
Citation: Liu, X.; Li, C.; Xu, X.; Yang,

N.; Qin, B. Implicit Neural Mapping

for a Data Closed-Loop Unmanned

Aerial Vehicle Pose-Estimation

Algorithm in a Vision-Only Landing

System. Drones 2023, 7, 529.

https://doi.org/10.3390/

drones7080529

Academic Editors: Dongdong Li,

Gongjian Wen, Yangliu Kuai and

Runmin Cong

Received: 16 July 2023

Revised: 31 July 2023

Accepted: 9 August 2023

Published: 12 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Implicit Neural Mapping for a Data Closed-Loop Unmanned
Aerial Vehicle Pose-Estimation Algorithm in a Vision-Only
Landing System
Xiaoxiong Liu * , Changze Li , Xinlong Xu, Nan Yang and Bin Qin

School of Automation, Northwestern Polytechnical University, Xi’an 710129, China;
cz_li@mail.nwpu.edu.cn (C.L.); xuxinlong@mail.nwpu.edu.cn (X.X.); yang_nan@mail.nwpu.edu.cn (N.Y.);
binq3638@mail.nwpu.edu.cn (B.Q.)
* Correspondence: liuxiaoxiong@nwpu.edu.cn

Abstract: Due to their low cost, interference resistance, and concealment of vision sensors, vision-
based landing systems have received a lot of research attention. However, vision sensors are only
used as auxiliary components in visual landing systems because of their limited accuracy. To solve
the problem of the inaccurate position estimation of vision-only sensors during landing, a novel
data closed-loop pose-estimation algorithm with an implicit neural map is proposed. First, we
propose a method with which to estimate the UAV pose based on the runway’s line features, using a
flexible coarse-to-fine runway-line-detection method. Then, we propose a mapping and localization
method based on the neural radiance field (NeRF), which provides continuous representation and
can correct the initial estimated pose well. Finally, we develop a closed-loop data annotation system
based on a high-fidelity implicit map, which can significantly improve annotation efficiency. The
experimental results show that our proposed algorithm performs well in various scenarios and
achieves state-of-the-art accuracy in pose estimation.

Keywords: vision-only landing system; runway-line detection; pose estimation; implicit neural
mapping; data closed-loop

1. Introduction

Safe and reliable flight is an important research topic in aircraft, and the process of
approaching and landing is the phase with the highest accident rate during the flight of
fixed-wing aircraft, so it is very important to guide the landing safely. traditional landing
systems rely on landing systems with instruments, which are a proven landing solution,
but the system requires expensive equipment and maintenance. For UAV (unmanned
aerial vehicle) landing, typical ground-based landing systems include OPATS and SADA.
With the continuous development of visual perception and positioning technologies, it has
become possible to apply vision to guided landing systems in recent years. Vision sensors
are resistant to interference and not easily detected compared to active sensors, such as
radar and laser, so the application of vision sensors to guided landings has received a lot of
attention [1].

Vision-based landing systems for fixed-wing aircraft are composed of ground-based
visual landing systems and space-based visual landing systems according to the implemen-
tation principle. Ground-based visual landing systems place vision sensors around the
runway to determine the position of the UAV through multi-point observation to achieve
landing. The scheme has sufficient computing resources, but it needs to rely on commu-
nication links, and its autonomy and applicability are somewhat limited. Space-based
visual landing systems use the information provided by vision to achieve navigation and
positioning, which further completes the vision-guided landing. The C2Land project is a
typical example of this solution [2].

Drones 2023, 7, 529. https://doi.org/10.3390/drones7080529 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7080529
https://doi.org/10.3390/drones7080529
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-8061-5974
https://orcid.org/0009-0009-5708-0287
https://doi.org/10.3390/drones7080529
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7080529?type=check_update&version=2

Drones 2023, 7, 529 2 of 25

The space-based visual landing system can be divided into image-based visual ser-
voing (IBVS) and position-based visual servoing (PBVS). IBVS compares the image signal
obtained from real-time measurements with a given image signal and uses the acquired im-
age error for closed-loop control. However, PBVS uses the camera parameters to establish
the relationship between the image signal and the aerial vehicle’s attitude and utilizes the
attitude information in the closed-loop control. IBVS does not need to rely on the camera
model, but the scheme is more scene-dependent. PBVS achieves the decoupling of vision
problem and control problem, but the scheme requires an accurate camera model [3].

This paper proposes a solution to the pose-estimation problem in vision-only landing
systems. We use the PBVS strategy to make the whole pose-estimation system robust and
interpretable. To achieve higher accuracy, we propose a novel pose-estimation algorithm in
a visual landing system, which is an implicit neural mapping solution (refer to Figure 1).
We use camera images as input and the pose estimation as output. The runway detection,
initial pose estimation, and NeRF-inverting [4] modules are computed on the on-board
device (blue color in Figure 1; implicit mapping and GT annotation modules are computed
on the cloud device (red color in Figure 1). The detection algorithm proposed in this paper
is abbreviated as FMRLD (flexible multi-stage runway-line detection) in the experiment.

Figure 1. Our proposed implicit neural mapping pose estimation method in a vision-only landing
system.

Our proposed algorithm follows the basic paradigm of pose estimation. Firstly, we
perform feature extraction on the runway lines. The extracted features are then used for
initial pose estimation, which is further optimized to obtain accurate estimation results. In
the feature extraction phase, we use deep learning-based runway line detection methods
to enhance accuracy and robustness (Section 3.1.1). These methods rely on high-quality
datasets, so we utilize diverse data sources to construct datasets and perform data aug-
mentation accordingly (Section 3.3.1). Since the accuracy of runway line detection directly
affects the initial pose, we propose hump randomness filtering to refine the detection
results (Section 3.1.2). During the initial pose estimation phase, we utilize the principle of
multi-view geometry to estimate the pose. To ensure accuracy, we eliminate some incorrect
estimation results (Section 3.2.1). The pose optimization is divided into two parts: on-board
and cloud-based. On the on-board computing platform, the pose optimization results are
obtained through inverting NeRF (Section 3.2.3). Meanwhile, on the cloud computing
platform, the initial pose estimation results of the current trip are combined with the poses

Drones 2023, 7, 529 3 of 25

from historical trips for incremental pose optimization. The optimized results are then
utilized for NeRF implicit mapping (Section 3.2.2). To address the challenges of expen-
sive and inefficient runway data annotation, we propose a data closed-loop annotation
strategy that leverages mapping results to assist in the annotation process. Specifically, we
export the explicit point cloud of NeRF and allow annotators to annotate directly on the 3D
point cloud. This approach significantly enhances the efficiency of data reuse compared
to traditional image annotation methods. As a result, the entire algorithm operates in a
closed-loop data flow (Section 3.3.2). The modules included in our proposed method are
described below.

Runway detection: Accurate detection of runway lines is extremely important for
navigation and positioning. Our structured runway line-detection and hump-randomness
filtering modules provide consistent and reliable information on runway features. During
the landing process, the visual features vary greatly among different runways, different
weather conditions, and different landing phases, and these problems pose certain chal-
lenges to the accurate detection of runway lines. In this paper, our proposed coarse-to-fine
accurate runway line-detection method fully considers the change in viewpoint during the
landing of the aerial vehicle and the applicability of the algorithm to different scenarios.
First, we use an object-detection algorithm to extract high-level semantic information about
the runway, which ensures the uniform distribution of the runway in the image and facili-
tates the detection of subsequent runway lines. Then, we extract the left and right runway
lines and the virtual start line in the focused image. We propose a column-anchor-based
detection and parallel acceleration scheme for virtual start-line detection. Last, a runway
line fine-tuning method based on clustering and optimization is proposed due to the ran-
domness of detection arising from the width of the runway line. Our runway-detection
module can provide good front-end detection information for pose estimation.

Initial pose estimation: The goal of our initial pose-estimation module is to estimate
the UAV pose information with scales using a runway line feature. To obtain the scale,
the module needs to input the runway width as a priori information. We use multi-
view geometry, such as the vanishing point principle, to estimate the UAV’s initial pose.
However, the pose is generated from a single image and does not guarantee the stability of
the pose. We adopt the results of the visual odometry pose estimation as a reference to fix
the instability in the initial pose estimation.

Incremental implicit mapping: The incremental implicit mapping module provides
map information to the initial pose estimation and improves the accuracy of the pose
estimation. It also provides high-quality point-cloud maps due to the differentiability and
high fidelity of the neural radiance field (NeRF [5]). Due to the limitations of NeRF [5]
in pose optimization in large scale scenes, we have split the implicit mapping module
into two sub-modules: offline pose optimization and NeRF mapping. In the offline pose
optimization sub-module, we have adopted the standard structure from the motion (SfM)
process. However, we have two modifications. One is that we introduce a sky segmentation
sub-module, which ensures that SfM does not extract feature points from the sky during
the feature-extraction stage, preventing the problem of poor pose-estimation results due to
feature mismatch. The other point is that we use the results of the initial pose estimation
as prior information for triangulation and bundle adjustment, thus preventing the failure
of pose estimation caused by local optima that SfM may fall into in large-scale scenes.
In NeRF mapping, a submodule and a grid-based NeRF approach [6] are adopted. We
introduce appearance embedding to ensure robustness in different weather conditions. In
addition, based on some characteristics of the runway itself, we introduce regularization
losses (smoothness loss, sky loss, etc.) to improve the geometry of the NeRF mapping.
Please refer to Section 4 for more details.

