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Abstract: To address the limitation and obtain the position of the drone even when the relative poses
and intrinsics of the drone camera are unknown, a visual positioning algorithm based on image
retrieval called AGCosPlace, which leverages the Transformer architecture to achieve improved
performance, is proposed. Our approach involves subjecting the feature map of the backbone to
an encoding operation that incorporates attention mechanisms, multi-layer perceptron coding, and
a graph network module. This encoding operation allows for better aggregation of the context
information present in the image. Subsequently, the aggregation module with dynamic adaptive
pooling produces a descriptor with an appropriate dimensionality, which is then passed into the
classifier to recognize the position. Considering the complexity associated with labeling visual
positioning labels for UAV images, the visual positioning network is trained using the publicly
available Google Street View SF-XL dataset. The performance of the trained network model on
a custom UAV perspective test set is evaluated. The experimental results demonstrate that our
proposed algorithm, which improves upon the ResNet backbone networks on the SF-XL test set,
exhibits excellent performance on the UAV test set. The algorithm achieves notable improvements in
the four evaluation metrics: R@1, R@5, R@10, and R@20. These results confirm that the trained visual
positioning network can effectively be employed in UAV visual positioning tasks.

Keywords: UAV visual navigation; visual positioning; graph network; transformer

1. Introduction

With the rapid advancement of unmanned aerial vehicle (UAV) technology, UAVs
are finding increasingly diverse applications in military, civil, and scientific research fields.
They are employed for tasks such as aerial photography, logistics transportation, disas-
ter investigation, and agricultural monitoring [1–5]. In order to successfully accomplish
these tasks, UAVs require autonomous navigation and obstacle avoidance capabilities.
UAVs typically acquire their own states and gather information about their surroundings
through a combination of exteroceptive and proprioceptive sensors. The conventional
sensor suite employed for navigation primarily includes global positioning systems (GPS),
axis accelerometers, gyroscopes, and inertial navigation systems (INS) to obtain positioning
information [6,7]. However, UAVs relying solely on external sensors such as GPS often
encounter several challenges [7–10]. Some of the challenges include: (1) GPS signals have
inherent inaccuracies, resulting in limited position accuracy for UAVs. The precision of GPS
readings can vary depending on factors such as signal interference, atmospheric conditions,
and line-of-sight obstructions. This imprecision can affect the accuracy of UAV navigation
and pose challenges in applications that require precise positioning; (2) in certain scenarios,
such as operating in urban environments or flying at low altitudes, GPS signals may be
obstructed or weakened. Tall buildings, dense foliage, and other obstructions can cause sig-
nal loss or multipath interference, leading to degraded GPS performance or even complete
signal dropout. This limitation hinders the reliability and robustness of UAV navigation
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systems; (3) GPS sensors provide position and velocity information but do not offer direct
information about the UAV’s immediate surroundings. These challenges primarily arise
from the limitations of GPS technology and the reliance on signals from satellites. UAVs
relying solely on GPS may lack environmental awareness, making them vulnerable to
collisions with obstacles, an inability to navigate complex terrain, or difficulty avoiding
dynamic obstacles such as moving vehicles or pedestrians. To overcome these challenges,
visual navigation techniques can be employed in conjunction with or as an alternative to
GPS-based navigation [7,8,11–13]. Visual navigation leverages onboard cameras and com-
puter vision algorithms to extract information from the environment and enable UAVs to
perceive and navigate their surroundings. If GPS signals become unreliable or unavailable,
UAVs can rely on visual information for localization and navigation, ensuring continuous
operation and resilience to GPS signal issues. Visual navigation allows UAVs to perceive
their position and orientation relative to the environment. By analyzing visual features,
landmarks, or patterns, UAVs can estimate their position more accurately and precisely
than GPS alone. In search and rescue missions, time is critical, and UAVs equipped with
visual navigation capabilities can play a crucial role. Visual navigation allows UAVs to
autonomously navigate through challenging environments, such as disaster-stricken areas,
forests, or mountainous terrain. They can detect and avoid obstacles, locate survivors, and
transmit real-time images and data to ground stations. Visual navigation enables quick
and effective search operations, improving the chances of finding and rescuing people in
distress. In surveillance and monitoring missions, UAVs equipped with visual navigation
are invaluable tools for surveillance and monitoring tasks. In law enforcement, border
patrol, or security applications, UAVs can autonomously patrol designated areas, identify
suspicious activities, and track targets. Visual navigation enables precise tracking and
object recognition, enhancing the effectiveness of surveillance operations and improving
situational awareness. In environmental monitoring missions, for environmental monitor-
ing tasks, such as tracking wildlife, assessing vegetation health, or monitoring pollution,
UAVs with visual navigation capabilities offer significant advantages. Visual navigation
allows UAVs to fly close to the ground or follow specific flight paths to capture high-
resolution images and data. With accurate visual localization, UAVs can revisit specific
locations, enabling longitudinal studies and contributing to environmental research and
conservation efforts.

