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Abstract: The integration of unmanned aerial vehicles (UAVs) and the Internet of Things (IoT)
has opened up new possibilities in various industries. However, with the increasing number of
Internet of Drones (IoD) networks, the risk of network attacks is also rising, making it increasingly
difficult to identify malicious attacks on IoD systems. To improve the accuracy of intrusion detection
for IoD and reduce the probability of false positives and false negatives, this paper proposes a Q-
learning-based two-layer cooperative intrusion detection algorithm (Q-TCID). Specifically, Q-TCID
employs an intelligent dynamic voting algorithm that optimizes multi-node collaborative intrusion
detection strategies at the host level, effectively reducing the probability of false positives and false
negatives in intrusion detection. Additionally, to further reduce energy consumption, an intelligent
auditing algorithm is proposed to carry out system-level auditing of the host-level detections. Both
algorithms employ Q-learning optimization strategies and interact with the external environment in
their respective Markov decision processes, leading to close-to-optimal intrusion detection strategies.
Simulation results demonstrate that the proposed Q-TCID algorithm optimizes the defense strategies
of the IoD system, effectively prolongs the mean time to failure (MTTF) of the system, and significantly
reduces the energy consumption of intrusion detection.

Keywords: Internet of Things; Internet of Drones; unmanned aerial vehicles; intrusion detection;
Q-learning

1. Introduction

The Internet of Things has emerged as a disruptive and transformative technology
that enables ubiquitous connectivity and seamless integration of physical devices, data
networks, and intelligent algorithms. Its pervasiveness and versatility have led to a plethora
of diverse applications in various domains, such as smart cities [1], smart homes [2], smart
car networking systems [3], medical care [4] and other industries. The Internet of Drones
is an extension of the concept of the Internet of Things, where ‘Things’ are replaced by
‘Drones’. As a layered network control architecture, the IoD plays a crucial role in the
advancement of unmanned aerial vehicles (UAVs) or drones [5,6].

The IoD is a vast network of numerous information-sensing devices engaged in com-
munication and collaboration to facilitate reliable decision-making and problem-solving.
However, the use of off-the-shelf components and software in IoD systems makes them
vulnerable to sophisticated attacks. This poses a significant threat to their safe operation
and reliability, which is crucial for ensuring the safe and normal functioning of UAVs. For
an IoD system to be reliable, the information it communicates must be credible. The pres-
ence of malicious devices within the IoD system that supply false information and collude
with others to mislead the system can undermine its reliability and cause considerable loss.
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Network intrusion detection systems (NIDS) [7] serve as proactive security defense
technology, providing real-time monitoring of attacks from the intranet and extranet. When
an attack is detected, timely alarms can be triggered, and appropriate solutions can be
provided [8]. Researchers have successfully applied machine and deep learning to intrusion
detection, achieving significant progress [9,10]. NIDS has evolved over the years in terms of
efficiency. However, attackers have also developed advanced techniques to evade detection,
particularly in the complex network layers of unmanned aerial vehicles (UAVs). Although
lightweight intrusion detection algorithms have been proposed [11], many of them sacrifice
recognition accuracy. Therefore, there is an urgent need to develop lightweight intrusion
detection algorithms that are applicable to individual nodes.

Reinforcement learning (RL) has witnessed significant growth in research and ap-
plications, offering solutions for complex decision-making tasks in recent years [12]. In
this paper, to improve the accuracy of intrusion detection decision-making, we propose a
Q-learning-based two-layer cooperative intrusion detection algorithm to improve the effec-
tiveness of intrusion detection in IoD systems. Specifically, at the host level, nodes employ
Q-learning to gradually learn and optimize their individual voting strategies, enhancing
collaborative decision-making among multiple nodes. At the system level, intelligent
auditing is performed on the host-level voting results, followed by appropriate rewards or
penalties based on the audit findings. The audit strategy is optimized using Q-learning,
leading to a significant improvement in the accuracy of intrusion detection. The system
level is a supplementary defense mechanism against the omission or miscalculation of the
voting process at the host level.

The main contributions of this paper can be summarized as follows:

• A new intelligent voting algorithm for IoD intrusion detection is proposed, which
applies Q-learning to the node voting intrusion detection. The proposed algorithm
is equipped with continuous automatic learning capabilities for IoD nodes. It can
interact with the network environment and cooperate with other nodes to optimize
group interests and enhance their intrusion detection capabilities.

• A Q-learning-based two-layer cooperative intrusion detection algorithm (Q-TCID) is
proposed for the host level and the system level, respectively. As a supplementary
defense mechanism to the host-level intelligent voting algorithm, the system-level intel-
ligent audit algorithm cooperates with the host level to effectively reduce the probability
of false positives and false negatives while also reducing the energy consumption.

• The simulation results show that the proposed Q-TCID algorithm optimizes the defense
strategy of the IoD system, which not only saves more energy and improves the
accuracy of intrusion detection but also effectively improves the MTTF of the system.

The paper is organized as follows: Section 2 presents the related work. Section 3
explains the network architecture and problem formulation. The proposed approach is
discussed in Section 4. Simulation results are presented in Section 5, and Section 6 concludes
the paper.

2. Related Work

In recent years, the increasing utilization of unmanned aerial vehicles integrated with
IoT technologies has led to rising concerns about the security of drone networks. Intrusion
detection plays a crucial role in protecting these networks from malicious activity and
safeguarding sensitive data.

Numerous research efforts have focused on developing efficient intrusion detection
systems specifically designed for IoD. These efforts can be broadly classified into two
primary approaches: signature-based and anomaly-based detection techniques.