Inverting NeRF: Inverting NeRF aims to optimize the pose-estimation result based on
the implicit map when a new initial pose arrives. We use the initial pose to query the NeRF
map, and we can obtain a rendered image. Meanwhile, we can also obtain the camera

Drones 2023, 7, 529 4 of 25

image on that timestamp. Using the pose as an optimization variable, we optimize the pose
by constructing a loss of the observed and rendered images.

GT annotation: The runway-detection network must be trained using annotated
data, which is an extremely labor-intensive process. The GT annotation module reduces
the annotation cost significantly by generating a 3D point-cloud map, annotating the
runway in 3D space, and then projecting it into the 2D image. At the same time, due to
the differentiable representation, NeRF can synthesize images with a novel view, thus
providing true 3D data augmentation. The GT annotation module achieves a closed loop of
data and enhances the iterative efficiency of the whole system.

Combining the above modules, we propose a complete algorithm for estimating the
pose in a vision-only landing system. The proposed algorithm has been proven effective in
simulation experiments.

The main contributions of our work are follows.

(1) A novel pose-estimation framework in a vision-only landing system is proposed,
which introduces implicit mapping and ground-truth annotation modules to improve
the pose-estimation accuracy and data-annotation efficiency.

(2) We build a runway-detection pipeline. The multi-stage detection framework pro-
posed in this paper makes full use of the features of different stages, which can
guarantee semantic features and positioning ability and therefore greatly improves
the runway line detection accuracy.

(3) We present a NeRF-based mapping module in a visual landing system, whose
high fidelity provides the possibility of reusing ground truth annotation, while its
differentiability provides the basis for accurate pose estimation. Our NeRF-based
mapping allows for the coding of different temporal styles, which is not possible
with other mapping methods.

This paper is organized as follows: in Section 2, we introduce related work, including
runway detection algorithms and neural radiance fields; in Section 3, we provide a detailed
description of our algorithm, including implementation details of runway line detection,
pose estimation, implicit mapping, and the data loop-closure module; in Section 4, we
validate our proposed algorithm through experiments on runway line detection, pose
estimation, and lightweight network; in Section 5, we discuss the advantages and disad-
vantages of our proposed algorithm, as well as future research directions; the conclusion is
given in Section 6.

2. Related Work
2.1. Runway Detection

Runway detection methods can be roughly divided into three categories: detection
based on a priori information, detection based on templates, and detection based on
features. Feature-based detection methods have become the dominant detection method in
recent years.

A Priori information-based runway detection: In a priori information-based methods,
runway detection is achieved using known runway models and the aircraft attitude, and
the upper limit of landing is considered in terms of safety and reliability, with the vision
system primarily used as an auxiliary navigation system. The authors of [7] propose a
model-based runway detection method that requires a known runway model (available
through aeronautical information publication), the internal reference of the camera, and the
rough pose provided by other sensors, and each line segment in the runway model can be
mapped into the image using the above information. In [8], a camera model is also mapped
to the image first, but unlike [7], the ROI given in this paper is the ROI of the smallest
rectangle containing the left and right runway lines rather than the ROI of each segment of
the runway model line. However, in tasks such as emergency landings, the initial attitude
estimation is noisy and the sensor type is limited, and the model-based runway detection
is less effective in this case.

Drones 2023, 7, 529 5 of 25

Template-based runway detection: Template-based runway line detection uses the
comparison of the query image and the template image to achieve detection. In [9], LSD
is used for line feature extraction, and chamfer matching is later used to achieve runway
search, but due to the limitations of template matching itself, the template often cannot
adapt to the large changes in view during the landing process. The authors of [10] used a
manually designed template to find the ROI and rotates the image in different directions
after obtaining the binarized edge gradient map. Then, the sum of the pixel values in
different columns is counted to find their peaks, and the peaks are clustered under dif-
ferent rotation angles. Finally, the clustering centers are mapped to straight lines in the
original image to achieve runway line detection. Template-based detection methods are
poorly generalized and often fail because they are more sensitive to runway geometry and
light conditions.

Feature-based runway detection: Runway line detection based on image features is
mainly achieved using visual images. Unlike remotely sensed runway detection [11], the
proportion of the runway in the image changes continuously in the landing scenario, and
the left and right runway edges no longer have parallel characteristics. In [12], the HSV
color model and LSD algorithm were used to detect non-standard airfields, and the paper
concluded that using the HSV color model could achieve better detection results than
the RGB color model. In [13], ROIs are formed by corner-point detection and clustering,
and then a neural network is used to classify these ROIs to determine the location of
runway edges. However, it is a challenge to choose the number of clusters effectively.
The authors of [14] use an end-to-end segmentation network for runway line detection
and a self-attention module to enhance the segmentation, while a lightweight network is
used to ensure real-time detection, but the paper does not give the impact of detection on
subsequent tasks.

None of the above detection methods consider the effectiveness of detection under
large viewpoint changes during landing, resulting in these methods only being effective
when there is a small variation in perspective and therefore requiring different detection
models to be set up for different landing stages (e.g., detection parameters need to be
fine-tuned). Additionally, the detection of the starting line can enhance pose estimation
performance; however, the above-mentioned methods often fail to detect the virtual start
line as it often does not exist. Our proposed method overcomes these problems effectively
and provides accurate and reliable runway line detection results.

2.2. Neural Radiance Field

NeRF is a recent breakthrough in the field of computer vision that allows for the
generation of highly realistic 3D models of objects and scenes from 2D images. The method
works by training a deep neural network to predict the radiance at any point in 3D space,
given a set of images and corresponding camera poses. This allows for the creation of
photorealistic renderings of objects and scenes from any viewpoint and even enables the
synthesis of novel views that were not captured by the original images.

NeRF has been applied to a wide range of applications, including virtual reality,
augmented reality, and robotics. It has also been used to generate 3D models of real-world
objects and scenes, such as buildings, landscapes, and even human faces.

While NeRF has shown remarkable success in generating high-quality 3D models from
a small number of images, it faces several challenges when applied to large-scale scenes.

Computation complexity: The continuity expression of NeRF and the weak assump-
tion of spatial consistency result in slow convergence during training and while requiring
large networks to compute the RGB and density of spatial sampling points, which also
leads to the slow inference speed of the network. In large-scale scenes, a large number of
points in the scene need to be calculated, so the computational requirements can become
prohibitively large.

To address the challenge, several approaches have been proposed. It has been shown
in recent research that grid-based representations can be used to speed up the training

Drones 2023, 7, 529 6 of 25

and inference of NeRF significantly. Plenoxels [15] store density values and colors directly
on a voxel grid, rather than relying on an MLP network. Instant-NGP [6] greatly im-
proves the training efficiency by utilizing hash encoding and multi-resolution mechanisms.
F2NeRF [16] delves deep into the mechanism of space warping to handle unbounded scenes
and achieves fast free-viewpoint rendering by allocating limited resources to highlight the
necessary details.

Few shot: The original NeRF method requires a 360-degree view of the target object,
allowing the network to effectively learn the geometric properties of the scene due to the
large amount of co-visible areas. However, in some scenes, the number of input views is
limited or the view directions are relatively uniform, which may deceive the network and
prevent it from learning the correct geometric information from the images. RegNeRF [17]
alleviates artifacts caused by the sparse input by adding regularizations on both geometry
and appearance. DS-NeRF [18] and Urban-NeRF [19] improve the geometry of the scene
by adding depth supervision.

During the visual landing process, the observation viewpoint is relatively uniform
and falls into this category. To address these challenges, prior regularization constraints or
depth supervision are often required to be added to the network.

Different resolutions: When there are multiple resolutions present in the input images,
NeRF can exhibit blurring and aliasing. MipNeRF [20] solves this problem effectively by
using cone sampling. In the process of visual landing, there is a significant difference in
resolution between the early and late stages of landing. Therefore, our paper adopts a
MipNeRF-based approach to address this issue.

3. Method
3.1. Multi-Stage Flexible Runway Detection

Our multi-stage runway-line-detection algorithm constructed in this paper follows the
design principle from coarse to fine, which can largely improve the reliability and accuracy
of runway-line detection. The first stage uses the object-detection algorithm, which can
effectively extract the high-level semantic information of the runway. By extracting ROIs
(regions of interest), it can ensure the uniform distribution of the runway in the image and
facilitate the detection of subsequent runway lines. The second stage of the runway-line-
detection algorithm is used to extract left and right runway lines and the virtual start line
in the focused image, and the extracted runway lines are described in the form of point
sets. The runway-line-detection algorithm does not use object segmentation techniques but
rather row- and column-specific classification, which is able to reduce the computational
effort and increase the inference performance. The third stage mainly adjusts the results of
runway-line detection using pixel tuning and sub-pixel tuning to ensure that the detection
results of runway lines are attached to the inner edges of the runway lines, thus effectively
reducing the randomness of runway line detection.