In UAV visual navigation, the UAV compares the current image with previously
recorded landmarks or maps using image matching technology to determine its position
and attitude, commonly referred to as pose estimation. This process enables the visual
positioning of the UAV, which is crucial for achieving autonomous flight and mission
execution. However, current visual positioning algorithms that rely on image matching
have certain shortcomings that can limit their effectiveness in certain scenarios [14–17].
These shortcomings include: (1) Image matching algorithms often rely on comparing
feature descriptors extracted from images. However, these algorithms can be sensitive
to changes in lighting conditions or variations in viewpoint; (2) Image matching algo-
rithms can struggle with handling changes in the environment. For example, alterations in
scene geometry, object occlusions, or variations in environmental conditions (e.g., different
seasons or weather conditions) can make it difficult to find consistent matches between
images. The algorithms may not effectively handle variations in scale, rotation, or object
appearance, leading to decreased accuracy and reliability; (3) Image matching algorithms
typically involve performing extensive feature extraction, matching, and geometric verifi-
cation steps. These processes can be computationally expensive, especially when dealing
with large-scale datasets or real-time applications. The high computational complexity can
limit the real-time performance and efficiency of visual positioning systems. To address
these shortcomings, an alternative technique called image retrieval can be used for visual
positioning. Image retrieval focuses on finding semantically similar images from a database
without relying on precise feature matching. Instead of relying on local feature descrip-
tors, image retrieval techniques leverage global image representations and content-based
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indexing. Compared with image matching algorithms, image retrieval methods can offer
lower computational complexity. By employing efficient indexing and retrieval techniques,
such as hashing or approximate nearest neighbor search, image retrieval algorithms can
provide faster and more scalable solutions, making them suitable for real-time applications
and large-scale datasets. In addition, the premise of the visual positioning algorithm based
on image matching is that to realize the positioning function, it needs to know the relative
pose and intrinsics of the camera, while the visual positioning algorithm based on image
retrieval needs fewer parameters to realize the positioning function, such as the latitude and
longitude coordinates and heading of the image. Thus, when the existing visual positioning
algorithms based on UAV image matching cannot determine the UAV’s position without
knowledge of the camera’s relative poses and intrinsics [18], a visual positioning algorithm
based on UAV image retrieval is necessary to provide reliable positioning information.

In recent years, computer vision technology has made significant progress, with deep
learning and neural networks playing a vital role in supporting UAV visual navigation. No-
tably, the visual positioning network CosPlace, trained on the extensive Google Street View
dataset, has garnered considerable attention due to its simple architecture, efficient memory
usage during training, and strong generalization capabilities [19]. To address the limitations
of the unknown relative poses and intrinsics image matching algorithm for UAV visual
positioning, this study investigates the visual positioning network CosPlace based on image
retrieval. Additionally, a Transformer-based visual positioning network with improved
performance, named AGCosPlace, is proposed. The AGCosPlace algorithm is an enhanced
version of the CosPlace algorithm. To address low recalls in the transformer-based CosPlace
algorithm, an attention-based single-layer graph network coding module is introduced
to the backend of the CosPlace feature extraction backbone network, named AGCosPlace.
In the attention-based graph network coding module, the feature map obtained from the
feature backbone network undergoes a self-attention operation, which expands the ex-
traction range of feature points. The resulting feature map, after the attention operation,
is then fused with the original feature map to create a fusion feature map that contains
more comprehensive information. Next, the fused feature map is subjected to multi-layer
perceptron (MLP) encoding, enabling the extraction of more abstract features. These fea-
tures, obtained through MLP coding, are further fused with the original feature map for
the second time. This fusion process enhances the aggregation of contextual information.
The descriptor by this enrichment process becomes more robust for the final classifier,
thereby improving its positioning ability. AGCosPlace enhances the CosPlace algorithm by
incorporating a graph coding network that integrates an attention module, MLP modules,
and a graph neural network (GNN) at the backend of the feature extraction network. In
addition, the trained network model is evaluated on a custom UAV dataset specifically
created for UAV positioning. This dataset enables the assessment of the performance of
the visual positioning algorithm. The primary contributions of this paper are outlined
as follows:

