or visible image cannot achieve
both effects simultaneously; this is the advantage of fused images. In addition, rhesus
macaques (Macaca mulatta) also live in the Hainan Bawangling National Nature Reserve.
A single IR or visible image may confuse Hainan gibbons and rhesus macaques, resulting
in incorrect recognition. The fused images can improve the accuracy of target recognition.
In addition, the fused images can monitor the behavior of gibbons and reflect their health
status. IR and visible image fusion is a low-cost method for observing Hainan gibbons,
which is an important supplement to existing observation methods.

Since the complementary nature of IR and visible image fusion is well suited for
human or computer vision tasks, more and more fusion methods are being proposed.
Ma et al. [16] proposed an IR and visible image fusion method termed a dual-discriminator
conditional generative adversarial network (DDcGAN). Their method established an adver-
sarial game between a generator and two discriminators, and the generator was continually
optimized by the discriminator with adversarial learning to generate the desired fusion
image. Ma et al. [17] developed a fusion approach termed generative adversarial network
with multi-classification constraints (GANMcC), which transforms image fusion into a
multi-distribution simultaneous estimation problem. Zhang et al. [18] proposed a fast
unified image fusion network based on the proportional maintenance of gradient and
intensity (PMGI), and unified the image fusion problem into the texture and intensity
proportional maintenance problems of the source images. Xu et al. [19] proposed a unified
and unsupervised image fusion network, termed U2Fusion. The method used feature
extraction and information measurement to estimate the importance of the corresponding
source images. Xu et al. [20] proposed a fusion rule based on classification saliency (CSF) to
solve the IR and visible image fusion problem. The method applied a classifier to classify
the two types of source images, and then the importance of each pixel is quantified as
its contribution to the classification result. The authors in [21] proposed a fusion method
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based on disentangled representation (CSF). The method first performed the decomposi-
tion depending on the source of information in the IR and visible images. Then, different
strategies were applied for the fusion of these different types of representations. Finally, the
fused representations were fed into a pre-trained generator to generate the fusion result.
In addition, the methods based on principal component analysis networks [22,23] also
achieved good fusion performance.

Although these fusion methods have achieved relatively good fusion performance
on public datasets, there are still some drawbacks. Specifically, most existing fusion
methods mainly concentrate on convolutional neural networks (CNNs) [24]. Due to the
locality of the convolution operations, they cannot learn global and long-range semantic
information interactions well, which may lose some important context and degrade part
of the fusion performance [25]. In 2021, Liu et al. [26] proposed a Swin Transformer
with multi-head self-attention and shifted window mechanisms, which has a powerful
ability for long-range dependencies modeling. In 2022, Cao et al. [25] proposed a medical
image segmentation algorithm based on a Swin Transformer and an U-net, called Swin-
Unet. This method has a powerful global and long-range semantic information extraction
capability [25]. The feature extraction capability is very suitable for application in complex
tropical rainforest environments.

Inspired by this, we present a novel IR and visible image fusion method based on
Swin-Unet for Hainan gibbons, termed Swin-UetFuse. To our knowledge, this is the first
time that the living habits and habitats of Hainan gibbons have been observed through
the IR and visible image fusion method. The proposed framework is made up of three
components: an encoder, a fusion rule, and a decoder. The encoder and decoder are both
constructed based on Swin Transformer blocks to obtain global and long-range semantic
information. In the complex tropical rainforest environment, the features obtained by Swin
Transform have a stronger representation ability in focusing on IR Hainan gibbon targets
and tropical rainforest details. In the encoder, a hierarchical Swin Transformer with shift
windows is employed to capture multi-scale context features of the input images. In the
decoder, a symmetric Swin Transformer is used for decoding operations. Specifically, to
begin with, the fused features are up-sampled via the patch expanding layers to acquire
up-sampled features. Subsequently, the up-sampled features are concatenated with the
multi-scale features of the encoder through skip connections. In the end, these concatenated
features restore the spatial resolution of the image by means of a series of Swin Transformer
blocks and patch expanding layers. The skip connections reduce the semantic gap between
the features of the encoder and decoder, and preserve more information from the encoder.

A fusion example of the Hainan gibbon is demonstrated in Figure 1. Figure 1a,b
indicate the IR and visible images captured by the drone, respectively, and Figure 1c
denotes the fused image using the proposed approach. The IR image precisely locates the
position of the Hainan gibbon and captures its infrared spectrum, but it cannot provide
clear background details. In complex tropical rainforest environments, the visible image
cannot capture useful information about the Hainan gibbon. The fused image in Figure 1c
combines the advantages of both images, appearing to have a bright thermal target and
clear background details.