3.1.1. Structured Runway-Line Detection

We adopt a row anchor-based [21] mechanism for runway-line detection, which
samples the image in equally spaced rows, then uses the sampled rows as anchor rows
and classifies several adjacent columns into the same grid. With these two processing
techniques, the computational effort of the algorithm can be significantly reduced. Below,
the network feature of the image is denoted as F, the runway-line-detection classifier is
denoted as f , and the predicted results of the runway line are denoted as P.

For the i-th runway line and the j1-th row anchor, the prediction result can be ex-
pressed as:

Pj1
i = f j1

i (F), (1)

where the number of row anchors is ar the number of column grids is nc, and Pj1
i is an

nc + 1 dimensional vector, where the extra dimension is used to indicate the presence or
absence of the runway line.

Drones 2023, 7, 529 7 of 25

However, the method does not allow for virtual start-line detection, as the slope of
the start line is close to zero and the start line can not be effectively detected using the
row anchor. In order to solve this problem, we design a column-anchor-based virtual
start-line-detection method.

Similar to row anchors, column-anchor detection is defined as follows. For the i-th
runway line and the j2-th column anchor, the prediction can be expressed as:

Pj2
i = f j2

i (F), (2)

where the number of column anchors is ac, the number of row grids is nr, and Pj2
i is an

nr + 1 dimensional column vector.
Although such a design works in theory, the left and right runway lines and the virtual

start line need to be predicted separately; i.e., two sets of models are required, which is
detrimental to the reuse of network features, the management of the network model, and
parallel GPU acceleration. Considering the pairwise characteristics between column and
row, we propose an ingenious design approach to unify the left and right runway line and
the start line in a unified detection framework.

The left runway line, right runway line, and the virtual start runway line are numbered
i as 1–3, respectively, and then the prediction can be expressed in the following form:

Pj1
1 = f j1

1 (F)
Pj1

2 = f j1
2 (F)

Pj2
3 = f j2

3 (F)

(3)

To ensure matching dimensions, two merging methods can be generated, which are:{
ar = nr
ac = nc

(4)

or: {
ar = ac
nc = nr

(5)

If the form of Equation (4) is used, the Pj1
1 , Pj1

2 , and Pj2
3 column vectors may have different

dimensions, and in this case, if the different runway lines are processed uniformly, there
will be invalid elements in the matrix P. If the form of Equation (5) is used, the Pj1

1 , Pj1
2 and

Pj2
3 column vectors have the same dimension, in which case all the data in the matrix P are

valid, and P can be expressed as:

P =
[

Pj1
1 Pj1

2 Pj2
3

]
=
[

f j1
1 (F2) f j1

2 (F2) f j2
3 (F2)

]
(6)

We use this combined form to unify the three runway lines and then interpret them
differently in the post-processing stage.

Although the detection of three runway lines can be achieved using the above ap-
proach, in order to enable the runway-line-detection network to learn more essential
features and achieve better generalizability, we add regular terms based on the geometric
properties of the runway. There is a certain constraint relationship between the left and
right runway lines. Due to perspective, the closer one gets to the top of the image, the
closer the left and right runway lines are from the perspective of the image. For the i-th
runway line and the j1-th row anchor, the probability can be expressed as:

pj1
i = so f tmax

(
Pj1

i

)
(7)

Drones 2023, 7, 529 8 of 25

So the location prediction results are:

Lj1
i =

nc

∑
k=1

k · pj1
i (k) (8)

For the same anchor row, the difference between the predicted positions of the left and
right runway lines is:

Dj1 = Lj1
1 − Lj1

0 , s.t. j ∈ [0, h] (9)

The difference in distance between the left and right runway lines between adjacent anchor
rows is expressed as:

∆Dj1 = Dj1+1 − Dj1 , s.t. j1 ∈ [0, h− 1] (10)

Ideally, no loss is caused in the case of ∆Dj1 > 0, while a loss is caused when ∆Dj1 < 0.
However, in the actual detection process, a certain tolerance threshold needs to be set. The
reason for designing the threshold is mainly due to the fact that the constraint of a zero
threshold is too strict, and the use of a zero threshold may reduce the performance of the
detection. Assuming that the tolerance threshold is T, then, for each anchor row, the loss
can be expressed as:

Mj1 = 0.5×
(∣∣∣∆Dj1 + T

∣∣∣−∆Dj1 − T
)

, s.t. j1 ∈ [0, h− 1] (11)

Therefore, the correlation loss of the left and right runway lines can be expressed as:

Lossrelation =
h−1

∑
j1=1

∥∥∥Mj1
∥∥∥

1
(12)

For the starting runway line, which is itself a virtual line, the distortion is prevented
by adding a linear constraint-regularization term. The experimental results show that the
structured loss of the left and right runway lines proposed in this paper and the linear loss
of the starting line can improve the generalization.

3.1.2. Hump Randomness Filtering

The accuracy of the runway-line detection directly affects the subsequent position
estimation. However, as the result of the width of the runway lines themselves, there is
randomness in the location of the detection points in the structured runway-line detection.
During the initial period of access to the visual landing system, the runway lines occupy
fewer pixels in the image, but the positioning is more sensitive to small fluctuations in
detection, and when the UAV is about to reach the ground, the runway lines occupy a
certain width in the image, and if each runway is still considered as one edge in this case, it
will produce great detection uncertainty. In this paper, the left and right runway line edges
are absorbed toward the inner side of the runway, which effectively solves the problem of
detection uncertainty.

Although there are off-the-shelf edge-detection algorithms, such as Sobel [22], Canny [23],
etc., such generic edge-detection algorithms do not have direction selection characteristics
and tend to introduce non-runway edge information, which causes some interference in
the subsequent steps. In addition, since the general location of the runway line is already
given in the second stage, there is no need to take the gradient of the whole map, but only
to find the gradient at some specific locations, which can reduce the computational effort.

In order to enhance the gradient information of runway edges while suppressing the
gradient information of non-runway edges, a directional gradient strategy is proposed in
this section. The initial slope of the runway line krough can be determined from the detection
points of the previous stage, so the directional gradient convolution kernel is determined
based on the initial slope. Specifically, consider convolution kernel Ke as an N × N grid,

Drones 2023, 7, 529 9 of 25

given a straight line passing the center of the convolution kernel with slope krough. The
straight line divides the original grid into three categories: grids on the top side of the
straight line, grids on the bottom side of the straight line, and grids passing through the
straight line. The values for these three types of grids are set to 1, −1, and 0, respectively.
After the convolution kernel K is solved for, a directional gradient image can be obtained.

The detection point (x0, y0) is sampled in the directional gradient image along the
orthogonal direction y = n(x) to the left and right for N0 pixels. The sampling sequence is
defined as:

S(x0,y0)
=
[
s0 ... s2×N0

]
, (13)

where st(t = 0, ..., 2× N0) denotes the gradient value on the specific sample point. S(x0,y0)

is normalized to obtain Sn(x0,y0)
.

The values of Sn(x0,y0)
are first filtered to remove the points whose amplitude is less

than the specified threshold, e.g., 0.5, and then the remaining points are clustered by two-
dimensional K-means++ [24]. The clustering results are shown in Figure 2. Assuming that
the peaks of two categories are rmax

i , where i = 0, 1, and then we can obtain the adjust
points, and the result is used as initial value for subsequent optimization, which can be
expressed as: xrough

i = x0 + arg max
∆x

rmax
i

yrough
i = n(xrough

i)
(14)

Figure 2. Sampling points and cluster. The blue and red points indicate different two types of data,
and the green points are invalid. The yellow dashed line indicates the dividing line between the
invalid and valid points.

Ideally, the edge gradient of an image is an impulse signal, but due to factors such as
image blurring and filtering, the edges often do not conform to this model. We assume
that the change in the image edge gradient conforms to the Gaussian model. Under
this assumption, the horizontal coordinate corresponding to the peak of the Gaussian
distribution is the edge position. For the runway line, there is a certain width itself, and
the points on the runway line may be affected by both the left edge and the right edge. A
hump model is proposed to deal with the sub-pixel fitting of the runway to obtain more
accurate detection results. B(∆x) is defined as:

B(∆x) =
k0√
2πσ2

(
exp

(
− (∆x− µ0)

2

2σ2

)
+ exp

(
− (∆x− µ1)

2

2σ2

))
, (15)

Drones 2023, 7, 529 10 of 25

where the horizontal coordinates of the two peaks, denoted µ0 and µ1, respectively, are the
coordinates of the left and right edges of the runway to be sought. The standard deviation
of the Gaussian function is denoted as σ, which is shared by two Gaussian functions.