(1) Designing a module that integrates multi-head self-attention, MLP, and graph neu-
ral networks into the backend of the visual positioning algorithm’s backbone net-
work. This module aims to enhance the aggregation of contextual information from
the feature map. It addresses the limitation of the poor recall effect observed in
Transformer-based research of the CosPlace network.

(2) Investigating the impact of the sinusoidal position coding module on the proposed
visual localization algorithm. This exploration sheds light on how the introduction
of the sinusoidal position coding module influences the performance of the visual
positioning algorithm.

(3) Constructing a UAV dataset that closely resembles aerial perspectives and annotating
it with UTM coordinates. This dataset serves as a means to test the performance of the
trained visual positioning algorithm. It addresses the challenge posed by the image
matching algorithm’s inability to achieve UAV positioning when the camera’s relative
poses and intrinsics are unknown.
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2. Related Works

One essential aspect of UAV communication security is the vulnerability of drones
to cyberattacks. Drones, like any other connected device, can be susceptible to hacking
attempts and unauthorized access. The consequences of compromised UAV communi-
cations can be severe, including potential data breaches, loss of control over the drone,
or even malicious takeovers [20,21]. To address these security concerns and enhance the
reliability of drone operations, visual navigation plays a significant role. Visual navigation
allows UAVs to reduce their reliance on external communication links, such as GPS or radio
frequency (RF) communication, for position estimation and control. By leveraging onboard
cameras and computer vision algorithms, visual navigation enables UAVs to navigate
autonomously, perform obstacle avoidance, and maintain their flight trajectory without
constant reliance on external communications. The significance of visual navigation in the
context of UAV communication security lies in its ability to provide a more robust and
secure navigation alternative. By reducing the dependence on external communication
links, visual navigation mitigates the risk of signal jamming, spoofing, or other cyberattacks
that could compromise the UAV’s control and mission objectives.

UAV visual navigation involves utilizing the visual sensor onboard the UAV to capture
image information from the environment. This information is then processed and analyzed
using computer vision technology and image processing algorithms. The objective is to
achieve autonomous navigation, position estimation, path planning, and obstacle avoidance
for the UAV during flight [22,23]. Image matching serves as a fundamental approach in
UAV visual navigation, where the current image is compared with pre-recorded landmarks
or maps to determine the UAV’s position and attitude, known as pose estimation, enabling
visual positioning of the UAV.

Consequently, research on visual positioning algorithms based on UAV image match-
ing has gained significant attention. Wan et al. [24] proposed an illumination-invariant
UAV image matching algorithm. By employing the phase correlation image matching
algorithm, UAV images captured under different illumination conditions and reference
satellite images with geographic labels were used for autonomous positioning of the UAV,
thereby facilitating effective navigation. Zhang et al. [25] introduced a deep learning-based
local feature matching algorithm for UAV navigation using infrared and reference satellite
image matching. Deep network models were utilized to extract corresponding features
from satellite images and UAV infrared images, addressing the challenges posed by dif-
ferent imaging modalities. The iterative training method was employed to overcome the
sparsity and labeling complexity issues associated with current public datasets. To address
the challenges posed by significant visual content differences between UAV and satellite
images, Kan et al. [26] proposed a quality-aware template matching method based on
scale-adaptive deep convolution features. This method selects appropriate template sizes
for UAV images and satellite images, and the obtained feature maps undergo similarity
measurement to generate a matching probability map. This enables the selection of the
best match and achieves target positioning. Similarly, Ding et al. [27] tackled the matching
of UAV and satellite images from different perspectives. They simplified the retrieval
problem by treating it as a classification problem, addressing the imbalance in the number
of input samples between UAV images and satellite images. A UAV image and satellite
image matching algorithm based on UAV geolocation was proposed, facilitating two-way
matching for UAV image positioning and navigation tasks.

