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Abstract: In the past few decades, drones have become lighter, with longer hang times, and exhibit
more agile performance. To maximize their capabilities during flights in complex environments,
researchers have proposed various model-based perception, planning, and control methods aimed at
decomposing the problem into modules and collaboratively accomplishing the task in a sequential
manner. However, in practical environments, it is extremely difficult to model both the drones and
their environments, with very few existing model-based methods. In this study, we propose a novel
model-free reinforcement-learning-based method that can learn the optimal planning and control
policy from experienced flight data. During the training phase, the policy considers the complete state
of the drones and environmental information as inputs. It then self-optimizes based on a predefined
reward function. In practical implementations, the policy takes inputs from onboard and external
sensors and outputs optimal control commands to low-level velocity controllers in an end-to-end
manner. By capitalizing on this property, the planning and control policy can be improved without
the need for an accurate system model and can drive drones to traverse complex environments at high
speeds. The policy was trained and tested in a simulator, as well as in real-world flight experiments,
demonstrating its practical applicability. The results show that this model-free method can learn to
fly effectively and that it holds great potential to handle different tasks and environments.

Keywords: drones; reinforcement learning; policy optimization; model-free; traverse complex
environments

1. Introduction

The recent advancements in drone technology have resulted in their widespread adop-
tion across various industries worldwide. Drones offer favorable properties that make them
highly suitable for complex mission environments, such as search and rescue operations in
forests [1–3] and bridge inspections [4,5]. These environments often present challenges such
as cluttered obstacles and weak communication and satellite signals. In search and rescue
(SAR) tasks, it is crucial for drones to navigate around obstacles efficiently and reach their
destinations quickly. In this study, we focus on the navigation problem of drones operating
in unknown and complex environments, where they encounter various obstacles and reach
their destinations quickly and safely. To maximize the maneuverability of drones while
ensuring flight safety, researchers typically divide the controller into two layers: a low-level
angular rate and attitude layer, analogous to the human epencephalon; and a high-level
velocity, position, and navigation layer, resembling the human brain [6–8]. Among these
parameters, the low-level control problem has been extensively analyzed, and accordingly,
optimal solutions have been established. However, some issues still persist in high-level
control methods, hindering the effective utilization of the high maneuverability of drones.

Based on extensive research, several factors have been identified as reasons for the
improper utilization of the high maneuverability of drones. A recent study identified the
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latency of perception sensors, such as monocular and stereo cameras, as a contributing
parameter [9]. It discussed the effect of perception latency in high-speed movement robot
platforms. The study proposed a general analysis method to evaluate the maximum latency
when operating the robot at the ultimate velocity. It highlighted that simply reducing the
longitudinal velocity does not necessarily guarantee the security of the robot. However, this
method can only adjust the latency tolerance, and the suggested solution is to use more
advanced sensors, such as event cameras. In contrast, reducing the latency of software and
algorithms is a more economical approach. Another study introduced a low-level multi-sensor
fusion algorithm, where vision and three-dimensional (3D) lidar data were segmented [10].
Here, the core control system received and fused their results to reduce latency.

In addition to the factors mentioned above, the issue of coordination after modular-
ization is a significant challenge. Traditional navigation pipelines for drones in unknown
environments are typically divided based on perception, path planning, and control sub-
tasks to solve the autonomous flight problem in a step-by-step manner [11–16]. A recent
study proposed visual stereo simultaneous localization and mapping (SLAM) for drones,
which accelerates the mapping process and thus provide an approach for map maintenance
with a uniform distribution [17]. The problem of high-quality 3D mapping was addressed
using only onboard, low-computing consumption, and imperfect measurements [18–20].
Some researchers focused on path planning using length analysis, search-based, and Eu-
clidean signed distance field methods [21–23]. The control subtask has a long history, and
there are many well-known and effective algorithms, such as PID, H-infinite, sliding mode
control, and model predictive control (MPC) [24]. These methods enable drones to accom-
plish the tasks mentioned above through a parallel cooperation pipeline of components.
Thus, it makes the entire system interpretable and facilitates the tuning of the parameters
of each component. Although it may seem attractive from an engineering implementation
perspective, due to the sequential nature, the communication latency between compo-
nents and wastes computing resources on unnecessary functions is overlooked, leading to
difficulties in achieving agile flight.