Signature-based detection looks for similarities between a collection of network data
and a database containing features, relying on predefined patterns or signatures of known
attacks to identify and block malicious activity. Early works on intrusion detection systems
(IDS) for IoD-involved signature-based intrusion detection methods [5]. Kacem et al. [13]
proposed an IDS to detect B messages, incorporating knowledge from cyber defense mech-
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anisms and aircraft motion to identify potential attacks and preserve digital evidence for
forensic investigation. Condomines et al. [14] proposed a hybrid IDS for UAV spectral traf-
fic analysis with a robust controller/observer to accurately detect anomalies and mitigate
Distributed Denial of Service (DDoS) attacks and demonstrate its effectiveness through
real traffic traces and practical applications. However, signature-based IDSs are complex
to manage and require manual intervention for rule configuration and signature updates,
which are not capable of detecting unknown attacks.

Anomaly-based intrusion detection techniques collect and analyze data on legitimate
user behavior to determine if the currently observed behavior is malicious or legitimate.
These technologies are effective in detecting unknown attacks [15,16]. The second research
direction focuses on developing lightweight classifiers utilizing AI techniques [17,18], such
as Machine Learning (ML) and Deep Learning (DL) [19–21]. J. Tao et al. [22] proposed
a UAV IDS using deep reinforcement learning (DRL) for airborne communication sys-
tems. They also discussed the fundamentals of UAVs, conducted a case study on the
effectiveness of their DRL-based IDS, and verified its effectiveness through simulations.
A. Heidari et al. [23] proposed a blockchain-based radial basis function neural network
(RBFNN) model to enhance the performance of the IoD network, improving data integrity,
intelligent decision-making, and decentralized predictive analytics while outperforming
state-of-the-art methods in network intrusion detection. Rui Fu et al. [24] integrated Convo-
lutional Neural Networks(CNN) and long short-term memory (LSTM) into the CNN-LSTM
algorithm to build an agricultural Internet of Things IDS. Abu Al-Haija et al. [21] proposed
an autonomous IDS using a deep convolution neural network to effectively detect malicious
threats from invading UAVs. Complex classification algorithms based on deep learning
have also been promoted to effectively classify malicious and benign devices in IoD scenar-
ios. Most of these attack detection methods are complex and consume high energy. The
main challenge is reducing the computational cost and energy consumption of training
the classifier so that it can run on IoD with limited resources. Wang et al. [11] presented a
novel IDS attack–defense game that incorporates occasional system audits while relying
on sensor nodes for intrusion detection through a distributed approach. However, there
is a high probability of misjudgments and missed judgments in the design of their work.
Therefore, an appropriate strategy is needed to realize cooperation in the system and reduce
the probability of false positives and negatives in intrusion detection. The purpose of this
paper is to optimize the performance of IDS by training an intrusion detection strategy.

However, most of the current research has not been discussed from the point of view of
a single node, and it is based only on the system level. This consideration cannot be directly
applied to the nodes of the IoD, so it is necessary to consider each node individually. To
address this limitation, this paper proposes a Monte Carlo simulation method in which the
host-level and the system-level agents cooperate to perform distributed intrusion detection.

3. Network Architecture and Problem Formulation

In this section, the network architecture of Q-TCID is presented, and the mathematical
model of the problem is formulated.

3.1. Network Architecture

The architecture of Q-TCID is shown in Figure 1, consists of four entities: Base Station
(BS), Multi-UAV, Good Nodes, and Bad Nodes. The Multi-UAVs are responsible for col-
lecting sensor information, ensuring that each sensor is connected by a single UAV. The BS
receives the collected information from all UAVs and performs processing and analysis.
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Figure 1. The architecture of Q-TCID.

The attacker exhibits two forms of behavior: device capture and malicious voting. In
the first form, the attacker targets vulnerable IoD devices that lack physical protection,
converting them into bad nodes. The probability of node capture is denoted as Pcap. The
second form involves an attacker attempting to label good nodes as bad by influencing the
IDS voting process. The probability of such attacks is represented as Pa.

Defensive measures include host-level and system-level actions. At the host level,
neighboring nodes can assess the historical voting patterns of each other to determine
malicious intent based on discrepancies between their own votes and those of the target
node. System-level defense involves controlling the detection intensity through the number
of voters (m) and the frequency of intrusion detection (in each TIDS interval). During IDS
voting sessions, m adjacent nodes participate in voting to either support or oppose a target
node. If most nodes classify it as malicious, the target node is evicted. Otherwise, it is
retained. The defense system audits the voting results to prevent collusion attacks and
penalizes nodes whose voting behavior is inconsistent with the audit, saving energy and
preventing collusion among malicious nodes.

3.2. Problem Formulation

This paper takes the maximum MTTF of the IoD system as the optimization objec-
tive and considers the constraints such as network energy consumption, percentage of
malicious nodes, and communication distance. An improved intrusion detection algo-
rithm is implemented in the system to reduce the probability of false positives and false
negatives and to extend the MTTF of the system as much as possible while reducing the
energy consumption.
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The IoD is comprised of N sensor nodes, denoted as SN = sn1, sn2, . . . , snN , which
are deployed along with the UAV’s position. The sensor nodes are distributed over a
two-dimensional area, and their states are statistically independent. Each sensor node can
be classified as either “good” or “bad” based on its vulnerability to attacks.

All nodes in the IoD system may be in one of three states: GOOD, BAD, and EVICTED;
state “GOOD” means that the node has not been captured at this time and is still a good
node; state “BAD” means that the node has been maliciously captured and is a malicious
node; state “EVICTED” means that the node has been evicted from the system during the
intrusion detection process and can no longer participate in the intrusion detection voting
of the system. For a reliable link to be established between nodes i and j, both nodes must
not be in the EVICTED state. Each sensor node has an initial battery capacity of Ein and is
fully charged. The minimum energy required for a sensor node to remain operational is
denoted as Emin. The energy consumption is expressed as E [25,26].

E = ρ
j 6=i

∑
j∈SN

gij +
j 6=i

∑
j∈SN

Cijgij, i ∈ SN (1)

In Equation (1), SN represents the set of sensor nodes; the energy consumption rate for
receiving data from node i to node j is denoted as ρ, the flow rate for communication from
node i to node j is denoted as gij. In contrast, the energy consumption rate for transmitting
data from node i to node j is represented as Cij. The energy consumption for receiving data

from other sensor nodes can be expressed as ρ ∑
j 6=i
j∈SN gij and ∑

j 6=i
j∈SN Cijgij represents the

energy consumption transmitting to sensor nodes.