However, the positioning algorithm based on matching UAV images with satellite
images faces several challenges, including limited memory on the UAV’s onboard computer
and significant viewpoint differences between the pre-stored satellite images and real-
time images captured by the UAV [24–28]. Therefore, it is crucial to explore positioning
algorithms based solely on UAV images. This approach involves storing ground feature-
rich images captured by the UAV sensor in the onboard computer and matching them with
real-time UAV images to achieve UAV positioning. However, there are limited algorithms
available for pure UAV image matching, and existing UAV datasets primarily focus on
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target tracking and detection [29–34]. Additionally, image matching algorithms require
camera relative poses and intrinsics to realize visual positioning [18].

The visual positioning algorithm based on image retrieval estimates the position of a
query image by querying a database with geographical markers to find the most visually
similar position. This is achieved with only the latitude, longitude, and heading informa-
tion of the captured image, without needing knowledge of the camera’s relative poses and
intrinsics. Local invariant features, such as SIFT [35], are used for each database image, and
they are aggregated into a single vector, known as the descriptor, to represent the entire
image. With the advancements in deep learning, Chen et al. [36] proposed an auxiliary
indoor positioning algorithm based on CNN image retrieval. The algorithm employs a
pre-trained deep convolutional network to extract image features for similarity comparison.
It outputs images that match the target image and calculates precise positioning results
for pose estimation. However, the algorithm relies solely on the pre-trained network for
experiments and only tests on the trajectory test set, leaving the precision and recall indi-
cators of the model unknown. Similarly, Ha et al. [37] used a pre-trained VGG network
for feature extraction and similarity evaluation of 143 images of actual buildings. Unfor-
tunately, this approach also suffers from the same drawbacks as the previous algorithm.
On the other hand, Arandjelov et al. [38] designed an end-to-end architecture based on
convolutional neural networks that can be directly used for location recognition tasks.
However, this algorithm has a high memory requirement for visual geolocation systems
due to the output of high-dimensional descriptors. In addition, state-of-the-art visual
geolocation algorithms often rely on contrast learning methods [38–40]. However, these
algorithms can be computationally expensive and may struggle to handle large databases.

To address these limitations, Berton et al. [19] introduced a novel method called Cos-
Place, which offers a promising solution for visual positioning tasks. Its effective training
on large-scale datasets, simple architecture, strong generalization capabilities, and reduced
GPU memory requirements make it a valuable tool for a wide range of applications that de-
mand accurate and efficient visual positioning. Hence, applying the CosPlace algorithm to
the UAV visual positioning task is considered. However, the CosPlace algorithm combined
with the transformer has lower recalls. Inspired by the SuperGlue algorithm [18], the uti-
lization of the graph network in image matching tasks has demonstrated robust descriptors
and image matching performance in indoor and outdoor scenes through the incorpora-
tion of the transformer module. Thus, in the proposed AGCosPlace, an attention-based
single-layer graph network coding module is introduced to the backend of the CosPlace
feature extraction backbone network. In the attention-based graph network coding module,
a self-attention operation expands the extraction range of feature points and allows for a
broader context to be considered during feature extraction. One fusion operation creates
a fusion feature map that contains more comprehensive information. An MLP encoding
enables the extraction of more abstract features. Secondary fusion operations enhance the
aggregation of contextual information. The feature map output by the backbone network
undergoes further encoding to enrich the features introduced to the aggregation layer. This
enrichment process enhances the descriptor available for the final classifier, thereby improv-
ing its positioning ability. Given the strong generalization performance of AGCosPlace, the
network on the publicly available SF-XL dataset is trained, a dedicated UAV image test set
is constructed, and the performance of the trained network on this test set is evaluated.

3. AGCosPlace

A visual positioning network called AGCosPlace is proposed to address the challenge
of locating UAVs when the camera’s relative poses and intrinsics are unknown in image
registration algorithms. In the AGCosPlace network, the input image undergoes prepro-
cessing before being passed through the backbone network for feature extraction, resulting
in a feature map. To overcome the recall limitations of the Transformer-based CosPlace,
a single-layer GNN module inspired by SuperGlue [18] is designed in AGCosPlace. This
GNN module incorporates multi-head self-attention and MLP operations to further encode
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the feature map, expanding the extraction range of network feature points and facilitat-
ing the aggregation of feature point context. Subsequently, the descriptor is obtained
using dynamically adaptive pooling with GeM and a fully connected layer module with a
512-dimensional output.