Thus, we propose a new guidance framework with a reinforcement-learning-based
direct policy exploration and optimization method to maximize the maneuverability of
drones and enhance flight speed in complex environments. In this framework, the low-
level angular rate, attitude, and velocity are controlled by a well-tuned cascade PID, while
the high-level path planning, position controller, and trajectory tracking controllers are
merged into a control policy. The policy is a fully connected three-layer neural network
that takes sensor measurements as inputs and outputs the distribution of the target velocity
commands. Finally, the real control commands are sampled from the distribution and sent
to a low-level controller, as shown in Figure 1. The main contributions of this study are
summarized as follows:

1. A novel navigation framework is proposed to improve the flight speed of drones in
complex environments. The framework integrates an RL-based policy to replace the
traditional path planning and trajectory tracking controllers in a conventional drone
guidance pipeline. The experimental outcomes in both the simulated and real-world
environments show that it can push the maneuverability of drones to the physical limit.

2. A novel direct policy exploration and optimization method is proposed, which elim-
inates the need for a teacher–student structure commonly used in imitation learning
and does not require reference trajectories. To train the policy, multiple environments
(Figure 2) with varying obstacle distribution characteristics were created. Subsequently,
the well-trained policy is directly applied to real-world drones for practical applications.

3. From a practical perspective, we designed a hybrid reward function to facilitate
policy exploration and self-improvement. This function further comprises multiple
continuous and discrete functions that can effectively evaluate the distance between
the drone and the destination, energy consumption, collision risk with obstacles, and
other such factors.
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The remainder of this paper is structured as follows. Section 2 discusses the classical
perception–planning–control pipeline and the latest RL works. Section 3 describes the
low-level model-based attitude controller and high-level planning-tracking strategy in our
approach, along with the designed reward function and the algorithm for direct policy
exploration and optimization. Section 4 shows the experiments that were conducted to train
and test the policy of the proposed structure in a simulator. We also applied this method
directly to real-world drones and analyzed the observed advantages and limitations. Finally,
the conclusions, opportunities, and challenges of future work are discussed in Section 5.
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2. Related Works
2.1. Conventional Sequential Method

Flying drones in complex environments is a challenging task. The traditional approach
involves breaking it down into specific problems, such as perception, path planning, and
control, addressing them separately, and then arranging them in a sequential pipeline, as
shown in Figure 3.
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The main task of the perception module is to estimate the state of the drone and its
surrounding environment using onboard or external sensor data. A few common and
well-known perception algorithms include the SLAM and the visual–inertial odometry
(VIO). The planning module generates a feasible and time-optimal trajectory that helps
the drone accomplish its mission based on the state, environmental information, and task
requirements. In a recent study, this module was classified into four types—sampling-based,
search-based, optimization-based, and polynomial and spline trajectory-based. A control
module typically operates at higher frequencies. This module calculates the corresponding
control commands that enable the drone to follow the intended trajectory based on the state
of the drone and target trajectory. Algorithms such as MPC can even predict the future
states of a drone based on the motion model to search for optimal control inputs over the
entire time window.

Although the conventional pipeline has enabled the autonomous flight of drones
in complex environments, a few challenges still persist. For instance, although the VIO
algorithms are lightweight, they require considerable computational resources. Planning
algorithms may be affected by factors such as unmodeled system delays, state estimation
drift, and discontinuities in perception modules, and this may result in suboptimal paths
or even mission failures.

2.2. Reinforcement Learning

Reinforcement learning (RL) aims to learn how to make optimal decisions and maxi-
mize cumulative rewards through the interaction between an agent and its environment.
Based on the optimization objective, RL can be divided into two types: value-based and
policy-based methods. Different from the well-known deep learning, RL can update the
knowledge of agents through trial and exploration in the world (a widespread structure
like that in Figure 3) without a supervisor; this characteristic endows RL with vast potential
to outperform human experts in computer games [25,26]. The primitive table-based RL
algorithm can only deal with problems that only have discrete, limited states and actions.
After this decade of developments, especially in relation to the combination of neural net-
work technique, the RL can handle complex and nonlinear systems which have continuous
states and actions; it is the foundation of applying RL to control and navigation tasks [27].