Cij = β1 + β2Dθ
ij (2)

In Equation (2), β1 (β1 ≥ 0) represents a distance-independent constant, β2 (0 ≤ β2 ≤ 1)
is a distance-dependent variable associated with weight distance and Dij denotes the
communication distance between node i and node j. Dij is influenced by the path loss
coefficient θ.

This paper uses MTTF as a standard to measure the intrusion detection capabilities of
IoD systems. A higher MTTF indicates better intrusion detection and defense effectiveness.
The investigated problem can be formulated mathematically as:

max
{E,Nbad ,Dij}

MTTF (3)

Subject to:
The energy in the IoD system needs to ensure the minimum energy required for its

normal operation:

E ≤ Ein − Emin (4)

If a system contains at least one-third of compromised nodes, the nodes in the system
will not be able to reach a consensus, leading to a system failure [27]. Therefore, the number
of malicious nodes needs to be less than one-third of the total number of “good” and “bad”
status nodes in the IoD system.

Nbad < 1/3(Nbad + Ngood) (5)

where Nbad and Ngood represent the number of nodes in the system that are in “good” and
“bad” states, respectively.
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The communication distance constraint should enable the connectivity between sen-
sor nodes:

Dij ≤ comSN, ∀i, j ∈ SN, i 6= j (6)

where comSN is the communication distance per sensor node.
In Equations (3)–(6), E, Nbad, Dij, Ng and MTTF are variables, Ein, Emin and comSN

are constants.

4. Proposed Methodology

This section describes the overall framework of the proposed method and introduces
the IDS cooperation scheme based on Q-learning optimization. This paper proposes an
advanced stochastic Petri Net (SPN) model [11,28,29] as shown in Figure 2 to analyze the
dynamics of the IDS game.

Ng Nb

Ne

Tcompromise

TfalsePositive TtruePositive TfalseNegative

PattackPcheck
1-PattackPcheck

Figure 2. The SPN model.

The SPN model is initially set up with all N nodes being good nodes, and tokens
are placed in Ng. Due to the invasion of attackers, every node has a probability Pcap of
being captured and transformed into a bad node. This is modeled by relating the transition
Tcompromise. Firing Tcompromise will move tokens from place Ng to place Nb one at a time. The
tokens in place Nb represent compromised nodes that are not detected.

During IDS voting, especially when no audit is performed, good nodes can be misiden-
tified as bad nodes. If a good node is misjudged as a bad node, it will be removed from
the IoD directly. Tf alsePositive is triggered in this situation, and the good node needs to be
moved from place Ng to place Ne, where tokens in the set Ne represent the nodes that were
evicted from the system (in the EVICTED state).

Bad nodes in the system will encounter two situations. The first situation is when
bad nodes are correctly identified in the IDS and removed from the system. At this time,
TtruePositive is triggered, and the token of the bad node is transferred from Nb to Ne. In
another case, the bad nodes missed judgment during IDS voting, and Tf alseNegative was
triggered. These “false negative” bad nodes were temporarily stored in a temporary
placeholder (where there is no label in Figure 2), waiting for the selection of a system-level
attack–defense strategy.
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In the IDS voting process, a bad node has a probability of Pa to launch an attack, and
the system can decide whether to execute the audit in consideration of the overall benefits
of the system. If a bad node attack and the system audit occur simultaneously, the system
detects inconsistencies between the voting result of the bad node and the audit outcome.
As a penalty, the system expels the bad node from the system, causing the token of the bad
node to move from the temporary placeholder to place Ne. In addition to this situation,
in other cases, the token of the bad node returns to Nb from the temporary placeholder,
waiting for the next IDS vote.

In order to reduce the probability of false positives and false negatives, this paper
proposes a two-layer cooperative intrusion detection algorithm based on Q-learning (Q-
TCID). Q-learning is a reinforcement learning mechanism that is based on a finite Markov
decision process (FMDP). It aims to find the optimal solution in the current state by
maximizing the utility function of subsequent strategies. Q-learning can be used in both
single-agent and multi-agent systems. In a single-agent system, the agent evaluates its
utility function based on its own expected return and immediate return, then chooses the
response action strategy according to the maximum Q-value. In a multi-agent system,
agents have to consider the joint optimal returns of other related agents. The agent should
not only choose its own optimal return strategy but also consider other agents’ selection
strategies. The optimal strategy criterion depends on the joint actions of all agents.

In this paper, at the host level, a Q-learning multi-agent algorithm is used. Each voting
node plays a game with the malicious node as an agent and learns a cooperation strategy
to vote for the target node in the interaction, which reduces the false positive probability in
the voting process. At the system level, a Q-learning single-agent algorithm is used. The
system can learn the audit strategy of voting results in the interaction with malicious nodes,
thus reducing the false negative probability.

Algorithm 1 describes the Q-TCID algorithm, which is used to calculate the Mean Time
To Failure (MTTF) in a monitoring system. The algorithm takes several input parameters,
including NODE (the set of states and locations of all nodes), L and W (the length and
width of the simulation region), TIDS (the IDS interval), Ein (the initial energy of each node),
Ca (the cost of performing an audit), Emin (the minimum energy required for a sensor node
to remain operational), and comSN (the communication distance per sensor node).

The algorithm begins by randomizing the positions of the nodes within the specified
simulation region of length L and width W. It then proceeds with a loop that runs 1000 sim-
ulations. Within each simulation, the algorithm initializes each node’s attribute as GOOD
(Line 1–5).