(a) IR image (b) Visible image (c) Fused image

Figure 1. An example of infrared and visible image fusion in a Hainan gibbon.
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The contribution of this paper is twofold:

• We propose an IR and visible image fusion method based on Hainan gibbon for
the first time, termed Swin-UetFuse. The Swin-UetFuse has a powerful global and
long-range semantic information extraction capability;

• We utilized 21 pairs of Hainan gibbon dataset to perform experiments, and the ex-
perimental results demonstrate that the proposed method achieves excellent fusion
performance.

Following is how the remaining sections are arranged: Section 2 introduces the study
area and the proposed method; Section 3 describes the experiments and discussions;
Section 4 summarizes the whole article.

2. Materials and Methods
2.1. Study Area

This study was conducted in the Bawangling National Nature Reserve in Changjiang
Li Autonomous County, Hainan Province, China (109◦14′47.35′′ E, 19◦5′45.17′′ N).
The Bawangling Nature Reserve protects Hainan gibbons and other rare animals and
plants. The reserve belongs to the tropical monsoon climate with 1657 mm of yearly rainfall
on average, and its altitude ranges from 590 m to 1560 m [27]. In addition, the reserve
is rugged and mountainous, and covered with tropical evergreen rainforests, with trees
reaching up to 30 m [9].

2.2. The Proposed Fusion Method Based on Hainan Gibbon

In the complex tropical rainforest environment, the proposed method has stronger
representation ability in focusing on infrared Hainan gibbon targets and tropical rainforest
details. The proposed method is divided into three sections, as seen in Figure 2: an encoder
on the left, a fusion strategy in the middle, and a decoder on the right. A denotes an
IR image, B indicates a visible image, and F represents a fused image. Firstly, in the
encoder, our algorithm extracts multi-scale features of IR and visible images through
Swing Transformer blocks and patch-merging layers [25,26]. Multi-scale deep features
can preserve long-distance information. Secondly, the images of different modalities are
fused in each scale by a l1-norm based on a row-and-column vector dimension fusion
strategy [28]. In the end, a decoder based on the skip connection reconstructs the fused
multi-scale features [29].

2.2.1. Encoder

The role of the encoder is to extract multi-scale and long-range semantic features.
Suppose that the IR image A and the visible image B are two pre-registered images. In our
work, we set S ∈ {A, B}. The input image S ∈ RH×W×Cin is initially separated into
non-overlapping patches through the patch partition module, and each patch is set as
a concatenation of pixel values, where H represents height, W indicates width, and Cin
refers to the number of channels. Actually, the patch partition module is a 1× 1 kernel
convolution operation, and it is defined as:

enst0
S = HPP(S), (1)

where HPP(·) denotes the patch partition module operation. Then, a linear embedding layer
is used to project feature dimension Cin into dimension C. Standard Swin Transformer [26]
has four architectures, namely Swin-T (Tiny), Swin-S (small), Swin-B (base), and Swin-L
(large). The C in Swin-T and Swin-S was set to 96, Swin-B was set to 128, and Swin-L
was set to 192. A larger C means larger computational resources. To save computational
resources, we set C to 96, i.e., enst0

S ∈ RH×W×96.
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Figure 2. The structure of Swin-UnetFuse.

The enst0
S generates hierarchical feature representations through four stage modules,

where each stage module includes two consecutive Swin Transformer blocks and a patch
merging layer. Each stage module is calculated as follows:

enstm
S = HPMm

(
HENSTBm

(
enstm−1

S

))
, m = 1, 2, 3, 4, (2)

Hm, Wm, Cm =
H
2m ,

W
2m , 2mC, (3)
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where HENSTBm denotes the m-th stage Swin Transformer block in the encoder, which aims
to extract the long-distance information of the input samples. HPMm indicates the m-th
stage patch merging layer, which functions as a double down-sampling of the resolution
and extends the output dimension to 2C. Specifically, the patch merging layer splits the
input features into four components and concatenates them together. With such a clever
design, the feature resolution will be down-sampled by 2× and the feature dimension will
be expanded to 2× the original dimension. Deep features are produced at various sizes by
combining many layers of Swin Transformer blocks and patch merging layers.

2.2.2. Swin Transformer Block

The Swin Transformer block is a multi-headed self-attention Transformer layer that
is based on local attention and shifted window mechanisms [26]. Figure 3 depicts the
two successive Swin Transformer blocks’s structural layout, including a windows multi-
head self-attention (W-MSA) layer, a shifted windows multi-head self-attention (SW-MSA)
layer, four LayerNorm (LN) layers, and two multi-layer perceptron (MLP) layers. A LN
layer is employed before each MSA and each MLP, and a residual connection is used after
each layer.