In recent years, learning-based methods have been extensively used in perception [28],
planning [14], and control [29]. The neural networks can handle high- and low-dimensional
information and are easy to deploy. Researchers have successfully replaced certain modules
in classical pipelines with learning-based approaches, leading to significant advancements.
The RL can update the knowledge of agents through trial and exploration worldwide
(a common structure is shown in Figure 4) without a supervisor. Driven by this characteris-
tic, it may potentially surpass human expert performance [30].
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There are many variations in RL and value-based methods, including Q-learning, deep
Q-network, policy-based deterministic policy gradient, trust region policy optimization [31],
and proximal policy optimization (PPO) [32]. As shown in Figure 4, the agent interacts
with the world over time, receives a state st in the state space S at timestep t, and selects
an action at from the action space A; the mapping relationship from st to at is the policy
π(st|at). The world will transfer to a new state st+1, submit to the state transition probability
P(st+1|st, at), and present the agent with a scalar reward rt according to the reward function
R(s, a), which is affected by the model of the system or environment dynamics. After a
complete interaction process (one episode) between the agent and the environment, a
series of observations, referred to as trajectory τ = (s0, a0, s1, a1, . . .), may be obtained. We
assume that this series process satisfies the Markov property P(St+1 = st+1|S0:t = s0:t) =
P(St+1 = st+1|St = st), which means that for a stochastic process, given the current state
and all past states, the conditional probability distribution of its future states depends only
on the current state.

2.3. Value-Based Methods

During an episode of continuous state transition and action execution, an accumulated
reward (referred to as return), with the discount factor γ ∈ (0, 1], was defined as:

Rt =
∞

∑
j=0

γkrt+j (1)

The return can evaluate whether the entire process is good and helps the agent improve
by maximizing the expectation of Rt. When a system model or state transition function is
available, the optimization problem may be solved through dynamic programming. However,
this is usually attainable. In this case, the complete trajectory cannot be obtained through
model iterations, and the RL possesses the ability to solve this problem through trial and
error. We define a value function to measure the value of each state, which is the expectation
of the returns of trajectories starting from the current state and following policy π:

Vπ(s) = E[Rt|st = s] (2)

The action–value function for action a in state s following the policy π:

Qπ(s, a) = E[Rt|st = s, at = a] (3)

The Bellman equation can be obtained by decomposing the expectation in Vπ :

Vπ(s) = ∑
a

π(a|s)∑
s′,r

p
(
s′, r
∣∣s, a

)[
r + γVπ

(
s′
)]

(4)

The optimal value function is the maximum value of the current state s following an
arbitrary policy:

V∗(s) = max
a ∑

s′,r
p
(
s′, r
∣∣s, a

)[
r + γV∗

(
s′
)]

(5)
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The optimal action value function is:

Q∗(s, a) = ∑
s′,r

p
(
s′, r
∣∣s, a

)[
r + γmax

a′
Q∗
(
s′, a′

)]
(6)

The intuitive solution to the RL problem is to find an optimal value function or
optimal action–value function and always choose the action that motivates the system to
transition to optimal states that can maximize the return of the trajectory. By estimating and
updating these value functions, the agent can accurately evaluate the values of different
states and actions and thus make optimal decisions through continuous learning. This
approach is commonly referred to as value-based reinforcement learning. It also yields
good results in application-based scenarios, such as aerial manipulator control [33], robot
path planning [34], and lane following of unmanned cars [35]. However, as stated by
Zhang in [36,37], the value-based method yields low training efficiency and data sufficiency;
it requires several tricks and modifications to improve training speed and stability in
practical and complex scenarios. We analyzed the reasons for this problem. The goal of the
value-based method is to determine an optimal value function that defines the mapping
relationship between actions and states once the algorithm converges. Each state has a
corresponding action. However, the optimality of the action is questionable when the
environment changes slightly. This is more apparent when the state and action spaces
become significantly vast because the value function is unavailable for approximation.

2.4. Policy-Based Methods

Contrary to the approach of searching for an optimal value function, policy-based
methods can directly optimize the policy π(a|s; θ) to enable it to choose the correct action
in various states. Here, θ can be viewed as a parameter of a function approximation, and
updating it through gradient ascent can improve the policy. This method usually performs
better than value-based methods, particularly in complex scenarios with high-dimensional
states and action spaces, and it possesses better convergence properties. The primary benefit
of the policy-based method is that it can use a stochastic policy that exploits exploration.
The value-based method has a deterministic policy that always chooses an action that can
maximize the value function. This method only improves policy implicitly and does not
possess exploration. Researchers usually solve this using ε-greedy exploration, which is
insufficient and introduces extra hyperparameters. By assuming that the policy π(a|s; θ) is
derivable and has analytical gradient, we obtain:

∇θπ(a|s; θ) = π(a|s; θ)
∇θπ(a|s; θ)