A perpetual loop is initiated, where the algorithm iterates over each sensor node and
checks if it is in the GOOD state. If the node is captured, its attribute is updated to BAD
(Line 7–14). At intervals defined by TIDS, the algorithm invokes Algorithm 2, obtaining
the values of the action-value functions QV and QC for the host-level intelligent dynamic
voting algorithm and the system-level intelligent audit algorithm, respectively. It then
iterates over each sensor node that is not in the EVICTED state, determining the current
state and performing the corresponding action based on the obtained QV and QC values.
Following this step, the algorithm updates the residual energy of each node (Line 16–23).

If a Byzantine failure occurs or the system power becomes too low, the algorithm
records the current time as the MTTF value and breaks out of the loop. The algorithm
increments the time variable for each iteration of the perpetual loop (Line 24–28).

At the completion of the 1000 simulations, the algorithm returns the calculated
MTTF value.
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Algorithm 1 Q-TCID

Input: NODE, L, W, TIDS, Ein, Ca, Emin, comSN
NODE: Sets of states and locations of all nodes.
L: Simulation region length.
W: Simulation region width.
TIDS: IDS interval.
Ein: Initial energy of each node.
Ca: Cost of performing an audit.
Emin:Minimum energy required for a sensor node to remain operational.
comSN: Communication distance per sensor node.

Output: MTTF (Mean Time To Failure)
1: Randomly deploy node positions (L, W) in the simulation area
2: for each simulation q = 1, 2, 3, ..., 1000 do
3: for each node ni of NODE do
4: Initialize node ni with attribute = GOOD
5: end for
6: while true do
7: for each sensor node ni do
8: if ni is in GOOD state then
9: Inspect whether the node is captured and transformed

10: if node is captured then
11: Update node attribute to BAD
12: end if
13: end if
14: end for
15: if mod (time,TIDS)==0 then
16: Run Algorithm 2 and obtain QV and QC
17: for each sensor node ni do
18: if ni not in EVICTED state then
19: Determining the historical voting strategy and status of the node and

the target node
20: Perform the corresponding action according to QV and QC
21: Update and review the remaining energy of each node
22: end if
23: end for
24: if Byzantine failure occurs or system power is too low then
25: Set MTTF to current time and break the loop
26: end if
27: end if
28: Increment time
29: end while
30: end for

4.1. Host Level: Intelligent Dynamic Voting of Nodes

The host level of intrusion detection is concerned with the interaction between each
voting node and its corresponding attacker and affects the dynamic change of each node’s
state. Intelligent voting means that good nodes keep learning voting strategies in the game
with malicious nodes and formulate adaptive joint voting strategies to prevent attacks from
malicious nodes. The objective of each good node is to maximize its cumulative reward.

In the process of IDS voting, the voting results of the voted nodes are related to the
number of voting nodes m (when m = 5, there may be six kinds of voting results: five
members all vote for “good”; four members vote for “good”, and one member votes for
“bad”; three members vote for “good”, and two members vote for “bad"; two members
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vote for “good”, and three members vote for “bad”; one member votes for “good” and
four members vote for “bad”; five members all vote for “bad”). The action space of
voting nodes is defined as AV = (aV1, aV2, . . . , aVm, aVm+1), where action aVt indicates that
the corresponding strategy is allocated according to the proportion of voting results of
voting nodes.

The malicious nodes in the system may choose to attack or “silence” during IDS
voting, just behave like a good node. Similarly, the actions of malicious nodes are defined
as AH = (aH1, aH2).

The state space of IDS intelligent voting game is defined by SV = (sV1, sV2), where
sVt represents the state of the target node (“good” or “bad”). The payoff of the voting
result is that good nodes hope to minimize the proportion of malicious nodes in the system.
Therefore, in all strategies, if all voting nodes can correctly identify the target node, the
strategy reward is set to the maximum. If all voting nodes misjudge the target node, the
strategy reward is set to the minimum.

In order to solve the optimal strategy, after observing the actions (sV, aVt), the reward
RV(sV, aVt), and the state transition from sV to s′V, the value functions QV can be updated
according to Equation (7),

QV(sV, aVt)← QV(sV, aVt) + αV[RV(sV, aVt) + γVπV(s′V)−QV(sV, aVt)], (7)

where αV ∈ [0, 1] and γV ∈ (0, 1) denotes the learning rate and discount factor, respectively.
s′V is the next state.

To prevent the system from falling into a local optimum, there should be an appropriate
trade-off between exploitation and exploration in the Q-learning procedure. In this paper,
the ε-greedy algorithm is employed for exploration.

During the exploration phase, the next action is randomly selected with a probability
of ε (0 ≤ ε ≤ 1), ensuring a focus on long-term gains. The selection strategy of the greedy
algorithm is represented by Equation (8):

π(s) =
{

random action A(s) ζ < ε
arg maxQ(s, a) otherwise

(8)

In this equation, a random number ζ is generated from a uniform distribution between
0 and 1. This random number is assigned before taking any action. If ζ < ε, the agent
randomly selects a behavior from the set of behaviors A(s). On the other hand, if ζ ≥ ε, the
agent explores all the actions in the behavior set A(s) and ultimately executes the action
that yields the maximum Q value.

4.2. System Level: Intelligent Audit of System

The system level is concerned with the interaction between the system and malicious
nodes. This layer is a defense mechanism added at the system level when the host-level
intelligent dynamic voting link is missed, that is, auditing the voting results at the host
level. If the voting results of a node are found not to match the audit results, the node will
be punished and expelled. To preserve the energy of IoD nodes, the system cannot audit
the voting results too frequently. Hence, the system uses Q-learning to optimize its own
audit strategy, which is similar to the host-level intelligent dynamic voting method.

In the intelligent dynamic voting process, malicious nodes have a probability of Pa
for selection attack and a probability of 1− Pa for not attacking, which corresponds to the
state space SC = (sC1, sC2, . . . , sCk) in the intelligent audit of the system. The system can
decide whether to perform the audit in consideration of reducing energy consumption.The
action space of voting nodes is defined as AC = (aC1, aC2). When the malicious node is
audited by the system, it means that the malicious node fails to act. At this time, the system
gets corresponding rewards. Otherwise, the system gets corresponding punishments. The
possible situations can be classified into four types, as shown in Table 1:

• Best Choice for System: the system chooses to check; the malicious node chooses
to attack;



Drones 2023, 7, 502 10 of 18

• False Negative: the system chooses not to check; the malicious node attacks;
• False Positive: the system chooses to check; the malicious node chooses to be silent;
• Least Damage: the system chooses to trust; the malicious node chooses to be silent.