LN W-MSA LN MLPLN W-MSA LN MLPLN W-MSA LN MLP

LNLN MLPLN MLPSW-MSASW-MSA

X

O

Figure 3. The architecture of two successive Swin Transformer blocks.

For an input sample of size H ×W × C, it is first divided into non-overlapping
M×M local windows and reshaped into HW

M2 ×M2 × C features, where the total number
of windows is HW

M2 . Secondly, the corresponding self-attention mechanism is performed in

each window. For a local window feature X ∈ RM2×C, the query Q, key K, and value V are
described below:

Q = XWQ, K = XWK, V = XWV , (4)

where WQ, WK, and WV are learnable projection weight matrices that are shared across
different windows.

The computation of the attention mechanism includes the following:

Attention(Q, K, V) = SoftMax
(

QKT
√

d
+ B

)
V, (5)

where B is the learnable relative positional encoding and d is the dimension of keys.
The Swin Transformer block is capable of effectively obtaining global characteristics,

and its whole processing is as follows:

X = W-MSA(LN(X)) + X
X = MLP(LN(X)) + X
X = SW-MSA(LN(X)) + X
O = MLP(LN(X)) + X

(6)

where X denotes the local window of the input and O represents the output.
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2.2.3. Fusion Strategy

In our work, a l1-norm based on row and column vector dimensions fusion strat-
egy [28] is used to deal with features of different scales. enstm

S (i) and enstm
S (j) denote the

row vector and column vectors of enstm
S (i, j), respectively, where S ∈ {A, B}, m = 1, 2, 3, 4.

Firstly, the weights of the row vectors of enstm
A(i) and enstm

B (i) are calculated through
the l1-norm, and then their activity level measurements, αm

A(i) and αm
B (i), are computed:

αm
A(i) =

exp
(∥∥enstm

A(i)
∥∥

1

)
exp

(∥∥enstm
A(i)

∥∥
1

)
+ exp

(∥∥enstm
B (i)

∥∥
1

) , (7)

αm
B (i) =

exp
(∥∥enstm

B (i)
∥∥

1

)
exp

(∥∥enstm
A(i)

∥∥
1

)
+ exp

(∥∥enstm
B (i)

∥∥
1

) , (8)

where ‖·‖1 represents the l1-norm.
Then, the fusion feature f m

row(i, j) of the row vector dimension is obtained through a
weighted-average strategy:

f m
row(i, j) = αm

A(i)× enstm
A(i, j) + αm

B (i)× enstm
B (i, j). (9)

The fusion strategy of column vector dimension is the same as that of row vector di-
mension. The activity level measurements βm

A(j) and βm
B (j) of the column vector dimension

are calculated by the following formulas:

βm
A(j) =

exp
(∥∥enstm

A(j)
∥∥

1

)
exp

(∥∥enstm
A(j)

∥∥
1

)
+ exp

(∥∥enstm
B (j)

∥∥
1

) , (10)

βm
B (j) =

exp
(∥∥enstm

B (j)
∥∥

1

)
exp

(∥∥enstm
A(j)

∥∥
1

)
+ exp

(∥∥enstm
B (j)

∥∥
1

) . (11)

Then, the fusion feature f m
col of the column vector dimension is obtained through a

weighted-average strategy:

f m
col(i, j) = βm

A(j)× enstm
A(i, j) + βm

B (j)× enstm
B (i, j). (12)

When f m
row(i, j) and f m

col(i, j) are obtained, the final fusion feature f m(i, j) is generated
by using a specific equation:

f m(i, j) = f m
row(i, j) + f m

col(i, j). (13)

2.2.4. Decoder

The decoder is made up of a patch-expanding layer, three stage modules, and one
convolution layer, as illustrated in Figure 2. Each stage module consists of a linear layer, two
consecutive Swin Transformer blocks, and a patch-expanding layer. The patch-expanding
layer, in contrast to the patch-merging layer, reshapes features of nearby dimensions into a
huge feature map with a 2× up-sampling of resolution, and decreases the feature dimension
to 1/2 of the previous dimension in accordance. In particular, the up-sampled features of
the decoder are connected to the corresponding multi-scale fusion features of the encoder
through skip connections, with the intention of minimizing the semantic gap between the
encoder and decoder, preserving more information from the previous layer to obtain a better
fusion result. Since the dimension of the concatenated features after the skip connection
is twice that of the original feature, a linear layer is employed to keep the concatenated
feature dimension the same as the up-sampled feature dimension. With this architecture,
the decoder can utilize the features’ multi-scale structure to its fullest potential.
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A detailed description of the algorithmic steps in the decoder is introduced. f 1, f 2, f 3,
and f 4 refer to fused features at different scales in the encoder, respectively. Firstly, f 4 is
up-sampled through the patch-expanding layer and concatenated with f 3:

dest0 =
[

HPE1

(
f 4
)

, f 3
]
, (14)

where HPE1(·) denotes the first patch-expanding layer in the decoder, [·] represents the

concatenation layer (also known as skip connection), and dest0 ∈ R H
8 ×

W
8 ×8C.