π(a|s; θ)
= π(a|s; θ)∇θlogπ(a|s; θ) (7)

where, ∇θlogπ(a|s; θ) is the likelihood ratio or score function. The policy gradient is
defined as:

∇Jθ = Eπ,θ [∇θlogπ(a|s; θ)Qπ,θ(s, a)] (8)

We update policy parameters θ in k iteration step along the policy gradient. Here, α is
the learning rate:

θk+1 = θk + α∇Jθ (9)

3. Method

As mentioned previously, we propose a new framework for guiding drones in complex
environments. In the Section 1, we introduce a model-based attitude controller. The
Section 2 presents the proposed method of direct policy exploration and optimization,
which replaces the planning and trajectory-tracking modules in a classical pipeline. The
Section 3 describes the designed reward function, which provides an effective evaluation
criterion for policy optimization.
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3.1. Low-Level Controller

Drones are typically agile, and they possess a six-dimensional motion capability, 3D
position (denoted by Pos = [x, y, z]T), and 3D orientation (denoted by Rot = [α, β, ψ]T

)
, as

shown in Figure 5. In our method, the low-level controller keeps the drone stable and agile,
and precisely executes velocity commands from the high-level RL controller.
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We proposed a cascaded control architecture that combines P and PID controllers with
different loop frequencies to achieve a low-level control task. As shown in Figure 6, the
velocity setpoint Vsp is input to the outer loop velocity control layer, which then outputs
the expected acceleration Asp to the compensator and distributor layer. This layer is not

a controller but a simple function of Rsp = arctan
(

Asp
g

)
, where g is the acceleration of

gravity, which is a simple decomposition of forces; it will not be further elaborated here. The
necessity of this layer is that the thrust of the motors is limited, and our goal is to maximize
the maneuverability of drones within the allowed range of power performance. The
maximum horizontal acceleration and maximum target attitude angle should be restricted
within a reasonable range to avoid crashing due to insufficient power.
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Then, the attitude angle setpoint Rsp is input to the cascaded inner loop attitude angle
and angular rate controller, which can output the motor thrust in the roll, pitch, and yaw
directions, denoted by MRsp, MPsp, and MYsp, respectively. These three setpoints, along
with the throttle setpoint MTsp, are decomposed into four rotation speed setpoints Tsp
according to Equation (10):

Tsp(M1, M2, M3, M4)T =


1 1 −1 1
1 −1 −1 −1
1 −1 1 1
1 1 1 −1

×


MTsp
MRsp
MPsp
MYsp

 (10)

Notably, the loop frequency of each controller in cascade control is different. The
inner loop controllers for the attitude angle and angular rate operate at 250 and 1 kHz,
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respectively. This is because the system may respond faster to the angular rate than to the
attitude angle. In contrast, the outer loop controller for the velocity operates at 50 Hz. This
is because the velocity is indirectly controlled by changing the attitude angle and thus has
a slower response.

3.2. High-Level Policy

As mentioned previously, we aim to fundamentally solve the issue of high latency in
pipelines based on environmental perception through path planning for drones flying in
complex environments, which further helps maximize their agile mobility. We utilized the
PPO algorithm to handle the information gathered from both onboard and external sensors
concerning the environment and drone states in parallel. The algorithm generates control
commands that are fed directly to the low-level controller in an end-to-end scheme. The
policy training framework is illustrated in Figure 7. The figure shows a partial set of state
variables for the drone and its environment, obtained through a combination of onboard
and external sensors.
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The framework consists of two neural networks. The first one is the actor network
with parameters θ, which is evaluated to find an approximate optimal control policy, which
provides a control command (referred to as an action in RL) to the low-level controller
end-to-end based on the observation. At the beginning of the training process, the actions
are chosen randomly, the drone transfers to a new state after the actions take effect, and
the environment provides a reward that indicates the value of the actions. We refer to each
complete navigation task process as an episode, with the sequence of states, actions, and
rewards obtained during the process referred to as the trajectory τ. After several episodes,
all trajectory data were stored in data buffer D, and these data were periodically sampled
and used to calculate the value of each state and action based on Equation (1).

Conversely, the value function Vφk from Equation (2) reveals the value of a certain state,
s, on the k–th iteration, which is obtained through sampling and calculation from the data
buffer. The action–value function Qπ from Equation (3) represents the value of a certain
action in that state, which is approximated using a critic network with the parameter φ. The
advantage function representing the advantage of action a in state s can then be obtained as:

Aπ(s, a) = Qπ(s, a)−Vφk(s) (11)

For the actor and critic neural networks, we used two different loss functions to
calculate the parameter gradients and used stochastic gradient ascent to optimize their per-
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formance. The actor network parameters are updated by maximizing the PPO clip objective.