We use the Levenberg–Marquardt method to optimize. In order to speed up the
optimization and prevent the algorithm from falling into local optima, we add a regular
term. Specifically, the distance of the peak points actually reflects the width of the runway
line, which is actually relatively narrow. By constraining the distance between the two
peaks, the result can be made to satisfy the actual physical scene. The experiments show
that the regular term can effectively prevent the algorithm from falling into a local optimum,
and the optimization problem can be described as follows:

ψ∗ = arg min
ψ

1
2N0 + 1

N0

∑
i=−N0

(
Bψ(i)− Sn(x0,y0)[i + N0]

)2
+ λ‖µ0 − µ1‖2, (16)

where the parameters are defined as ψ = {µ0, µ1, σ, k0}, the model under a particular set of
parameters p is defined as Bψ(∆x), and λ is the regularization coefficient. The initial values
of µinitial

i are selected as arg max
∆x

rmax
i , where i = 0, 1.

After obtaining µi, similarly to Equation (14), we can obtain (x f ine
i , y f ine

i). We then use
the following criteria to check the optimized result, which is:∣∣∣∣∣µi − arg max

∆x
rmax

i

∣∣∣∣∣ < τ (17)

We set τ to 1 or less because the optimized model is fine-tuned sub-pixel and an adjustment
value greater than 1 is considered unreasonable. When the optimization result does not
satisfy this criterion, the initial value is used as the final result.

The hump randomness filtering algorithm is shown in Algorithm 1.

Algorithm 1 Hump Randomness Filter

Input: Detection Points Set S, Image I;
Output: Adjust Points Set S′

Directional convolution kernel Ke ← Detection points set S;
for s in S do

Sequence Q←Sampling along the gradient direction for point s
Sequence Sn ← Get the directional gradient value of each point in Q using kernel Ke
Initialize µinitial

i ← Clustering with Sn to get two peak
µi ← Using Sequence Sn and µinitial

i to optimize the hump model

if
∣∣∣µi − µinitial

i

∣∣∣ < τ then

Use optimized parameters to get S′

else
Use init parameters to get S′

end if
end for

3.2. Implicit Reconstruction-Based Pose Estimation
3.2.1. Initial Pose Estimation

We use runway line features to initialize the UAV pose. The runway coordinate system
and camera coordinate system are defined as shown in Figure 3. The origin Or of the
runway coordinate system is chosen as the midpoint of the runway start line, the xr points
from Or to the front of the runway, and zr starts from Or and is perpendicular to the runway
plane, and yr can be determined according to the right-handed coordinate system.

Drones 2023, 7, 529 11 of 25

The origin Oc of the camera coordinates system is located at the optical center of the
camera, the zc points from Oc to the camera directly in front, xc points to the camera directly
to the right, and yc can be determined according to the right-handed coordinate system.

Figure 3. Runway coordinate system and camera coordinate system.

The positions of the 3D points in the runway coordinate system and the positions of
the points in the pixel coordinate system are mathematically related as follows:

−→v p =
1

Zc
KRcr

[
I3×3| −~tcr

][~vr
1

]
=

1
Zc

P
[
~vr
1

]
, (18)

where P = KRcr[I3×3| −~tcr] is the projection matrix, Rcr denotes the rotation matrix from
the runway coordinate system to the camera coordinate system, K is the camera’s intrinsic
matrix, and~tcr denotes the coordinates of the origin of the camera coordinate systems in
the runway coordinate system. Assuming that the slope and bias of the runway line in the
pixel coordinate system are denoted as ki and bi, where i is selected from {l, r, h}, which
denote the left runway line, the right runway line, and the start runway line, respectively.
The following location algorithm is given without proof [25,26]:

~Ai =
[

ki −1 bi
]
KRcr (19)

The first three columns of ~Ai are denoted as a1
i , a2

i , a3
i , respectively, and the width of the

runway is W. The positioning result can be expressed as follows:
[

ycr
zcr

]
=

[
1 a3

l /a2
l

1 a3
r /a2

r

]−1[−W/2
W/2

]
xcr = −a3

l zcr/a2
l

(20)

With this method, the real width of the runway and the relative poses between the
runway and the camera need to be given. The attitude of the camera can be obtained
using an IMU and magnetometer, but the attitude of the runway is often difficult to obtain
directly, so the relative attitude of the runway and the camera is more difficult to obtain.
Below is a method to estimate the relative attitude of the UAV and the runway based on
the runway line features [27].

The extinction points of the left and right runway lines are:

vp
lr =

(
(br − bl)/(kl − kr) (klbr − krbl)/(kl − kr)

)
(21)

And the extinction point vp
s of the starting line can be obtained from Equation (22):[(

vp
lr

)T(
K−TK−1)
lT
s

]
vp

s = 0 (22)

Based on the above, the rotation matrix Rcr can be expressed as follows:

Rcr =
[

1
α1

K−1vp
lr

1
α2

K−1vp
s

1
α3

(
K−1vp

lr

)
×
(

K−1vp
s

)]
(23)

Drones 2023, 7, 529 12 of 25

In Equation (23), α1, α2, and α3 are normalized coefficients.
Based on the above, we obtain the single-frame pose of the UAV camera in the runway

coordinate system. For the k-th frame, the pose estimated using above method can be
abbreviated as Γframe

k .
However, a single-frame pose can suffer from unstable pose estimation. We used

a visual odometer-based filtering method to remove the jumps. We initialized the scale
of the monocular odometer using a single-frame pose. In feature extraction, we use the
trained sky segmentation model to remove invalid feature points in the sky and increase
the proportion of feature points in the runway area. Using the odometer’s pose-estimation
results, we are able to obtain pose transformation from k to k + 1, denoted as Γodom

k→k+1.

Meanwhile, we are able to obtain Γframe
k→k+1 = Γframe

k+1 (Γframe
k)

−1
. Then, we use the similarity

metric Γodom
k→k+1(Γ

frame
k→k+1)

−1
to determine whether to use a single-frame pose. If the threshold

condition is not met, the odometer pose is used as the estimation pose. We denote the result
as Γinitial

k .

3.2.2. Implicit Mapping

Cloud computing, like offline computing, can see all the pose data of the previous
flight trajectories in one batch, while cloud-based platforms have more computing resources,
which is an advantage of cloud-based mapping and pose estimation over the onboard
platform. We propose a scheme to reconstruct the implicit map using an implicit radiance
field and optimize the UAV’s pose attitude online.

We use Γinitial as an a priori pose and use SfM for pose optimization [28]. During
feature extraction, we use the segmentation model to remove sky feature points and moving
objects such as birds. The feature matching is made more efficient by using a priori poses to
guide this process. In the triangulation process, the SfM process itself has a real scale due
to the a priori poses. During bundle adjustment, a priori poses are used as optimization
regularization to prevent failure. In landing scenarios, there are often multiple trips with
different flight paths, and it is important to merge them. One strategy is to optimize all
trajectory poses together. However, this is computationally inefficient and often leads to
optimization failure due to the high degree of freedom in the optimization process. We
adopt a progressive merging strategy, where new trip data arrive and are first reconstructed
separately and then merged with existing results. The experimental results show that
the feature point extraction strategy, a priori poses, and incremental reconstruction can
effectively improve the reconstruction accuracy of the SfM. We denote the pose optimization
result as Γopt. This result is used for NeRF reconstruction.

Assume that the RGB color of a certain pixel is Ct; to render this pixel in NeRF, a ray
r(t) = o + td is emitted from the camera’s center of projection o in the direction d that
passes through the pixel, and distance t ∈ (tn, t f), where tn and t f are the predefined near
and far distances. A sampling strategy is used to obtain the sampled tk. For each distance
tk ∈ t, the 3D position can be expressed as x = r(tk). Then, a positional encoding strategy
is used to improve rendering quality. The output of the specific sampling points k after
passing through the neural radiance field are RGB colors ck and a density σk, which can be
expressed as:

[σk, ck] = MLP(γ(r(tk))), ∀tk ∈ t, (24)

where MLP represents the neural radiance network, while γ(·) denotes the positional
encoding function.

The estimated densities and colors are utilized for approximating the volume-rendering
integral through numerical quadrature, which is discussed in the volume-rendering review
by Max [29]:

Cp(r) = ∑
k

Tk(1− exp(−σk(tk+1 − tk)))ck, (25)

Drones 2023, 7, 529 13 of 25

in which Tk = exp
(
− ∑

k′<k
σk′(tk′+1 − tk′)

)
, and Cp(r) is the final predicted color of the

pixel. During the training of the NeRF network, the predicted pixel value Cp(r) is mini-
mized with respect to the true pixel value Ct(r) using gradient descent.

Theoretically, we have the optimized poses Γopt, camera intrinsic matrix K, and the
corresponding images to perform the NeRF implicit reconstruction. However, there are
some challenges in our specific scenario. Problem I is that the drastic changes in the
viewpoint during landing and the large variation in runway resolution are also difficult
problems for the NeRF model. Problem II is the problem of large-scale scenes: visual
landing requires the representation of large scenes, which the original NeRF model is
unable to handle. Problem III is the issue of appearance style: landing scene data may
come from different times, and if this problem is not effectively addressed, it can affect the
performance of the implicit map. Problem IV: due to the few viewpoints during landing, it
is difficult to learn the geometric information of the scene in the mapping process.