Due to the fact that the dimensions of concatenated features are twice those of the
original features, a linear layer is applied to restore the concatenated features to their
original dimensions. The first stage module in the decoder is calculated as follows:

idest1 = HPE2

(
HDESTB1

(
LL1

(
dest0

)))
, (15)

dest1 =
[
idest1, f 2

]
, (16)

where LL1(·) denotes the first linear layer in the decoder, HDESTB1(·) indicates the first
Swin Transformer block in the decoder, HPE2(.) represents the second patch-expanding

layer in the decoder, and dest1 ∈ R H
4 ×

W
4 ×4C.

The second stage module is calculated as follows:

idest2 = HPE3

(
HDESTB2

(
LL2

(
dest1

)))
, (17)

dest2 =
[
idest2, f 1

]
, (18)

where LL2(·) denotes the second linear layer in the decoder, HDESTB2(·) indicates the sec-
ond Swin Transformer block in the decoder, HPE3(.) represents the third patch-expanding

layer in the decoder, and dest2 ∈ R H
2 ×

W
2 ×2C.

The third stage module is calculated as follows:

dest3 = HPE4

(
HDESTB3

(
LL3

(
dest2

)))
, (19)

F = CONV
(

dest3
)

, (20)

where LL3(·) denotes the third linear layer in the decoder, HDESTB3(·) indicates the third
Swin Transformer block in the decoder, HPE4(.) represents the fourth patch-expanding
layer in the decoder, CONV(·) represents convolution operation [24], and F denotes the
fused image. It is worth noting that the third-stage module does not have a skip connection.

2.2.5. Loss Function

The training framework of our algorithm is shown in Figure 4. In the training stage,
we just consider encoder and decoder networks (the fusion strategy is discarded). After the
encoder and decoder weights are fixed, we utilize the fusion strategy to fuse. In order to
ensure that the reconstructed image is more similar to the original image, the loss function
Ltotal is defined below:

Ltotal = Ll1 + λLssim, (21)

where Ll1 and Lssim represent the l1 loss function and structure similarity (SSIM) [30] loss,
respectively, λ indicates the trade-off between Ll1 and Lssim.
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The role of Ll1 is to make the reconstructed image more similar to the input image.
The formula for Ll1 is:

Ll1 =
1

HW ∑ |O− I|, (22)

where H is height, W indicates width, I represents input training samples, and O denotes
outputs. A smaller Ll1 indicates that the input and output images are more similar.

Lssim calculates the structural similarity measurement between the input image and
the output image to make the O and the I more similar in structure. Lssim is computed as:

Lssim = 1− SSIM(O− I), (23)

where SSIM(·) refers to the structural similarity measure [30]. A smaller Lssim indicates
that the input and output images are more similar in structure.

Decoder

I OLtotal

Encoder

Figure 4. The Swin-UnetFuse training model in this paper.

The main steps of the proposed IR and visible image fusion method are summarized
in Algorithm 1.
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Algorithm 1 The proposed infrared and visible image fusion algorithm

Training phase
1. Initialize the networks of Swin-UnetFuse;
2. Update the parameters of networks via minimizing Ltotal according to Equations (21)–(23).
Testing (fusion) phase
Part 1: Encoder
1. Feed infrared image A and visible image B into a series of Swin Transformer blocks and

patch merging layers to generate of different scales features enstm
S , m = 1, 2, 3, 4, S ∈ {A, B}

according to Equations (1)–(3);
Part 2: Fusion strategy
2. Perform l1-norm based on row and column vector dimensions fusion strategy to enstm

A and
enstm

B to generate f m according to Equations (7)–(13);
Part 3: Decoder
3. Perform up-sampling and concatenating operation to generate dest0 according to Equation (14);
4. Perform a series of linear layers, Swin Transformer blocks, patch expanding layers and

concatenation layers to generate dest3 according to Equations (15)–(19);
5. Feed the dest3 into the convolution operation to generate the result F according to Equation (20).

3. Experiments and Discussion

The section includes five parts: the first part introduces the infrared and visible dataset
of Hainan gibbons that we photographed; the second part is about experimental setups;
the third part describes the evaluation metrics of images; the fourth part is three ablation
studies; and a comparison of our approach and other approaches is shown in the final part.