The reward value for each type of interaction is evaluated using Equation (9).

Table 1. The game play between system and malicious node.

System

Check Trust

Malicious
Node

Attack Best Choice for System False Negative

Silent False Positive Least Damage

This paper introduces a constant reward value, denoted as B, which represents the
gain of the system when it correctly finds the malicious node of the attack. Conversely, if
the system fails to protect the IoD while a malicious node is attacking, the payoff of the
system is represented as −B. In addition, Ea denotes the cost of performing an audit. This
paper define the reward function as RC, which is given by Equation (9):

RC =


B− Ea i f check, attack
−B i f trust, attack
−Ea i f check, silent

0 i f trust, silent

(9)

To acquire knowledge about the correct audit strategy, the system engages in inter-
actions with its surroundings. The objective is to determine the cumulative reward value
over time. This is achieved through the use of a learning function, denoted as QC, which is
defined as Equation (10):

QC(sC, aCt)← QC(sC, aCt) + αC[RC(sC, aCt) + γCπC(s′C)−QC(sC, aCt)], (10)

where αC ∈ [0, 1] and γC ∈ (0, 1) denotes the learning rate and discount factor, respectively.
s′C is the next state.

The action selection strategy adopted in the system-level intelligent audit algorithm is
consistent with the host-level intelligent dynamic voting algorithm. The execution action
selected by the system for the current state during the exploration process is determined by
Equation (8).

The two method flows proposed above are described in Algorithm 2.

Algorithm 2 Collaborative Q-learning for IDS

Input: NODE, Sσ, Aσ, Rσ, ασ, γσ, Maximum number of iterations
NODE: Sets of states and locations of all nodes.
Sσ:State.
Aσ:Action.
Rσ:Reward table.
ασ:Learning rate.
γσ:Discount factor.

Output: Final Qσ value
1: Initialization: Qσ(sσ, aσ) = 0;
2: Determine the current state sσ ∈ Sσ;
3: while ( doQσis not convergence);
4: use ε-greedy to choose an action “aσ ∈ Aσ” based on current Qσ and state;
5: run action “aσ ∈ Aσ” to get the reward value “rσ ∈ Rσ”, and reach to new state s′σ;
6: update QV and QC using (2) and (4), respectively;
7: update the current state to s′σ;
8: end while
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5. Simulation and Analysis

The aim of this section is to comprehensively assess the effectiveness and performance
of the proposed method and to explore the effect of different parameters on the system
behavior. This section first describes the configuration of the simulation platform and the
setting of the experimental conditions. Then, the superiority of the proposed method is
analyzed by comparing its performance with existing methods. Finally, an in-depth study
of the variation of key parameters in the system is carried out to explore their impact on the
system’s performance. Through these comprehensive analyses, this paper aims to reveal
the advantages of the proposed method in various aspects as well as its adaptability.

5.1. Simulation Setting

The platform environment used for all experiments in this paper was a personal
computer with an Intel (R) Core (TM) i7 processor and 16 GB of RAM. The operating
system used was Windows 10 with MATLAB R2019a version installed. In this paper, the
required algorithms and models were implemented using MATLAB programming, which
could be used for data processing, simulation, algorithm development, etc.

In the simulation experiment, the IoD comprised a group of N = 128 sensor nodes
randomly deployed. Once deployed, the sensors were fixed in their positions. All nodes had
a probability Pcap of being maliciously captured by external attacks, thus being transformed
into malicious nodes, which would attack in the IoD. In this experiment, the proposed
algorithm’s effectiveness was evaluated by simulating different attack probabilities of
malicious nodes and comparing it with the basic voting strategy (BVS) [11] and the single-
layer optimized intrusion detection algorithm (SOID). Table 2 lists the design parameters
of attack and defense strategy for intrusion detection in this IoD system.

Table 2. System intrusion detection attack and defense strategy design parameters.

Parameter Meaning Default Value/Range

N Number of nodes 128, 228, 328

Pcap Per-node capture rate 1/3600, 1/1800,
1/900, 1/500

m Number of voters 5, 7, 9, 11

TIDS IDS interval 50–1600 time units

Pa Attack probability 0.0–1.0

αn Node learning rate 0.6

αs System learning rate 0.4

εn Node exploration rate 0.5

εs System exploration rate 0.5

γn Node discount factor 0.9

γs System discount factor 0.9

Ein Initial energy 2 J

z Energy consumption rate of a
single intrusion detection

1/40, 1/20, 1/10

The system’s intrusion detection voting occurs periodically at every TIDS moment. In
the process of intrusion detection voting, each node in the system takes turns to vote for
it by m neighboring nodes, and the voting result is judged according to the rule that the
minority is subordinate to the majority.

Malicious nodes have a probability Pa to attack in the voting process of intrusion
detection; that is, when the target node is a malicious node, vote “good” for it, with
the intention of leaving more malicious nodes in the system to attack and increasing the
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proportion of malicious nodes, and when the target node is a normal node, vote “bad” for
it, with the intention of expelling good nodes from the system. Accordingly, there is a 1−
Pa probability that a malicious node will not launch an attack, and at this time, its behavior
is consistent with that of a normal node.

In the process of learning its own voting strategy before voting and learning its own
auditing strategy in intrusion detection, the learning rate, exploration rate, and discount
factor of Q-learning are all set according to its learning and training degree, which are
somewhat different.

Once a Byzantine fault occurs in the system or the system energy is exhausted, the
IoD system will fail.