θk+1 = arg max
θ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

min
(

πθ(at|st)

πθk (at|st)
Aπθk (st, at), g

(
ε, Aπθk (st, at)

))
(12)

The set of trajectories collected by applying the control policy πk = π(θk) in the
training environment is denoted as Dk = {τi}. Here, T represents the time step length
of a trajectory randomly sampled from Dk. Equation (12) shows two surrogate losses,
πθ(at |st)
πθk

(at |st)
. Aπθk (st, at) indicates the step length of parameter updates along the policy gradi-

ent, but it will lead to an unexpectedly large update of policy [32]. To ensure a stable and
convergent policy optimization, policy updates must be constrained within a reasonable
range. The PPO introduced a clip function g

(
ε, Aπ

θk
(st, at)

)
with a hyperparameter ε to

limit the step length of policy update:

g(ε, A) =

{
(1 + ε)A, A ≥ 0
(1− ε)A, A < 0

(13)

In contrast to the actor network, the parameter update of the critic network uses a
gradient descent, and the objective function is the mean-squared error:

φk+1 = arg min
φ

1
|Dk|T ∑

τ∈Dk

T

∑
t=0

(
Vφ(st)− R̂t

)2 (14)

The R̂t is the discount accumulated reward from current state st to the end of episode,
and it can be calculated according to Equation (1) on the trajectory τ, which was sampled
from the dataset Dk. Here, Vφ(st) is the evaluation of current state st predicted using critic
network with current parameters φk.

We then obtain the learning algorithm by synchronously optimizing the actor and
critic networks stepwise:

3.3. Environment Setting and Reward Function

As shown in Figure 2, there are varying numbers of cylindrical obstacles in the
envisioned environments. The goal of this study is to enable drones to traverse cluttered
environments safely and quickly. Without any mechanical protection, it may crash after
collision with an obstacle. Further, without protective measures, the delicate and sensitive
components of a drone, such as its propellers and motors, are vulnerable to damage from
collisions with obstacles.

The reward function is the criterion for measuring the quality of a single step of an
action, and both the value function V and the action–value function are Q built on this basis.
Therefore, the design of reward function must enable the control policy to avoid obstacles
and fly to the destination as quickly as possible. Because our learning algorithm uses a clip
function and the magnitude of a single policy update is constrained by a hyperparameter
ε, the reward function should be as continuous and smooth as possible in order to ensure
stable convergence and avoid local optima. In accordance with these requirements, we
designed a composite reward function with five components and their weightsW as follows:

rt =W ∗


∆ D i st
E_Costt

|Over_speed|
Symbol(collide or arrive)

So f t_constrains

 (15)

The first term ∆Dist = Dist−1−Dist is a continuous reward, which presents a positive
reward when the drone approaches the goal and a negative reward otherwise, and Dist
is the distance between the drone and the destination. The physical interpretation of
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the second term, E_Costt =
∣∣U2

t −U2
t−1

∣∣, is the energy consumed by the current action.

Because the control input Ut is the flight velocity of the drone and mU2

2 is the kinetic energy
of the drone, we moved the constant parameter m

2 into weights for conciseness. This term
can reduce meaningless actions, determine the shortest path, and suppress the action noise
of a drone during a mission. The third term (Equation (16)) is a soft constraint on the flight
speed. In reality, the ability of the drones is restricted due to the performance of their
power systems and maneuverability. Long-term high loads may lead to serious accidents
such as motor failures, which will provide a negative reward when the drone exceeds the
Max_speed, to relieve the burden on the power system.

|Over_speed| =
{

0, Ut ≤ Max_speed
|Ut −Max_speed|, Ut > Max_speed

(16)

The fourth and final terms were designed to address sparse rewards in specific sce-
narios. When a drone collides with an obstacle, the symbol function provides a large
negative reward as a punishment, whereas reaching the destination provides an extra
positive reward. Further, the So f t_constrains can add points of interest or avoid additional
dangerous areas in the task.

4. Experiment

This chapter is divided into four parts to provide a detailed explanation of the experi-
mental results. Section 4.1 showcases the configuration of the simulator environment, in
addition to the method and parameters used for policy training. Section 4.2 presents the
training results, where the average reward demonstrates the convergence of the algorithm
in all the designed environments. Sections 4.3 and 4.4 describe the performance of the
trained controller in a simulator and the real world, respectively. The results indicate that
the proposed algorithm performs well in different environments, with both the average
and maximum flight speeds surpassing those of the PID algorithm.