3.1. Infrared and Visible Dataset of Hainan Gibbons

There are currently 37 Hainan gibbons in 5 social groups (groups A, B, C, D, and E).
The object of our observation was group C, which has only eight Hainan gibbons: three
subadults (one 3-year-old, one 5-year-old, and one 6-year-old) and five adults (9–16 years
old) [9]. In order to observe and study the Hainan gibbons, our team took a large number
of infrared and visible photos of the life of Hainan gibbons in Hainan Bawangling Na-
tional Nature Reserve by using an infrared camera and a visible camera in the drone [31].
The drone, model Dajiang Innovation (DJI) Mavic 2 Enterprise Advanced, is equipped
with a quadcopter and a three-axis stabilization system. The infrared camera adopts an
Uncooled VOx Microbolometer sensor with a resolution of 640× 512 , and a spectral band
of 8–14 µm. The visible camera adopts a 1

/
2′′ CMOS sensor with 48 million pixels, and a

maximum image size of 8000× 6000.
When a drone approaches a gibbon, it may cause the gibbon to avoid the drone.

In order not to disturb the gibbons, we determined threshold flight distances for both
above-canopy and within-understory drone flights that would not cause any disturbance to
gibbons while still being able to collect clear images. We chose 30 m above the canopy and
20 m in the understory as the flight distance for surveys. The gibbons did not respond to
the drone at these two threshold distances, but when we flew the drone closer, the gibbons
left. Therefore, we chose these two threshold distances as the flight parameters, and the
flights did not cause any disturbance to the gibbons.

We selected 21 pairs of IR and visible images as the test images, converted each pair of
images to grayscale, and registered them according to [32]. Figure 5 shows four pairs of
testing images.
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Figure 5. Illustrations of four pairs of testing images.

3.2. Experimental Setups

In the training stage, we trained the Swin-UetFuse with 5000 images from the MS-
COCO dataset [33], and each image was converted to a size of 224× 224 and a grayscale
range of −1 to 1. For our approach, we set 1× 1 for the patch size and 7× 7 for the sliding
window size. Furthermore, we selected Adam as the optimizer and set the following
parameters: 1× 10−5 for learning rate, 2 for batch size, and 2 for epoch. The head numbers
of the four Swin Transformer blocks in the encoder were set to 3, 6, 12, and 24, respectively.
The head numbers of the three Transformer blocks in the decoder were set to 6, 12, and 24,
respectively.

In the fusion stage, we converted the grayscale range of test images to −1 and 1
and applied the sliding window 224× 224 to partition them into several patches, where
the value of invalid region is filled with 0. After the combination of each patch pair, we
conducted the reverse operation according to the previous partition order to obtain the
fusion image. The experimental environments of our method were Intel Core i7 11700,
RAM 64G, NVIDIA GeForce RTX 3070 8 GB and PyTorch.

3.3. Image Fusion Evaluation

Image fusion evaluation includes subjective evaluation and objective evaluation.
The subjective evaluation of a fused image is done with the use of human vision, in-
cluding color, brightness, definition, contrast, noise, fidelity, etc. The subjective evaluation
is essentially to judge whether the fused image gives a satisfactory feeling.

In order to comprehensively evaluate the image fusion performance, we selected
16 significant objective evaluation metrics to assess the fusion performance: FMIw, FMIdct
and FMIpixel [34], structural similarity index measure (SSIM) [30], the multi-scale struc-
tural similarity (MS-SSIM) [35], normalized mutual information (QMI) [36], Yang’s met-
ric (QY) [37], Piella’s three metrics (QS, QW , QE) [38], nonlinear correlation information
entropy (QNCIE) [39], gradient-based metric (QG) [40], phase-congruency-based metric
(QP) [41], mutual information (MI) [42], visual information fidelity (VIF) [43], sum of
the correlations of differences (SCD) [44]. In all metrics, larger values demonstrate better
fusion performance.

3.4. Ablation Studies

In this section, we performed three ablation studies: the ablation study of the pa-
rameter λ in the loss function, the skip connection ablation study, and the multiple scales
ablation study. We adopted 21 pairs of images as test images and used the above-mentioned
16 evaluation metrics as the reference standard for fusion performance. If an algorithm
obtains more optimal values, its fusion performance will be stronger.
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3.4.1. The Ablation Study of the Parameter λ in the Loss Function

In this ablation study, we set λ = 10, λ = 100, λ = 1000, and λ = 10,000, respectively.
All other parameters were the same. Table 1 displays the various metrics’ average values.
Bold typefaces are used to denote the best results. When λ = 1000, the model obtained 16
optimal values. Therefore, in the later experiments, we set λ to 1000.

Table 1. The average values of different λ methods.