To address Problem I, we adopt the approach proposed in MipNeRF [20], using conical
frustum instead of rays in NeRF to alleviate the aliasing issues caused by multi-resolution.

To address Problem II, we utilize the scene parameterization mechanism from MipN-
eRF360 [30]. Specifically, we achieve coordinate transformation through defining contract(·):

contract(x) =
{

x ‖x‖ 6 1
(2− 1/‖x‖)(x/‖x‖) ‖x‖ > 1

(26)

This approach allows us to compress the range of spatial points from [0,+∞) to [0, 2).
By choosing an appropriate unit scale, we can effectively represent unbounded scenes.

To address Problem III, we apply the appearance-embedding mechanism from NeRF-
W [31] to our approach. NeRF-W assigns a unique appearance encoding to each image and
obtains a corresponding word vector. This vector is then fed into a multilayer perceptron
for backpropagation optimization, resulting in an appearance encoding that captures the
style of the current image. However, unlike the “wild” images in NeRF-W, the images in
the visual landing system maintain a consistent style throughout each trip. By setting the
same appearance encoding for all images in a trip, we reduce the degree of freedom in
appearance encoding and allow it to capture the essential features of the appearance. We
denote the appearance encoding as ei, where i denotes the i-th trip. After the appearance
embedding is incorporated, Equation (24) can be rewritten as:

[σk, ck] = MLP(γ(r(tk)), ei), ∀tk ∈ t (27)

To address the problem IV, we add some regularization constraints based on the
physical properties of the real scene to limit the geometric degrees of freedom.

The sky’s depth is considered to be infinite. Since the sky often lacks effective features,
if the depth of the sky is not constrained, many floaters will appear in the scene. By adding
regularization constraints to the sky, this problem can be alleviated [19]. All the rays
belonging to the sky can be obtained based on the sky segmentation model, denoted as the
set Rs, which contains ns elements, and we define sky loss Lsky to encourage sky rays to
have zero density:

Lsky =
1
ns

∑
r∈Rs

∑
k
[Tk(1− exp(−σk(tk+1 − tk)))]

2 (28)

The runway area, which is the focus of our attention, conforms to the assumption of
planar smoothness. Therefore, we use the geometry regularization [17] to constrain the
geometry of the runway. The depth of NeRF is generally represented as:

dp(r) = ∑
k

Tk(1− exp(−σk(tk+1 − tk)))tk (29)

Drones 2023, 7, 529 14 of 25

All the rays belonging to the runway can be obtained based on the runway-detection
model, denoted as the set Rr, which contains nr elements, and we define runway loss
Lrunway as:

Lrunway =
1
nr

∑
r∈Rr

(
d
(
ri,j
)
− d
(
ri+1,j

))2
+
(
d
(
ri,j
)
− d
(
ri,j+1

))2 (30)

In addition to the aforementioned losses, we propose a multi-view consistency loss. In
this loss, we add a random rigid transformation Tr. To simplify the notation, we denote the
function mapping from rays to rendered pixel colors as M(·). The set of common pixels
between the images before and after the rigid transformation is denoted by Rc, which
contains nc elements, and we define consistency loss Lconsistency as:

Lconsistency =
1
nr

∑
r∈Rc

(
T−1

r (M(Tr(r), ei))−M(r, ei)
)2

(31)

The loss function for our proposed method can be expressed as:

Ltotal = Lrgb + Lsky + Lrunway + Lconsistency, (32)

in which Lrgb = 1
ni

∑
r∈Ri

∥∥Cp(r)− Ct(r)
∥∥2, Ri represents all the rays that can be formed from

the image, and ni represents the number of rays.

3.2.3. Inverting NeRF

After training the implicit representation of the scene with NeRF, we use the scene map
for online pose estimation. Unlike implicit mapping, the “inverting NeRF” module does
not need to use subsequent frames of the current trip, so it is able to compute on an airborne
platform. First, we perform appearance-style initialization after obtaining the image of this
trip. We freeze all network parameters except for the appearance embedding and optimize
it by minimizing the difference between the observed image and the predicted image; the
appearance embedding of the new trip can be represented as enew.

For the k-th frame, we can obtain a set of rays Rk based on the initial pose Γinitial
k and

intrinsic camera K. The mapping function from the rays to the RGB values for the k-th
frame is denoted as Ck(·), and the optimization problem can be represented as:

Tk = arg min
T∈SE3

∑
r∈Rk

‖T(M(r, enew))− Ck(r)‖2
2, (33)

where T is the optimization variable. Then, we can obtain the optimized pose Γopt
k = TkΓinitial

k ,
which is a non-convex over the 6DoF space of SE(3). We used the optimization procedure
from the paper [4].

3.3. Data Closed-Loop Strategy
3.3.1. Dataset

In order to achieve reliable runway-line detection, it is necessary to have a high-quality
dataset [32]. However, to the best of our knowledge, there is no open-source dataset for
this particular scenario of vision-based landing systems. Although runways exist in some
remote sensing datasets, these runways are not directly applicable to the landing scenario
as they are taken from a different perspective than in the vision-based landing system.
Based on the information above, the dataset was produced for the landing system in this
paper. We used four customized datasets. The first type was the Vega-Prime and X-plane
runway image, which were directly generated by the simulator (Vega-Prime and X-Plane
are simulators). The second type was the runway data collected from the real runway.
The third type was the available data obtained using the perspective transformation of

Drones 2023, 7, 529 15 of 25

some remotely sensed runway data. The fourth type is the data collected from the internet.
Runways come from different sources as shown in Figure 4.

(a) (b) (c) (d)

Figure 4. Different data sources of runways. (a) Vega-Prime runway. (b) Real runway. (c) Remote
sensing dataset. (d) Internet collected.

The remote sensing runway dataset is transformed through perspective to form the
view of the landing runway, which expands the diversity of the dataset. One remote sensing
runway data point can simulate the runway of different landing stages through different
perspective transformations, as shown in Figure 5.

(a) (b) (c)

Figure 5. Different perspective transformations. (a) Original runway data. (b) Simulation landing
angle 1. (c) Simulation landing angle 2.

The runway-line-detection framework proposed in this paper contains two deep
network models, so two datasets are required. Directly labeling two datasets has a large
labor overhead, and since there is some correlation between the two datasets, the datasets
are only labeled with the runway lines in the images, and then the two datasets are
automatically generated using the dataset preprocessing procedure. Considering the
characteristic that the runway line itself is a straight line segment, in order to further reduce
the annotation workload, the straight line segments are annotated instead of the point
set in the program. For the bounding-box-localization dataset, the minimum axis-aligned
rectangular box containing the runway can be generated according to the endpoints of
the left and right runway lines and the start line marked in the original figure. In order
to enhance the adaptability of the runway-line-detection algorithm to different scales
of detection frames, the runway rectangular frames are scaled up and down, and three
different scaling scales of 0.8, 1.0, and 1.2 are used in the experiment; this paper’s strategy
for dataset generation is shown in Figure 6.

Figure 6. Dataset annotation strategy.

The annotation strategy used in this paper can effectively solve the image-rotation
data-enhancement problem in the runway-detection process. In the generic object-detection

Drones 2023, 7, 529 16 of 25

task, the bounding boxes need to be rotated after image rotation. However, the problem
of rotated data enhancement is often handled by means of the maximum frame due to
the target-detection ground-truth axis-alignment target feature. Studies have shown that
the maximum frame degrades the network performance [33]. In this paper, we adopt the
method of labeling runway lines and rotate the runway lines in the process of rotating data
enhancement before generating bounding boxes. This method is effective in avoiding the
performance damage caused by the maximum frame, as shown in Figure 7.

(a) Maximum box (b) Rotating the minimum box

Figure 7. Different annotation boxes in the rotation-data augmentation. In Figure 7a, the red box
shows the result obtained by rotating the conventional bounding box, while the blue box represents
the bounding box generated from the red box after image rotation. The blue bounding box, known as
the maximum box, includes a significant amount of irrelevant background information. In contrast,
Figure 7b presents red line segments representing our proposed annotation method. The blue box
represents the generated bounding box after image rotation, based on the annotated information,
which contains less background information.

3.3.2. Data Closed-Loop Ground-Truth Annotation

Compared to other visual composition methods, NeRF has the advantage of high
fidelity. At the same time, due to the continuity expression of the network, its point cloud
export results can be infinitely densified.

The steps to export a point cloud from NeRF are described below. Firstly, we use the
rays emitted by all effective pixels in training images as a set of rays. Secondly, for each ray,
we use Equation (29) to calculate the mean depth, which is denoted as dp(r). Thirdly, we
extract the appearance embedding of the most visually effective one from multiple trips,
and then we can obtain the RGB value of that ray, which is denoted as Cp(r). Fourthly,
by performing the aforementioned calculations, we are able to obtain the RGB values and
depth values for all relevant pixels in the training images. By using the intrinsics and
extrinsics of camera, we can then determine the coordinates of each 3D point within the
runway coordinate system, ultimately forming a comprehensive point cloud. Finally, we
divide the generated point cloud into blocks (with a size of 5 m × 5 m in our experiments)
and calculate thickness mean and standard deviation statistics on each block. This process
allows us to filter out outliers that fall outside of the 3σ range. By adding this step, we can
significantly enhance the visualization of the point clouds.