4.1. Policy Training Frame in Simulator

As described in Algorithm 1, the RL training process involves interacting with the
environment based on the current policy, accumulating experience data, calculating the
advantage function and the gradient of the policy, and updating the parameters of the actor
and critic networks—with this process repeated iteratively. To improve the efficiency of
collecting the experience data and ensure the safety of the interaction process, we used
the Gazebo system to simulate the state of a drone in the real world. We used the model
(Figure 8) from [38], which was designed for simulation in a robot operation system (ROS)
and Gazebo, whose frame parameters are listed in Table 1.
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Algorithm 1 Clipped Advantage Policy Optimization Algorithm.

1: Initialize the actor and critic network using random parameters θ0 and φ0.
2: Initialize the dataset Dk to store trajectories τ.
3. for k = 0, 1, 2, . . ., (max episode) do
4. Initialize the environment and drone states, obtain initial observation, set i to 0.
5. for t = 0, 1, 2, . . ., (max step per episode) do
6. Get action at and log probability logat of it according to st and policy π(θk).
7. Implement at, get new state st+1 and reward rt from the environment.
8. Record the tuple (st, at, rt, st+1, logat) to trajectory τ.
9. if crashed or arrive the destination or reach max timestep then
10. Reset the environment and drone states.
11. Store the trajectory τi to Dk, i + 1.
12. end for
13. Calculate rewards-to-go R̂t using Equation (1) for every trajectory.
14. Calculate the estimation of advantage Â according to Equation (11) based on the current
value function Vφk .
15. Update the actor network using Equation (12).
16. Update the critic network using Equation (14).
17. end for

Table 1. Frame parameters of drone model.

Parameter Value Unit

Mass 1.5 kg
ixx 0.0347563 kg·m2

iyy 0.0458929 kg·m2

izz 0.0977 kg·m2

Wheel base 0.511 m
Body width 0.47 m
Body height 0.11 m
Mass of rotor 0.005 kg

Length of rotor 0.2 m
Rotor max rotation velocity 838 rad/s

Rotor drag coefficient 1 × 10−6 --

We tackled two structurally identical neural networks as actor and critic networks, which
possess the same three-layer network structure and number of parameters, as shown in
Figure 9. Both networks use the ReLU function as the activation layer, connected behind the
input layer and fully connected layer. The only differences were in the input and output layers.
The input layer of both networks has the same dimensions as the system state. However, the
output layer of the critic network had q = 1, whereas that of the actor network was q = 2.
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4.2. Policy Training Process

We then used the hyperparameters in Table 2 to train the control policy in all the
designed environments. In the experiments, we found that adjusting some of the hyperpa-
rameters significantly influenced the training results. For example, an exceptionally small
“Max step per episode” will lead to insufficient time for the algorithm to find a complete op-
timal trajectory, and so more steps are required in a larger scenario. And larger “Timesteps
per batch” can improve data utilization efficiency but will also increase data collection time.
Our policy optimization algorithm updates the policy, and after each update, the old data
become ineffective. Therefore, we chose a parameter value that strikes a balance between
efficiency and data collection time. Similar to gradient descent algorithms, the learning
rate determines the step size of parameter updates. An excessively small learning rate can
lead to slow convergence or becoming stuck in local optima, while an excessively large
learning rate can cause oscillations or even divergence. Finally, the “Covariance matrix
element value” controls the shape of the action distribution. A larger value will increase
the exploration of the policy in the environment, making it less likely to become stuck in
local optima. However, it may also slow down the convergence speed of the policy.

Table 2. Hyperparameters of policy training.

Parameter Name Value

Control period 0.02 s
Max steps 2 × 108

Max step per episode 400
Dimension of states 4

Dimension of actions 2
Timesteps per batch 2048

Discount rate of reward 0.99
Parameter update times per iteration 10

Learning rate 3 × 10−4

ε of clip function 0.2
Covariance matrix element value 0.5

The Gazebo simulator, ROS, and reinforcement learning algorithm were deployed
together on a desktop computer running Ubuntu 18.04. The main hardware configuration
included an Intel 11,900 k CPU, an Nvidia 3090 GPU, 16-GB RAM, and a 512-GB hard
drive. Figure 10 shows the total return for each episode during training and the average of
10 episodes. The y-axis in the figure represents the accumulated reward that is obtained
through the policy within an episode, where a higher reward indicates a better performance.
Notably, different environments have different upper bounds. As shown in the figure, the
proposed algorithm gradually improves the accumulated reward in all environments and
finally converges.