Method FMIw FMIdct FMIpixel SSIM MS-SSIM QMI QY QS QW QE QNCIE QG QP MI V IF SCD

10 0.3626 0.3797 0.7980 0.5551 0.8501 0.2760 0.6625 0.6900 0.7161 0.3621 0.8038 0.3258 0.3807 1.9280 0.6557 1.2981
100 0.4239 0.4017 0.8107 0.5924 0.9073 0.3153 0.7989 0.7868 0.8005 0.5066 0.8047 0.5254 0.4934 2.2362 0.7199 1.2902

1000 0.4317 0.4100 0.8185 0.6010 0.9413 0.3396 0.8494 0.8210 0.8523 0.6272 0.8053 0.5765 0.5339 2.4336 0.7677 1.4630
10,000 0.4175 0.3932 0.8077 0.5927 0.9158 0.3200 0.8198 0.7990 0.8167 0.5386 0.8048 0.5416 0.4907 2.2820 0.7315 1.3487

3.4.2. The Skip Connection Ablation Study

In the comparison experiment, we removed all skip connections, and all other settings
were the same. Table 2 displays the various metrics’ average values. Bold typefaces are
used to denote the best results. The table demonstrates that the approach with the skip
connections achieved better fusion performance due to the fact that the skip connections
compensate for the spatial loss of down-sampling and preserve more information from
the encoder.

Table 2. The average values of different methods.

Method FMIw FMIdct FMIpixel SSIM MS-SSIM QMI QY QS QW QE QNCIE QG QP MI V IF SCD

Without skip connection 0.1850 0.1439 0.7845 0.4875 0.7958 0.2169 0.5471 0.5999 0.6010 0.1656 0.8031 0.2320 0.1535 1.4842 0.5467 0.6338

Skip connection 0.4317 0.4100 0.8185 0.6010 0.9413 0.3396 0.8494 0.8210 0.8523 0.6272 0.8053 0.5765 0.5339 2.4336 0.7677 1.4630

3.4.3. The Multiple Scales Ablation Study

We explored the effect of multiple scales on fusion performance. In the comparison
experiment, we removed all patch-merging layers, patch-expanding layers, and linear
layers. All other settings were the same. Table 3 displays the various metrics’ average
values. Bold typefaces are used to denote the best results. The table shows that the
multiscale model obtained 11 best values, indicating that the multi-scale model has better
fusion performance. This is because the model reconstructs the source images by fusing
images of different scales, so the fusion results obtained a more natural visual experience.

Table 3. The average values of different methods.

Method FMIw FMIdct FMIpixel SSIM MS-SSIM QMI QY QS QW QE QNCIE QG QP MI V IF SCD

Without multiple scales 0.4362 0.4115 0.8143 0.6045 0.9156 0.3479 0.7997 0.7859 0.8006 0.5216 0.8052 0.5221 0.5066 2.4631 0.7185 1.3999

Multiple scales 0.4317 0.4100 0.8185 0.6010 0.9413 0.3396 0.8494 0.8210 0.8523 0.6272 0.8053 0.5765 0.5339 2.4336 0.7677 1.4630

3.5. Experimental Results and Discussion

We selected twelve representative competitive algorithms to compare with ours in
terms of subjective and objective evaluation. These twelve comparison algorithms included
RP [45], DTCWT [46], DTCWT-SR [47], MSVD [48], JSM [49], TE-MST [50], DDcGAN [16],
GANMcC [17], CSF [20], DRF [21], PMGI [18], and U2Fusion [19]. The corresponding
parameter settings in the comparison algorithms were set to the default values given by
their authors. It is worth noting that these comparison algorithms are based on ordinary IR
and visible image fusion methods rather than the method developed by Hainan gibbons.
This is because our method is the first one developed for Hainan gibbons. Figures 6–8
show three representative examples of fusion results. A few areas of the fusion results have
been magnified for easier reference.
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In Figure 6, the drone’s infrared and visible cameras capture a Hainan gibbon hanging
on a tree. The IR image amply displays the gibbon’s thermal radiation data, but the tropical
rainforest in the background is blurred. The visible image vividly depicts the features of the
tropical rainforest; however, it is difficult to capture useful information about the gibbon.
The best fusion result for this case would be to clearly capture background features while
also collecting thermal radiation information from the gibbon. The tropical rainforests in
the RP and MSVD results introduce some noise (as shown in the green boxes in Figure 6c,f).
Although the DTCWT and TE-MST approaches achieve good fusion results, the tropical
rainforests in their backgrounds lack some details (see Figure 6d,h). As a classic fusion
method, the DTCWT-SR method achieves good fusion performance in this example (see
Figure 6e). The tropical rainforests in the JSM and DRF results are clearly blurred (as shown
in the green boxes in Figure 6g,l). The fusion result based on the DDcGAN technique looks
overexposed (as shown in Figure 6i). The GANMCC and U2Fusion techniques introduce
too much infrared spectrum, causing their results to look too dark (as shown in Figure 6j,n).
The tropical rainforests in the CSF and PMGI schemes lack some details (see the tropical
rainforests in Figure 6k,m). The proposed approach well extracts the information about the
Hainan gibbon’s thermal radiation and the tropical rainforest’s details with a more natural
visual experience (as shown in the boxes in Figure 6o).