Using the exported point cloud, manual 3D annotation can be performed on the left,
right, and virtual-start runway lines in the point cloud. Then, using NeRF rendering with a
new perspective, image annotation can be projected using the 3D annotation projection.
By using different poses and appearance, labeled images can be generated, which can be
used for the training of the runway line-detection network. The exported 3D point cloud is
explained in Section 4.2.

4. Experiments
4.1. Runway Line Detection Experiments

To verify the effectiveness and accuracy of the algorithm proposed in this paper, we
designed performance-evaluation metrics for runway-line detection. Unlike the evaluation
metrics of general object detection and semantic segmentation, the runway-line-detection
algorithm focuses on the error and accuracy of the slope and the bias of the runway lines.

Drones 2023, 7, 529 17 of 25

The slope and bias of the detection results of a runway line are denoted as kp and bp,
respectively, while the true labeling results are denoted as kt and bt. The detected angular
error and bias error are expressed as follows:

∆raw = arctan kp − arctan kt
∆angle = min(180− |∆raw|, |∆raw|)
∆bias = |bp − bt|

(34)

We denote the angle threshold as T1(degree) and the distance threshold as T2(pixel).
The detection result under these thresholds is correct if the following conditions are met,
abbreviated as TA− T1 − T2: {

∆angle < T1

∆bias <
√

1 + k2
t T2

(35)

To ensure the reliability of the experimental results, all results in this section are the
average of 1000 random experiments in which the PyTorch deep learning framework is
used and the GPU used in the training and inference process is NVIDIA 3090.

The experimental results from Table 1 show continuous improvement in detection
performance with the addition of different strategies with the exception of a few cases.
FMRLD-basic represents the basic structured runway-line-detection algorithm.

Table 1. Detection algorithm performance. Bold indicates the best performing result. The strategy
“correlation constraint” can be found in Section 3.1.1. The strategy “rotational data augmentation”
can be found in Section 3.3.1. The strategy “hump filter” can be found in Section 3.1.2. The definition
of TA− T1 − T2 can be found in Equation (34).

Methods TA-1-5 TA-2-10 TA-3-20 TA-5-30 FPS

FMRLD-basic 42.0 63.3 80.2 87.1 40.7

+correlation constraint 42.4 (+0.4) 64.3 (+1.0) 81.6 (+1.4) 88.4 (+1.3) 40.7

+rotational data augmentation 45.5 (+3.1) 68.1 (+3.8) 84.9 (+3.3) 90.9 (+2.5) 40.7

+hump filter (rough) 51.0 (+5.5) 70.8 (+2.7) 85.3 (+0.4) 91.5 (+0.6) 24.2

+hump filter (fine) 52.3 (+1.3) 70.5 (−0.3) 86.1 (+0.8) 92.0 (+0.5) 10.6

The correlation constraint leads to an increase in detection accuracy. Specifically, the
correlation loss has at least two effective gains to the algorithm. First, the addition of the
correlation loss can improve the accuracy of the precision measurement of points, as shown
in Figure 8. Second, the addition of correlation loss can reduce the missed detection, as
shown in Figure 9.

(a) (b)

Figure 8. Correlation loss improves detection accuracy. (a) Low detection accuracy (without correla-
tion loss). (b) High detection accuracy (with correlation loss).

Drones 2023, 7, 529 18 of 25

(a) (b)

Figure 9. Correlation loss eliminates missed detection. (a) Missed detection line (without correlation
loss). (b) High detection accuracy (without correlation loss).

To further illustrate the performance of the FMRLD algorithm proposed in this pa-
per, the algorithm is experimentally compared with other runway-line-detection algo-
rithms [1,8,10,34–36]. To ensure the fairness of the comparison between different algo-
rithms, the algorithm involving ROI extraction uses the same processing as in our paper,
and the neural-network-based algorithm uses the same dataset as the FMRLD algorithm.
As seen in Figure 10, the FMRLD-basic proposed in this paper has the highest accuracy of
all comparison algorithms.

Figure 10. Performance comparison of different runway-line-detection algorithms. UNet-
PolygonFitting’s errors are directly transmitted, while FMRLD-basic prevents the transmission
of errors through data enhancement in the runway detection stage.

Canny–Hough [8]: This method uses the Canny operator for edge detection and
Hough transform for straight line extraction and then determines the slope and bias of the
straight line according to the geometric constraints between the left and right lines.

LSD-SegConnection [34]: This method uses LSD linear detection to detect runway
lines, and LSD is faster than Hough transform, but for images with low resolution, LSD
will detect many small, discontinuous line segments. To address this issue, the method of
pairing small line segments is adopted.

Rotation Mapping [10]: This method continuously rotates the image after extracting
the edges, counts the average value of grayscale on each column of the image after each
rotation, and records the column where the current rotation angle and the maximum
grayscale average are located. After the image is rotated 180 degrees, the clustering is
performed using the improved KMeans algorithm, and the cluster centers are used as

Drones 2023, 7, 529 19 of 25

the detection results and remapped back to the original image to obtain the detected
runway lines.

Energy Difference [36]: The edge-based line-detection method is susceptible to inter-
ference, so a method to determine the runway line by maximizing the difference between
the two sides of the runway line is proposed, and an iterative optimization strategy for
determining the runway line is given.

UNet-PolygonFitting [37]: The runway is segmented using the segmentation network
UNet to obtain the runway edge point set, and the quadrilateral is fitted using the edge
point set to finally determine the slope and bias of the runway line.

The Canny–Hough and LSD-SegConnection algorithms based on edge detection
can achieve better detection performance in specific landing scenarios by adjusting the
parameters, but the datasets in this paper are more extensive, and the runway features and
lighting conditions vary significantly, so the detection performance of such methods is poor.
The energy difference method, based on energy difference, is more suitable for naturally
formed runway edges (such as the edges formed by the concrete of the runway and the
grass around the runway), but it is less effective in scenes where artificial runway lines
exist. The difficulty of the rotation mapping method is to filter out the pseudo-peaks and
determine the number of detection lines, so adjusting the parameters of this algorithm is
also complicated.

Segmentation-based methods have higher detection accuracy than other methods.
However, there is still a certain gap in detection performance compared to the method
we proposed. To further investigate the reasons for the poor detection performance of the
segmentation-based algorithm, we compare the differences in detection performance in
detail between the FMRLD-basic algorithm and UNet-PolygonFitting. The analysis shows
that the FMRLD-basic algorithm has a stable detection effect in all stages, while the UNet-
PolygonFitting algorithm has a better detection effect in the early stage of landing when
the runway occupies a relatively small proportion of the image. However, the detection
result is poorer in the late stage of landing, which causes the overall performance of the
algorithm to deviate. Our analysis show that the reason for this problem is the difference in
the implementation of the two types of algorithms. The viewpoint changes rapidly in the
late landing phase, and the dataset has relatively few samples of this type of data, which
can lead to poor performance of both the UNet-PolygonFitting algorithm and the ROI
phase of the FMRLD algorithm proposed in this paper. The segmentation result of the
UNet-PolygonFitting is directly used for runway line detection, resulting in poor detection
accuracy. However, the performance of the ROI phase detection frame in the FMRLD
algorithm does not directly affect the performance of runway line detection. In addition,
the rotation enhancement and scaling in the algorithm-design process make the FMRLD
algorithm more fault-tolerant than the UNet-PolygonFitting algorithm.

4.2. Pose-Estimation Experiments

Unlike the evaluation method for runway detection, pose estimation evaluation re-
quires a reference value for the pose. The Vega-Prime simulation environment can meet
this requirement effectively.

Experiments were conducted using the FMRLD-detection algorithm and the pose-
initialization algorithm mentioned in Section 3.2.1. In order to avoid the randomness of the
experiments, the localization algorithm was performed in 1000 random experiments, and
the RMSE (root mean square error) was calculated as the final result. The error of the pose
initialization algorithm is shown in Figure 11.

To further compare the effects of different detection algorithms on localization accuracy,
we examined the position estimation of the FMRLD algorithm and the UNet-PolygonFitting
algorithm. The Table 2 shows that FMRLD has a significant improvement in pose-estimation
accuracy compared to UNet-PolygonFitting.

Drones 2023, 7, 529 20 of 25

(a) x-axis RMSE. (b) y-axis RMSE. (c) z-axis RMSE.

Figure 11. Pose-initialization Result.By using visual odometry filtering (odometry-based pose), some
jump points were effectively removed. The localization error in the x is relatively large, but it tends
to decrease as the landing approaches. The estimation results in the y and z directions are relatively
stable. Compared to the precise control in the y and z directions, the x direction’s position only
provides landing guidance. Therefore, an exact position is not required in the x direction.

Table 2. Initialization pose estimation RMSE using different runway-detection methods. Bold indi-
cates the best performing result.