5.2. Performance Comparision

To verify the performance, this paper compares the proposed algorithm Q-TCID with
the basic voting strategy (BVS) [11] and the single-layer optimized intrusion detection
algorithm (SOID)in terms of attack probability, accuracy, and energy consumption. Both
the proposed algorithm and the comparison algorithms utilize identical values for their
basic parameters.

5.2.1. Attack Probability

The results depicted in Figure 3 illustrate the superior performance of the Q-TCID
algorithm over the basic voting strategy (BVS) proposed in [11] and the single-layer op-
timized intrusion detection algorithm (SOID). The MTTF values obtained using Q-TCID
are consistently higher under different attack probabilities (Pa), indicating that Q-TCID is
more efficient in detecting and defending against malicious nodes in IoD systems. This
algorithm is especially effective when the TIDS values are small (e.g., TIDS from 50 to 250),
as it leverages Q-learning to optimize the intrusion detection strategy, thereby reducing the
probability of false positive and false negative. In addition, when the frequency of intrusion
detection is higher, the advantage of Q-TCID is more obvious.
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Figure 3. Comparison of the influence of TIDS on MTTF when attack probability Pa = 0–1 under
different algorithms.
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5.2.2. Accuracy

Accuracy is a widely employed metric for evaluating the performance of intrusion
detection models, representing the ratio of correct decisions made by the model to the
total number of decisions. In the context of intrusion detection, accuracy is determined by
correctly identifying nodes (true negative, TN), accurately detecting malicious nodes (true
positive, TP), misclassifying benign nodes (false positive, FP), and identifying malicious
nodes (false negative, FN). Equation (11) offers a formal definition of accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN
(11)

Figure 4 shows the comparison of Q-TCID with the basic voting strategy (BVS) [11]
and the single-layer optimized intrusion detection algorithm (SOID). It can be seen that
the identification accuracy of BVS and SOID decreases with the increase of the attack
probability of malicious nodes. In contrast, Q-TCID demonstrates strong adaptability to
the attacks of malicious nodes, with little difference in recognition accuracy under different
attack probabilities of malicious nodes. Overall, the improved intrusion detection algorithm
achieves higher recognition accuracy and better intrusion detection performance when
compared to BVS and SOID.
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Figure 4. Comparison of average recognition accuracy of intrusion detection under different at-
tack probabilities.

5.2.3. Energy Consumption

To evaluate the feasibility of the suggested algorithm, considering energy consumption
related to intrusion detection is crucial. In this regard, energy consumption primarily arises
from the system-level audit process. Figure 5 shows the comparison of energy consumption
of Q-TCID, BVS, and SOID under the same TIDS and different attack probabilities of
malicious nodes. As the figure illustrates, Q-TCID exhibits significantly lower energy
consumption compared to BVS and SOID. This is mainly because the proposed algorithm
reduces the number of nodes misjudged or missed during the host-level voting process, and
the optimized system-level audit strategy reduces the number of audits required, thereby
significantly reducing the energy consumption of intrusion detection.
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Figure 5. Comparison of energy consumption under different attack probabilities when TIDS is
the same.

5.3. Impact of Different Parameters

This section presents the performance of the Q-TCID algorithm through a series of
experimental simulations, which evaluate its effectiveness in terms of the attack probability
of malicious nodes, the number of voting nodes, the proportion of energy consumed, and
the per-node capture rate.

5.3.1. Attack Probability

Figure 6 shows the impact of various attack probabilities Pa on MTTF. It is evident
from the plot that there is an optimal value for TIDS, which maximizes the MTTF. This
optimal value achieves a balance between the energy consumption during audits and the
effectiveness of defense measures in prolonging the system’s lifetime. When TIDS is too
small, intrusion detection occurs too frequently, resulting in excessive energy consumption
and a short running time of the IoD system. With the increase of TIDS, the system can
save more energy and extend the network running time. However, when TIDS is too large,
although it can save more energy, the system cannot catch malicious nodes in time, which
leads to an excessive proportion of bad nodes, leading to Byzantine failure.
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Figure 6. Impact of Pa on MTTF.
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Moreover, by evaluating the impact of different attack probabilities of malicious nodes
Pa on the MTTF of the IoD system, it is found that the MTTF of the system remains
stable within a certain range, regardless of the value of Pa. This indicates that the intru-
sion detection method proposed in this paper exhibits strong adaptability to attacks by
malicious nodes.

5.3.2. Number of Voting Nodes

Figure 7 illustrates the impact of the number of voters (m) on the MTTF of the IoD
system under the attack probability of malicious nodes Pa = 0.5. As the number of voters
increases (m rises from 5 to 7, 9, and 11), the number of nodes participating in a single
intrusion detection vote also increases, and the energy consumed by each intrusion de-
tection also increases, resulting in a decrease in MTTF. However, when TIDS is too small,
the frequency of intrusion detection increases, leading to higher energy consumption and
potentially shorter MTTF. In this case, the number of voters (m) does not have a significant
impact on the MTTF.
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Figure 7. Impact of m on MTTF.

5.3.3. Energy Consumption Rate

The energy consumption rate of a single intrusion detection (z) is the ratio of the
energy consumed by performing one intrusion detection to the total available energy. A
higher value indicates that the system can detect more intrusions with the available energy.
Equation (12) provides a formal definition of z.

z =
E0

Ein − Emin
(12)

Figure 8 presents the impact of z on the MTTF of the IoD system when Pa = 0.5. By
evaluating the impact of different z values on MTTF, it is found that as z increases, MTTF
gradually decreases. It is also noted that the optimal TIDS value decreases with the increase
of z. The reason is that with the increase in energy consumption rate, the less intrusion
detection times can be borne by the disposable energy in the system.
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Figure 8. Impact of the energy consumption rate of a single intrusion detection (z) on MTTF.