(a) IR image (b) Visible image (c) RP

(d) DTCWT (e) DTCWT-SR (f) MSVD

(g) JSM (h) TE-MST (i) DDcGAN

(j) GANMcC (k) CSF (l) DRF

Figure 6. Cont.
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(m) PMGI (n) U2Fusion (o) Our

Figure 6. Fusion results of the first pair of source images.

In Figure 7, the drone’s infrared and visible cameras capture a Hainan gibbon prepar-
ing to jump. The Hainan gibbons in the fusion results of RP, DTCWT, DTCWT-SR, and
MSVD lose a lot of energy, resulting in unnatural visual effects (see gibbons in Figure 7c–f).
The Hainan gibbon and tropical rainforest in the JSM-based approach are fuzzy (see
Figure 7g). Although the TE-MST technique emphasizes the Hainan gibbon, the tropical
rainforest loses some details, giving rise to an abnormal visual sensation (as shown in
the tropical rainforest in Figure 7h). The result of DDcGAN is overexposed (as shown
in Figure 7i). Although the Hainan gibbons in the GANMCC and DRF results are high
brightness, the tropical rainforests in their results are fuzzy (see the tropical rainforest
in Figure 7j,l). This is because these two methods introduce excessive infrared spectra.
In addition, the Hainan gibbons in the CSF and U2Fusion algorithms are low-brightness
(see gibbons in Figure 7k,n). The PMGI approach achieves a great fusion result, but the
tropical rainforest lacks some details (as shown in the tropical rainforest in Figure 7m).
Compared with other approaches, our approach has a high-brightness Hainan gibbon and
clear tropical rainforest details (as shown in the boxes in Figure 7o).

(a) IR image (b) Visible image (c) RP

(d) DTCWT (e) DTCWT-SR (f) MSVD

(g) JSM (h) TE-MST (i) DDcGAN

Figure 7. Cont.



Drones 2023, 7, 543 15 of 22

(j) GANMcC (k) CSF (l) DRF

(m) PMGI (n) U2Fusion (o) Our

Figure 7. Fusion results of the second pair of source images.

In Figure 8, the drone’s infrared and visible cameras capture a Hainan gibbon hang-
ing on a tree by one hand. The Hainan gibbons in RP, DTCWT, and DTCWT-SR ap-
proaches introduce lots of noise, resulting in unnatural visual perception (see the gibbons in
Figure 8c–e). The tropical rainforests in the MSVD and JSM models are clearly blurred (see
green boxes in Figure 8f,g). The TE-MST algorithm achieves good fusion, but the rainforest
lacks some details. The DDcGAN technique is overexposed. The tropical rainforests in
GANMCC, DRF, and PMGI results are missing a large number of details (see the green
boxes in Figure 8j,l,m). The CSF and U2Fusion approaches introduce too much infrared
spectrum, leading the Hainan gibbons in their images to suffer from low brightness and
contrast (as shown in the gibbons in Figure 8k,n). Our method locates the gibbon well and
has clear background details (as shown in the boxes in Figure 8o).

(a) IR image (b) Visible image (c) RP

(d) DTCWT (e) DTCWT-SR (f) MSVD

Figure 8. Cont.
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(g) JSM (h) TE-MST (i) DDcGAN

(j) GANMcC (k) CSF (l) DRF

(m) PMGI (n) U2Fusion (o) Our

Figure 8. Fusion results of the third pair of source images.

Figures 9 and 10 show the evaluation metrics of each pair of testing images. For better
observation, Table 4 displays the various methods’ average values. Bold typefaces are used
to denote the best results. In Table 4, it can be seen that our method achieved the best
results among all other metrics except for QE. QE is a fusion quality metric based on image
edge dependence. The larger the QE, the better the fusion performance. U2Fusion is an
excellent fusion algorithm and achieved the best score in the QE metric.