It is worth noting that the training process exhibits different characteristics in envi-
ronments with different obstacle distribution styles. In environments with more scattered
obstacle distributions, such as env 1−3, the training process of the algorithm exhibited
higher randomness during convergence. Further, sudden drops in returns may occur over
several cycles as the average return increases. This is because the algorithm searches for the
optimal policy, and the cluttered environments comprise random obstacles when exploring
a certain direction. The returns obtained during these explorations were relatively low, ow-
ing to the penalty for collisions in the reward function. After several cycles of optimization,
the optimization algorithm finds the optimal policy gradient again, and the average return
resumes its upward trend.

In env3, where the obstacles are distributed in an obvious pattern (lined), the exploration–
optimization process of the policy is a continuous upward trend. The performance of the
algorithm in env5 is impressive. In the initial exploration process, the return value hovers
around a low value and even decreases slightly. However, after exploring the gap between the
two clusters of obstacles that were designed, the average return quickly rises to near-optimal
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levels in a few episodes. Similarly, in env6, after exploring the cluster of obstacles, the policy
can be quickly optimized to a good level.
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In summary, our proposed algorithm demonstrates a strong adaptability to different
environments, successfully determines the correct policy gradient, and optimizes the policy
to improve the return value in environments with cluttered, uniform, and concentrated
obstacle distributions.

4.3. Flight Test in Designed Environments

During the training process of the control policy, because exploration and exploitation
must be balanced, actions are sampled from the policy network, and this does not guarantee
that the optimal action is always sampled. Therefore, during testing, we designed a
simplified structure, as shown in Figure 11, by removing components such as the critic
network, loss function, optimizer, and data buffer and retaining only the policy network.
Moreover, the control command received by the drone is selected directly based on the
output of the policy network, which represents the optimal action. We tested the well-
trained policy in all the designed environments in the Gazebo simulator. Figure 12 shows
the flight trajectories and projectories in the X–Y plane.
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It can be observed that our algorithm performs well in these scenes and can choose
different paths to avoid collisions with obstacles and arrive at the destination as soon as
possible. In an environment with randomly distributed obstacles (env 0), neatly arranged
obstacles (env 3), and two clusters obstacles (env 4), it selects the paths that are closest
to a straight line, perfectly avoiding the obstacles and minimizing the path length. In an
environment with a manually designed optimal path, the shortest smooth curve is chosen
to minimize energy and time consumption, which proves that the energy evaluation item
in our reward function works well. In env 5, with one cluster of obstacles, it first tries to
move closer to the direction of the destination and then finds the shortest path to bypass
the obstacles.

We compared the performance of the proposed method with that of a PID controller,
as shown in Figure 13. It was observed that the proposed method achieves a maximum
speed of 7 m/s, whereas the PID controller can only reach 3 m/s and maintain it for a short
duration. The proposed method completes the task in 3.4 s, while the PID algorithm requires
18 s. This clearly demonstrates that the proposed method has a significant advantage in
terms of mission efficiency in complex environments.



Drones 2023, 7, 514 15 of 19

Drones 2023, 7, x FOR PEER REVIEW 15 of 19 
 

   

(4) (5) (6) 

Figure 12. Test flight trajectory in env (1–6). The mission start from blue dots to yellow boxes. 

It can be observed that our algorithm performs well in these scenes and can choose 
different paths to avoid collisions with obstacles and arrive at the destination as soon as 
possible. In an environment with randomly distributed obstacles (env 0), neatly arranged 
obstacles (env 3), and two clusters obstacles (env 4), it selects the paths that are closest to 
a straight line, perfectly avoiding the obstacles and minimizing the path length. In an en-
vironment with a manually designed optimal path, the shortest smooth curve is chosen 
to minimize energy and time consumption, which proves that the energy evaluation item 
in our reward function works well. In env 5, with one cluster of obstacles, it first tries to 
move closer to the direction of the destination and then finds the shortest path to bypass 
the obstacles. 