5.3.4. Per-Node Capture Rate

Figure 9 shows the influence of per-node capture rate Pcap on MTTF under different
attack probabilities of malicious nodes. A larger Pcap means that the good nodes are more
likely to be captured maliciously, and the proportion of malicious nodes in the system is
greater. Therefore, when Pcap increases, the MTTF of the system decreases. Moreover, as
Pcap rises, the optimal TIDS value that maximizes MTTF also increases. This is because
when the per-node capture rate is higher, there is a higher possibility that there will be
more malicious nodes in each IDS voting cycle that need to be correctly judged and evicted
from the system. If the IDS voting interval is too long, it raises the risk of Byzantine failure,
which occurs when at least one third of the nodes are malicious.
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Figure 9. Impact of per-node capture rate on MTTF.
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6. Conclusions

This study proposes a two-layer cooperative intrusion detection approach, called
Q-TCID, to address the problem of high false positive and false negative rates in intru-
sion detection. The Q-TCID algorithm combines host-level and system-level strategies
to optimize energy consumption and intrusion detection frequency, enabling accurate
identification of malicious nodes in a timely manner. Simulation results demonstrate the
effectiveness of the proposed algorithm in achieving cooperation and significantly improv-
ing the reliability of IoD systems. Overall, the Q-TCID algorithm presents a promising
solution for enhancing the security and performance of IoD systems, which find increasing
applications across diverse domains.

In the future, we plan to consider the practical situation regarding the Internet of
Energy in detail, apply the proposed method to energy in the Internet of Energy equipment,
and study the intrusion detection of energy in the Internet of Energy.

Author Contributions: Conceptualization, M.W. and Z.Z.; methodology, M.W. and Y.X.; software,
M.W.; validation, Y.X. and Z.Y.; formal analysis, M.W. and X.Z.; investigation, Z.Z. and X.Z.; resources,
Z.Z., Y.X., and N.Y.; writing—original draft preparation, M.W.; writing—review and editing, Z.Z.,
Z.Y., and Y.X.; visualization, M.W. and Y.X.; supervision, Z.Z. and X.Z.; project administration, M.W.,
Y.X., and Z.Y.; funding acquisition, Z.Z. and N.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the research project of Zhejiang Province under Grant ZF2022003.

Data Availability Statement: Data sharing does not apply to this article as no datasets were generated
during the current study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hoque, M.A.; Hossain, M.; Noor, S.; Islam, S.R.; Hasan, R. IoTaaS: Drone-based Internet of Things as a service framework for

smart cities. IEEE Internet Things J. 2021, 9, 12425–12439. [CrossRef]
2. Zhang, Z.; Yu, T.; Ma, X.; Guan, Y.; Moll, P.; Zhang, L. Sovereign: Self-contained smart home with data-centric network and

security. IEEE Internet Things J. 2022, 9, 13808–13822. [CrossRef]
3. Mahrez, Z.; Sabir, E.; Badidi, E.; Saad, W.; Sadik, M. Smart urban mobility: When mobility systems meet smart data. IEEE Trans.

Intell. Transp. Syst. 2021, 23, 6222–6239. [CrossRef]
4. Yan, F.; Huang, H.; Yu, X. A Multiwatermarking Scheme for Verifying Medical Image Integrity and Authenticity in the Internet of

Medical Things. IEEE Trans. Ind. Inform. 2022, 18, 8885–8894. [CrossRef]
5. Zhang, Z.; Zhang, Y.; Niu, J.; Guo, D. Unknown network attack detection based on open-set recognition and active learning in

drone network. Trans. Emerg. Telecommun. Technol. 2022, 33, e4212. [CrossRef]
6. Ramadan, R.A.; Emara, A.H.; Al-Sarem, M.; Elhamahmy, M. Internet of drones intrusion detection using deep learning. Electronics

2021, 10, 2633. [CrossRef]
7. Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. Network intrusion detection system: A systematic study of

machine learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 2021, 32, e4150. [CrossRef]
8. Cai, L.; Chen, N.; Wei, Y.; Chen, H.; Li, Y. Cluster-based Federated Learning Framework for Intrusion Detection. In Proceedings

of the 2022 IEEE 13th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), Beijing, China,
4–6 November 2022; pp. 1–6. [CrossRef]

9. Wahab, O.A. Intrusion Detection in the IoT Under Data and Concept Drifts: Online Deep Learning Approach. IEEE Internet
Things J. 2022, 9, 19706–19716. [CrossRef]

10. Aldaej, A.; Ahanger, T.A.; Atiquzzaman, M.; Ullah, I.; Yousufudin, M. Smart Cybersecurity Framework for IoT-Empowered
Drones: Machine Learning Perspective. Sensors 2022, 22, 2630. . [CrossRef]

11. Wang, D.C.; Chen, I.R.; Al-Hamadi, H. Reliability of Autonomous Internet of Things Systems With Intrusion Detection Attack-
Defense Game Design. IEEE Trans. Reliab. 2021, 70, 188–199. [CrossRef]

12. Benaddi, H.; Ibrahimi, K.; Benslimane, A.; Jouhari, M.; Qadir, J. Robust Enhancement of Intrusion Detection Systems Using Deep
Reinforcement Learning and Stochastic Game. IEEE Trans. Veh. Technol. 2022, 71, 11089–11102. [CrossRef]

13. Kacem, T.; Wijesekera, D.; Costa, P.; Barreto, A. An ADS-B Intrusion Detection System. In Proceedings of the 2016 IEEE
Trustcom/BigDataSE/ISPA, Tianjin, China, 23–26 August 2016; pp. 544–551. [CrossRef]

14. Condomines, J.P.; Zhang, R.; Larrieu, N. Network intrusion detection system for UAV ad-hoc communication: From methodology
design to real test validation. Ad Hoc Netw. 2019, 90, 101759.

http://doi.org/10.1109/JIOT.2021.3137362
http://dx.doi.org/10.1109/JIOT.2022.3144980
http://dx.doi.org/10.1109/TITS.2021.3084907
http://dx.doi.org/10.1109/TII.2022.3159863
http://dx.doi.org/10.1002/ett.4212
http://dx.doi.org/10.3390/electronics10212633
http://dx.doi.org/10.1002/ett.4150
http://dx.doi.org/10.1109/PAAP56126.2022.10010553
http://dx.doi.org/10.1109/JIOT.2022.3167005
http://dx.doi.org/10.3390/s22072630
http://dx.doi.org/10.1109/TR.2020.2983610
http://dx.doi.org/10.1109/TVT.2022.3186834
http://dx.doi.org/10.1109/TrustCom.2016.0108