Overall, none of the 12 comparison methods performed the fusion task well, and all
had some drawbacks. Figures 6–10 and Table 4 show that the Swin-UetFuse had better
fusion performance than the 12 comparison methods. This is because the Swin-UetFuse
has a powerful global and long-range semantic information extraction capability, and the
capability is very suitable for application in complex tropical rainforest environments.
The Swin-UetFuse technology provides an important reference for the observation and
protection of the Hainan gibbons.
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Figure 9. Cont.
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Figure 9. Objective comparisons of the eight metrics, i.e., FMIw, FMIdct, FMIpixel , SSIM, MS-SSIM,
QMI , QY , and QS.
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Figure 10. Cont.
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Figure 10. Objective comparisons of the eight metrics, i.e., QW , QE, QNCIE, QG, QP, MI, VIF,
and SCD.

Table 4. The average values of different methods.

Method FMIw FMIdct FMIpixel SSIM MS-SSIM QMI QY QS QW QE QNCIE QG QP MI V IF SCD

RP 0.3896 0.2567 0.8094 0.5200 0.8309 0.2714 0.7453 0.7059 0.7721 0.5118 0.8039 0.4649 0.4132 1.9215 0.7074 1.1432
DTCWT 0.2496 0.1511 0.7745 0.4567 0.8877 0.2007 0.6694 0.6612 0.7133 0.3651 0.8031 0.3536 0.2887 1.4343 0.5872 0.9799

DTCWT-SR 0.2522 0.1512 0.7755 0.4718 0.9005 0.2606 0.7169 0.6969 0.7480 0.3691 0.8045 0.3636 0.3095 1.9059 0.7066 0.9616
MSVD 0.2519 0.2303 0.8030 0.5500 0.8446 0.2772 0.6425 0.6784 0.6673 0.2734 0.8038 0.3107 0.3213 1.9276 0.6768 1.0470

JSM 0.1370 0.1147 0.8062 0.3496 0.4070 0.1872 0.1993 0.2764 0.1646 0.0002 0.8027 0.0774 0.0435 1.2778 0.2369 0.6169
TE-MST 0.3997 0.3767 0.8061 0.5605 0.7792 0.2208 0.7934 0.7611 0.7587 0.5860 0.8032 0.4837 0.3614 1.5199 0.5611 0.5390

DDcGAN 0.4116 0.3830 0.7988 0.4787 0.8285 0.2203 0.7916 0.7212 0.7808 0.6027 0.8032 0.4945 0.2660 1.6030 0.5017 1.3101
GANMcC 0.4170 0.4050 0.8110 0.5673 0.8240 0.3260 0.6634 0.6891 0.6833 0.2757 0.8046 0.3131 0.4395 2.2785 0.6397 1.1982

CSF 0.3286 0.2834 0.8051 0.5766 0.8934 0.2976 0.7233 0.7287 0.7559 0.4710 0.8042 0.4419 0.4305 2.0935 0.6726 1.4168
DRF 0.1492 0.1095 0.8123 0.4332 0.5559 0.2301 0.3474 0.3636 0.2756 0.0057 0.8031 0.1188 0.0729 1.5634 0.4572 0.7395

PMGI 0.4036 0.4065 0.7994 0.5574 0.7134 0.2724 0.7021 0.7022 0.7066 0.3521 0.8037 0.3715 0.2906 1.8591 0.6162 1.1040
U2Fusion 0.3662 0.3414 0.8085 0.5558 0.9234 0.2775 0.7544 0.7406 0.8064 0.6934 0.8039 0.5057 0.4512 1.9436 0.6375 1.4455

Our 0.4317 0.4100 0.8185 0.6010 0.9413 0.3396 0.8494 0.8210 0.8523 0.6272 0.8053 0.5765 0.5339 2.4336 0.7677 1.4630

4. Conclusions

In the article, we propose a fusion method of IR and visible images based on Hainan
gibbon for the first time, termed Swin-UetFuse. The Swin-UetFuse is a U-shaped encoder-
decoder structure with skip connections, which aims to extract global and long-range
semantic information. The skip connections reduce the semantic gap between the encoder
and decoder, preserving more information from the previous layer. We used 21 pairs of
Hainan gibbon dataset to perform experiments, and the experimental results demonstrate
that the proposed method achieves excellent fusion performance. The IR and visible
image fusion technology of drones provides an important reference for the observation



Drones 2023, 7, 543 20 of 22

and protection of the Hainan gibbon. In future work, we will design the Swin UetFuse
technology into a cell phone application that fuses IR and visible images from drones in real
time, so that the fused images can better discriminate between Hainan gibbons and other
creatures. In addition, there are other state-protected animals in Hainan Bawangling Nature
Reserve, such as Hainan peacock-pheasant (Polyplectron katsumatae), Hainan partridge
(Arborophila ardens), and water monitor (Varanus salvator). In future work, we will apply
the Swin-UetFuse technology to other animals.
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