Method x y z Roll Pitch Yaw

FMRLD 10.72 m 1.01 m 0.81 m 0.525° 0.338° 0.615°
UNet-PolygonFitting 36.42 m 8.34 m 2.39 m 2.412° 3.183° 4.264°

We used SfM for pose optimization and compared the optimization results with and
without the addition of the priors for initialization pose, as shown in Figure 12.

(a) (b)

Figure 12. The differences in adding prior pose constraints. The red area represents the camera
pose, and the black points represent the constructed sparse point clouds. Figure 12a illustrates that
without prior pose constraints, there are serious pose estimation errors. With the addition of prior
pose constraints in Figure 12b, there is a significant improvement in the camera pose. (a) Initialization
without pose priors. (b) Initialization with pose priors.

We constructed an implicit map and used inverse NeRF for pose estimation. Table 3
and Figure 13 show the experimental results for the one-trip reconstruction and progressive
implicit reconstruction mentioned in Section 3.2.2. From the figures and tables, it can
be seen that the accuracy of the one-trip reconstruction is higher than that of progressive
implicit reconstruction, but this conclusion is only valid for the current trip. In a real landing
scenario, each trip is different from the previous trip, and in such cases, the estimated
RMSE is shown in Table 4. From the table, it can be seen that during the online pose-
estimation process, progressive pose estimation has higher accuracy compared to one-trip
pose estimation.

Table 3. SfM pose estimation RMSE.

Method x y z Roll Pitch Yaw

Initialized pose 10.75 m 1.04 m 0.96 m 0.542° 0.339° 0.617°
One trip pose (offline) 5.35 m 0.48 m 0.50 m 0.347° 0.284° 0.482°
Progressive implicit pose (offline) 6.94 m 0.56 m 0.54 m 0.425° 0.310° 0.535°

Drones 2023, 7, 529 21 of 25

(a) x-axis RMSE. (b) y-axis RMSE. (c) z-axis RMSE.

Figure 13. Pose optimization result. The three subplots represent the RMSE for the three axes.

Table 4. Implicit pose estimation. Bold indicates the best performing result.

Method x y z Roll Pitch Yaw

Initialized pose 10.96 m 1.08 m 1.04 m 0.548° 0.346° 0.621°
One-trip pose (online) 9.32 m 1.01 m 0.63 m 0.492° 0.334° 0.587°
Progressive implicit pose (online) 7.08 m 0.63 m 0.55 m 0.437° 0.315° 0.538°

In order to demonstrate the effect of the regularization terms introduced in the im-
plicit reconstruction, we performed implicit scene reconstruction using the original NeRF
method and our proposed method and then exported the point clouds. As shown in
Figure 14, our method effectively improves the reconstructed geometry by incorporating
regularization terms.

(a) (b)

Figure 14. Comparison between point clouds generated by original NeRF and our proposed method
(both methods using the same pose input). In Figure 14a, the left point cloud shows the original
method and the right one shows our proposed method. In Figure 14b, the bottom point cloud shows
the original method and the top one shows our proposed method. (a) Bird’s-eye view point cloud.
(b) Side view point cloud.

We used the point cloud map generated by NeRF for annotation. As shown in Figure 14,
the point clouds generated by our method contain complete geometric information and
visual effects, making it easy to annotate from a bird’s-eye view perspective. The improved
point cloud quality in our method can be primarily attributed to the regularization terms
mentioned in Equations (30) and (31) and the point cloud generation method discussed in
Section 3.3.2.

By annotating on the point cloud and then projecting it back to the image, we can
compare it with the ground truth manual annotation and obtain the accuracy of the projec-
tion. By statistics, the accuracy of TA1-5 after projection is 83.5 percent, and the accuracy
of TA2-10 is 89.2 percent. On the other hand, we manually checked the annotated images
after projection and found that 8% of the data needed to be modified and 25% needed to
be fine-tuned, while the remaining annotated data could be used directly. By using our
annotation tool, we were able to greatly improve the efficiency of data annotation.

Drones 2023, 7, 529 22 of 25

4.3. Lightweight Neural Network Experiments

We have balanced the accuracy and time delay of the algorithm and designed a
lightweight landing pose-estimation algorithm, FMRLD-Light, that can achieve real-time
performance on edge computing devices. In this model, we have removed the steps of
cloud-based mapping and pose optimization. The trained model is deployed on the Jetson
Xavier NX platform, a low-power AI computer developed by NVIDIA. To fully exploit
the performance of the platform, the TensorRT network model is used for inference in the
experiments, and Numba is used for acceleration in the more time-consuming operations.
In addition, the algorithm ensures minimal environmental dependencies, including only
the image processing library OpenCV and the matrix processing library Numpy, in addition
to the library functions necessary for TensorRT model inference. The average time of the
algorithm running is 55.3 ms, which can meet the real-time requirements for detection
and positioning during the landing process. The histogram of the time distribution of the
FMRLD-Light algorithm is shown in Figure 15, with the quantization sampling at one
second intervals in the histogram. The results of the histogram show that the detection
time of the algorithm is relatively stable after the normal start-up of the system, and there
is no systematic risk caused by too long of a detection time.

Figure 15. FMRLD–Light algorithm time distribution histogram.

The detection and localization accuracy of the FMRLD–Light algorithm is shown in
Table 5. The results indicate that the lightweight algorithm has limited accuracy loss.

Table 5. Accuracy metrics for lightweight methods.

Method TA-1-5 TA-2-10 TA-3-20 TA-5-30 x y z

FMRLD-Light 43.5 65.2 82.8 90.3 13.17 m 1.44 m 1.32 m
FMRLD 52.3 70.5 86.1 92.0 7.08 m 0.63 m 0.55 m
UNet-PolygonFitting 35.7 47.1 60.5 71.2 36.42 m 8.34 m 2.39 m

5. Discussion

Compared with conventional pose-estimation algorithms for landing systems, the
pose-estimation algorithm proposed in this paper uses the runway coordinate system
as the reference coordinate system, which naturally compensates for the runway slope.
This paper proposes a new method for pure visual landing systems, aiming to explore
the accuracy limit of the landing system in unfamiliar or complex environments and the
accuracy limit of pure visual landing when other sensors are lost. In an engineered visual
landing system, the pure visual solution proposed in this paper can function as a robust
subsystem and provide more reliable pose data through multi-sensor fusion. However,
there are still some limitations in this algorithm, specifically, the requirement for prior

Drones 2023, 7, 529 23 of 25

knowledge of the runway width, which can be removed through joint optimization of
visual landing and IMU after introducing IMU. We are currently focusing on and exploring
this research direction.

Next, the issue of real-time is discussed. The real-time aspect of the on-board detec-
tion algorithms has been thoroughly validated. The real-time performance of the pose
estimation algorithm primarily depends on the speed of NeRF inference and inversion.
With the widespread application of NeRF in various fields, acceleration schemes have been
extensively studied. In the near future, this issue will no longer be a problem.

6. Conclusions

This paper proposes a novel pose-estimation algorithm for vision-based landing that
achieves an accuracy level suitable for guidance and control using visual sensors. On
the on-board computing platform, the algorithm first performs runway line detection
and fine-tuning. It utilizes the detection results to estimate the initial pose, followed
by pose optimization through NeRF inversion. On the cloud computing platform, we
propose a multi-trip incremental reconstruction approach for pose estimation. And then
we use the optimized pose for NeRF mapping. The lightweight algorithm presented in
this paper can achieve real-time pose estimation on board and has strong engineering
value. In addition, this paper proposes a closed-loop labeling scheme, which effectively
improves labeling efficiency. Compared with previous runway line detection algorithms,
this paper improves the detection accuracy by more than 10 points compared to previous
runway-line-detection algorithms, and the position estimation accuracy can also achieve
state-of-the-art performance.

Author Contributions: Conceptualization, X.L. and C.L.; methodology, C.L.; software, C.L.; vali-
dation, C.L. and X.X.; formal analysis, C.L.; investigation, C.L.; resources, X.L.; data curation, X.L.,
C.L., B.Q. and X.X.; writing—original draft preparation, C.L.; writing—review and editing, C.L., X.X.
and B.Q.; visualization, C.L., X.X. and N.Y.; supervision, X.L.; project administration, X.L.; funding
acquisition, X.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant num-
ber No. 62073266, and the Aeronautical Science Foundation of China, grant number No. 201905053003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Gratitude is extended to the Shaanxi Province Key Laboratory of Flight Control
and Simulation Technology.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Kong, W.; Zhou, D.; Zhang, D.; Zhang, J. Vision-based autonomous landing system for unmanned aerial vehicle: A survey. In

Proceedings of the 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems
(MFI), Beijing, China, 28–29 September 2014; pp. 1–8.

2. Kügler, M.E.; Mumm, N.C.; Holzapfel, F.; Schwithal, A.; Angermann, M. Vision-augmented automatic landing of a general
aviation fly-by-wire demonstrator. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019;
p. 1641.