We compared the performance of the proposed method with that of a PID controller, 
as shown in Figure 13. It was observed that the proposed method achieves a maximum 
speed of 7 m/s, whereas the PID controller can only reach 3 m/s and maintain it for a short 
duration. The proposed method completes the task in 3.4 s, while the PID algorithm re-
quires 18 s. This clearly demonstrates that the proposed method has a significant ad-
vantage in terms of mission efficiency in complex environments. 

  
(a) (b) 

Figure 13. Comparison of proposed method with PID. (a) Mission trajectory. (b) Velocity during 
flight. 

Figure 13. Comparison of proposed method with PID. (a) Mission trajectory. (b) Velocity during flight.

4.4. Real-World Test

To validate the performance of the proposed algorithm in the real world, we designed
a task of navigating through the gap between two walls, as shown in Figure 14a. There
is a wall with a gap between the starting point and the destination. The drone must pass
through this gap, reach its destination, and hover. The testing methodology is essentially
the same as that shown in Figure 11, and the only difference is the substitution of the
simulated environment and drone in Gazebo with a real drone (Figure 14b). The low-level
controller runs on Pixhawk hardware, whereas our high-level control policy runs on the
Jetson Nano. The motion capture system data nodes run in the ROS and communicate
through network interfaces.
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Figure 14. (a) Real-world environment with walls and gap; (b) drone.

Figure 15a,b show the position and velocity, respectively. For safety purposes, we have
implemented a backup system using traditional methods, which can be switched back and
forth with the RL method. After 0.2 s from the start of the mission, the control commands
generated by the policy begin to take effect, as shown in Figure 15b. Due to the limited area of
the site and considering safety, the quadcopter needs to hover after reaching the destination.
Therefore, the maximum total speed is only around 4.39 m/s, and in the simulation, it can
reach a maximum speed of 10 m/s. This experiment demonstrates that our method can still
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control the drone to complete the task of navigating through complex environments in the
real world, despite the changes in drone hardware and low-level controllers.
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Furthermore, we observed an overshoot that was not present in the simulation tests,
as shown in Figure 16a. We analyzed two reasons for this observation. First, the low-level
controller of the real-world drone performed poorly than that in the simulator. Second, the
policy must wait for all the node data to be updated before it can start the computation. The
ROS operates in a soft, real-time manner, and asynchrony between data can cause delays
in the control commands. To mitigate the overshoot issue, we adjusted the speed controller
parameters and increased the target-tracking speed, which partially improved the situation,
as shown in Figure 16b. The test video and code can be found in https://www.youtube.com/
watch?v=hRQc1lmJNkY (accessed on 8 July 2023) and https://github.com/pilotliuhx/Drone-
navigation-RL.git (accessed on 8 July 2023).
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5. Conclusions

This paper proposes a novel end-to-end drone control method based on deep rein-
forcement learning. It directly takes the drone’s state, environmental information, and task
objectives as inputs, and outputs the desired velocity to a low-level controller. Compared
with traditional model-based pipeline and existing teacher–student learning framework,
we faced two main difficulties. The first one was how to lead the policy optimization;
we designed a hybrid reward function to evaluate the policy, with a consideration of task
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progress, energy cost, collision with obstacles, and arrival at the destination. And the other
was how to maintain the same level of effectiveness in the simulation within the real world;
we used the Gazebo simulator to ensure the reality of physics, and a model-based low-
level angular rate, attitude angle, and velocity controller were used to provide consistent
performance in velocity command tracking.

To evaluate the performance of the proposed method, obstacle environments with
diverse characteristics were designed in a simulator, and the control policy was trained
from scratch. Subsequently, the trained control policy was separated and tested in both
the Gazebo simulator and a real-world environment. The results show that the proposed
method successfully completed flying tasks in complex environments in both simulated
and real-world experiments.

It was demonstrated that the proposed method performs well in complex environ-
ments with static obstacles. However, certain challenges remain unaddressed. First, the
policy’s training efficiency was not high. With our current desktop configuration, a single
training session takes approximately 7 h. In future works, we will aim to improve the
training efficiency by using parallel training technology. Second, the direct application
of the training policy to real-world drones resulted in an overshoot. This discrepancy
between the simulation and reality suggests that further adjustments or enhancements may
be required to improve the control performance in real-world scenarios.

In addition, there is a potential issue when dealing with moving obstacles. The
navigation algorithm must consider the presence of dynamic obstacles and adjust its
trajectories accordingly. Further investigation is required to ensure the safe and efficient
navigation of drones in the presence of moving obstacles. These challenges provide valuable
insights for future research and development, and addressing them will further enhance
the performance and applicability of the proposed method.
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