Drones 2023, 7, 502 18 of 18

15. Dina, A.S.; Manivannan, D. Intrusion detection based on Machine Learning techniques in computer networks. Internet Things
2021, 16, 100462. [CrossRef]

16. Hadi, H.J.; Cao, Y.; Nisa, K.U.; Jamil, A.M.; Ni, Q. A comprehensive survey on security, privacy issues and emerging defence
technologies for UAVs. J. Netw. Comput. Appl. 2023, 213, 103607. .: 10.1016/j.jnca.2023.103607. [CrossRef]

17. Shrestha, R.; Omidkar, A.; Roudi, S.A.; Abbas, R.; Kim, S. Machine-Learning-Enabled Intrusion Detection System for Cellular
Connected UAV Networks. Electronics 2021, 10, 1549. [CrossRef]

18. Sun, S.; Fan, X.; Xia, Y.; Zhu, C.; Liu, S.; Yi, L. Coverage Reliability of IoT Intrusion Detection System based on Attack-Defense
Game Design. In Proceedings of the 2022 IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), Wuhan, China, 9–11 December 2022; pp. 74–82. [CrossRef]

19. Liang, J.; Ma, M.; Tan, X. GaDQN-IDS: A Novel Self-Adaptive IDS for VANETs Based on Bayesian Game Theory and Deep
Reinforcement Learning. IEEE Trans. Intell. Transp. Syst. 2022, 23, 12724–12737. [CrossRef]

20. Praveena, V.; Vijayaraj, A.; Chinnasamy, P.; Ali, I.; Alroobaea, R.; Alyahyan, S.Y.; Raza, M.A. Optimal Deep Reinforcement
Learning for Intrusion Detection in UAVs. Comput. Mater. Contin. 2022, 70, 2639–2653. [CrossRef]

21. Abu Al-Haija, Q.; Al Badawi, A. High-performance intrusion detection system for networked UAVs via deep learning. Neural
Comput. Appl. 2022, 34, 10885–10900. [CrossRef]

22. Tao, J.; Han, T.; Li, R. Deep-Reinforcement-Learning-Based Intrusion Detection in Aerial Computing Networks. IEEE Netw. 2021,
35, 66–72. [CrossRef]

23. Heidari, A.; Navimipour, N.J.; Unal, M. A Secure Intrusion Detection Platform Using Blockchain and Radial Basis Function
Neural Networks for Internet of Drones. IEEE Internet Things J. 2023, 10, 8445–8454. [CrossRef]

24. Fu, R.; Ren, X.; Li, Y.; Wu, Y.; Sun, H.; Al-Absi, M.A. Machine Learning-Based UAV Assisted Agricultural Information Security
Architecture and Intrusion Detection. IEEE Internet Things J. 2023, 1. [CrossRef]

25. Zhang, Y.; Lin, B.; Hu, X.; Wang, Z. Deployment and optimization of multi-UAV-assisted maritime Internet of Things for
waterway data collection. In Proceedings of the 2021 International Conference on Security, Pattern Analysis, and Cybernetics
(SPAC), Chengdu, China, 18–20 June 2021; pp. 577–580. [CrossRef]

26. Shi, Y.; Xie, L.; Hou, Y.T.; Sherali, H.D. On renewable sensor networks with wireless energy transfer. In Proceedings of the 2011
Proceedings IEEE INFOCOM, Shanghai, China, 10–15 April 2011; pp. 1350–1358. [CrossRef]

27. Lamport, L.; Shostak, R.; Pease, M. The Byzantine generals problem. In Concurrency: The Works of Leslie Lamport; Association for
Computing Machinery: New York, NY, USA, 2019; pp. 203–226.

28. Ciardo, G.; Muppala, J.K.; Trivedi, K.S. SPNP: Stochastic Petri Net Package. In Proceedings of the Third International Workshop
on Petri Nets and Performance Models (PNPM), Kyoto, Japan, 11–13 December 1989; Citeseer: Forest Grove, OR, USA, 1989;
Volume 89, pp. 142–151.

29. Ing-Ray, C.; Ding-Chau, W. Analyzing dynamic voting using Petri nets. In Proceedings of the 15th Symposium on Reliable
Distributed Systems, Niagara-on-the-Lake, ON, Canada, 23–25 October 1996; pp. 44–53. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.iot.2021.100462
http://dx.doi.org/10.1016/j.jnca.2023.103607
http://dx.doi.org/10.3390/electronics10131549
http://dx.doi.org/10.1109/TrustCom56396.2022.00021
http://dx.doi.org/10.1109/TITS.2021.3117028
http://dx.doi.org/10.32604/cmc.2022.020066
http://dx.doi.org/10.1007/s00521-022-07015-9
http://dx.doi.org/10.1109/MNET.011.2100068
http://dx.doi.org/10.1109/JIOT.2023.3237661
http://dx.doi.org/10.1109/JIOT.2023.3236322
http://dx.doi.org/10.1109/SPAC53836.2021.9540006
http://dx.doi.org/10.1109/INFCOM.2011.5934919
http://dx.doi.org/10.1109/RELDIS.1996.559695

	Introduction
	Related Work
	Network Architecture and Problem Formulation
	Network Architecture
	Problem Formulation

	Proposed Methodology
	Host Level: Intelligent Dynamic Voting of Nodes
	System Level: Intelligent Audit of System

	Simulation and Analysis
	Simulation Setting
	Performance Comparision
	Attack Probability
	Accuracy
	Energy Consumption

	Impact of Different Parameters
	Attack Probability
	Number of Voting Nodes
	Energy Consumption Rate
	Per-Node Capture Rate


	Conclusions
	References