3. Tang, C.; Wang, Y.; Zhang, L.; Zhang, Y.; Song, H. Multisource fusion UAV cluster cooperative positioning using information
geometry. Remote Sens. 2022, 14, 5491. [CrossRef]

4. Yen-Chen, L.; Florence, P.; Barron, J.T.; Rodriguez, A.; Isola, P.; Lin, T.Y. inerf: Inverting neural radiance fields for pose estimation.
In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,
27 September–1 October 2021; pp. 1323–1330.

5. Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. Nerf: Representing scenes as neural radiance
fields for view synthesis. Commun. ACM 2021, 65, 99–106. [CrossRef]

http://doi.org/10.3390/rs14215491
http://dx.doi.org/10.1145/3503250

Drones 2023, 7, 529 24 of 25

6. Müller, T.; Evans, A.; Schied, C.; Keller, A. Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans.
Graph. 2022, 41, 1–15. [CrossRef]

7. Tang, Y.L.; Kasturi, R. Runway detection in an image sequence. In Image and Video Processing III; SPIE: Bellingham, WA, USA,
1995; Volume 2421, pp. 181–190.

8. Angermann, M.; Wolkow, S.; Schwithal, A.; Tonhäuser, C.; Hecker, P. High precision approaches enabled by an optical-based
navigation system. In Proceedings of the ION 2015 Pacific PNT Meeting, Honolulu, HA, USA, 20–23 April 2015; pp. 694–701.

9. Wang, J.; Cheng, Y.; Xie, J.; Niu, W. A real-time sensor guided runway detection method for forward-looking aerial images. In
Proceedings of the 2015 11th International Conference on Computational Intelligence and Security (CIS), Shenzhen, China, 19–20
December 2015; pp. 150–153.

10. Guan, Z.; Li, J.; Yang, H. Runway extraction method based on rotating projection for UAV. In Proceedings of the 6th International
Asia Conference on Industrial Engineering and Management Innovation: Innovation and Practice of Industrial Engineering and Management
(Volume 2); Springer: Berlin/Heidelberg, Germany, 2016; pp. 311–324.

11. Akbar, J.; Shahzad, M.; Malik, M.I.; Ul-Hasan, A.; Shafait, F. Runway detection and localization in aerial images using deep
learning. In Proceedings of the 2019 Digital Image Computing: Techniques and Applications (DICTA), Perth, WA, Australia, 2–4
December 2019; pp. 1–8.

12. Lin, C.E.; Chou, W.Y.; Chen, T. Visual-Assisted UAV Auto-Landing System; DEStech Transactions on Engineering and Technology
Research: Lancaster, PA, USA, 2018.

13. Hiba, A.; Zsedrovits, T.; Heri, O.; Zarandy, A. Runway detection for UAV landing system. In Proceedings of the CNNA 2018, the
16th International Workshop on Cellular Nanoscale Networks and Their Applications, Budapest, Hungary, 28–30 August 2018;
pp. 1–4.

14. Wang, Y.; Jiang, H.; Liu, C.; Pei, X.; Qiu, H. An airport runway detection algorithm based on Semantic segmentation. Navig. Posi-
tion. Timing CSTPCD 2021, 8, 97–106.

15. Fridovich-Keil, S.; Yu, A.; Tancik, M.; Chen, Q.; Recht, B.; Kanazawa, A. Plenoxels: Radiance fields without neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–20 June 2022;
pp. 5501–5510.

16. Wang, P.; Liu, Y.; Chen, Z.; Liu, L.; Liu, Z.; Komura, T.; Theobalt, C.; Wang, W. F2-NeRF: Fast Neural Radiance Field Training with
Free Camera Trajectories. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver,
BC, Canada, 18–22 June 2023; pp. 4150–4159.

17. Niemeyer, M.; Barron, J.T.; Mildenhall, B.; Sajjadi, M.S.; Geiger, A.; Radwan, N. Regnerf: Regularizing neural radiance fields for
view synthesis from sparse inputs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
New Orleans, LA, USA, 18–24 June 2022; pp. 5480–5490.

18. Deng, K.; Liu, A.; Zhu, J.Y.; Ramanan, D. Depth-supervised nerf: Fewer views and faster training for free. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 12882–12891.

19. Rematas, K.; Liu, A.; Srinivasan, P.P.; Barron, J.T.; Tagliasacchi, A.; Funkhouser, T.; Ferrari, V. Urban radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 12932–12942.

20. Barron, J.T.; Mildenhall, B.; Tancik, M.; Hedman, P.; Martin-Brualla, R.; Srinivasan, P.P. Mip-nerf: A multiscale representation for
anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal,
BC, Canada, 11–17 October 2021; pp. 5855–5864.

21. Qin, Z.; Wang, H.; Li, X. Ultra fast structure-aware deep lane detection. In Proceedings of the Computer Vision–ECCV 2020: 16th
European Conference (Proceedings, Part XXIV 16), Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany,
2020; pp. 276–291.

22. Sobel, I.; Feldman, G. A 3 × 3 isotropic gradient operator for image processing. In A Talk at the Stanford Artificial Project; 1968;
pp. 271–272. Available online: https://www.researchgate.net/publication/285159837_A_33_isotropic_gradient_operator_for_
image_processing (accessed on 15 July 2023).

23. Canny, J. A computational approach to edge detection. In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE:
New York, NY, USA, 1986; pp. 679–698.

24. Arthur, D.; Vassilvitskii, S. K-means++ the advantages of careful seeding. In Proceedings of the Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, Philadelphia, PA, USA, 7–9 January 2007; pp. 1027–1035.

25. Liu, C.; Liu, L.; Hu, G.; Xu, X. A P3P problem solving algorithm for landing vision navigation. Navig. Position. Timing 2018,
5, 58–61.

26. Tang, C.; Wang, C.; Zhang, L.; Zhang, Y.; Song, H. Multivehicle 3D cooperative positioning algorithm based on information
geometric probability fusion of GNSS/wireless station navigation. Remote Sens. 2022, 14, 6094. [CrossRef]

27. Zhou, L.; Zhong, Q.; Zhang, Y.; Lei, Z.; Zhang, X. Vision-based landing method using structured line features of runway surface
for fixed-wing unmanned aerial vehicles. J. Natl. Univ. Def. Technol. 2016, 9, 38.

28. Schonberger, J.L.; Frahm, J.M. Structure-from-motion revisited. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4104–4113.

29. Max, N. Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1995, 1, 99–108. [CrossRef]

http://dx.doi.org/10.1145/3528223.3530127
https://www.researchgate.net/publication/285159837_A_33_isotropic_gradient_operator_for_image_processing
https://www.researchgate.net/publication/285159837_A_33_isotropic_gradient_operator_for_image_processing
http://dx.doi.org/10.3390/rs14236094
http://dx.doi.org/10.1109/2945.468400

Drones 2023, 7, 529 25 of 25

30. Barron, J.T.; Mildenhall, B.; Verbin, D.; Srinivasan, P.P.; Hedman, P. Mip-nerf 360: Unbounded anti-aliased neural radiance fields.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June
2022; pp. 5470–5479.

31. Martin-Brualla, R.; Radwan, N.; Sajjadi, M.S.; Barron, J.T.; Dosovitskiy, A.; Duckworth, D. Nerf in the wild: Neural radiance fields
for unconstrained photo collections. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Montreal, BC, Canada, 11–17 October 2021; pp. 7210–7219.

32. Lindén, J.; Forsberg, H.; Haddad, J.; Tagebrand, E.; Cedernaes, E.; Ek, E.G.; Daneshtalab, M. Curating Datasets for Visual Runway
Detection. In Proceedings of the 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA,
3–7 October 2021; pp. 1–9.

33. Kalra, A.; Stoppi, G.; Brown, B.; Agarwal, R.; Kadambi, A. Towards rotation invariance in object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3530–3540.

34. Dong, Y.; Yuan, B.; Wang, H.; Shi, Z. A runway recognition algorithm based on heuristic line extraction. In Proceedings of the
2011 International Conference on Image Analysis and Signal Processing, Wuhan, China, 21–23 October 2011; IEEE: Piscataway,
NJ, USA, 2011; pp. 292–296.

35. Abu-Jbara, K.; Alheadary, W.; Sundaramorthi, G.; Claudel, C. A robust vision-based runway detection and tracking algorithm for
automatic UAV landing. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver,
CO, USA, 9–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1148–1157.

36. Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation.
In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: Proceedings of the 4th International
Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain,
20 September 2018; Proceedings 4; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–11.

37. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention—Proceedings of the MICCAI 2015: 18th International Conference, Munich, Germany,
5–9 October 2015, Proceedings, Part III 18; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Runway Detection
	Neural Radiance Field

	Method
	Multi-Stage Flexible Runway Detection
	Structured Runway-Line Detection
	Hump Randomness Filtering

	Implicit Reconstruction-Based Pose Estimation
	Initial Pose Estimation
	Implicit Mapping
	Inverting NeRF

	Data Closed-Loop Strategy
	Dataset
	Data Closed-Loop Ground-Truth Annotation

	Experiments
	Runway Line Detection Experiments
	Pose-Estimation Experiments
	Lightweight Neural Network Experiments

	Discussion
	Conclusions
	References