The obtained descriptor, along with the category information, is fed into the classifier
to generate the final classification result. The cross-entropy loss function is employed to
calculate the loss between the classification result and the category, and an iteration is
performed during the training process to optimize the loss function. During the evaluation,
query descriptors obtained through the aggregation layer perform a strong L2 distance
search in database descriptors obtained through the aggregation layer to obtain predicted
results. For real label data, real query labels perform K-nearest neighbors (KNN) searches on
real database labels to obtain real query results. Finally, it is judged whether the predicted
result exists in real query results to obtain the discriminant result. Various search methods
are employed to predict descriptors and labels due to their distinct representations and task
characteristics. Utilizing L2 distance for searching similar descriptors effectively identifies
database descriptors that align with the query descriptors, resulting in more accurate
descriptor predictions. On the other hand, the KNN search for labels allows the algorithm
to determine the final label prediction through a voting mechanism involving multiple
closest database labels, thus enhancing the stability and robustness of label predictions.
By employing different search methods, the AGCosPlace algorithm can comprehensively
leverage the information within the database, consequently enhancing the algorithm’s
accuracy and performance. The architecture of the AGCosPlace network is illustrated
in Figure 1.

Figure 1. The architecture of the AGCosPlace network.

3.1. Backbone

The purpose of this module is to extract the features from the input image, capturing
its high-level semantic information. Let’s assume that the input image is denoted as I.
Prior to feature extraction, the image undergoes various preprocessing steps, including
data augmentation, cropping, and normalization, resulting in the transformed image being
denoted as I′. These preprocessing techniques are applied to facilitate training and prepare
it for subsequent feature extraction processes.

I′ = Pre(I), (1)

The image after data enhancement is shown in Figure 2. The preprocessing operations
applied to image I, are represented by Pre. Figure 2 illustrates the images after undergoing
data enhancement, showcasing the enhanced features and characteristics resulting from
the preprocessing steps.

The transformed image I′ is then fed into the backbone network for feature extraction.
In this case, the ResNet18 architecture is employed as the backbone network. ResNet18
consists of five convolutional group modules, as illustrated in Figure 3. By utilizing the
ResNet backbone, the AGCosPlace network can effectively extract discriminative features
that contribute to accurate visual positioning and localization tasks.
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(a) (b) (c)

Figure 2. Data enhancement examples. (a) Original image (b) Data enhancement image 1 (c) Data
enhancement image 2.

Figure 3. Backbone network.

In each of the five modules, several operations are performed to process the input
image I′. These operations include 2D convolution (conv) with a kernel size of 7, a stride
of 2, and a padding of 3; Batch Normalization (bn); max pooling (maxpool) with a kernel
size of 3, a stride of 2, a padding of 1, and a dilation of 1; 2D convolution (conv1) with a
kernel size of 3, a stride of 1, and a padding of 1; 2D convolution (conv2) with a kernel
size of 3, a stride of 2, and a padding of 1; and a downsample module composed of a
2D convolution (conv3) operation with a kernel size of 1, a stride of 2, and Batch Normaliza-
tion (bn). Additionally, the rectified linear unit (relu) activation function is applied within
the module.

To represent the feature extraction process of ResNet18 on the transformed image I′,
the symbol f is used. Consequently, the resulting feature map is denoted as F. This feature
map F contains the extracted features that encode important information from the input
image, which will be utilized for subsequent steps in the AGCosPlace network.

F = f (I′), (2)

3.2. Attentional GNN

To enhance the performance of the Transformer-based visual positioning algorithm,
the feature map F is introduced into a single-layer GNN with multi-head self-attention and
MLP. This allows us to further encode the feature map and address the issue of the poor
recall effect observed in the Transformer-based CosPlace algorithm. Our goal is to expand
the range of network feature points and aggregate their features effectively.

In the proposed module, a graph network, a self-attention mechanism, and MLP cod-
ing operations work together to expand the extraction range of network feature points and
aggregate their contextual information. The module follows a specific network structure, as
depicted in Figure 4. It begins with the feature map F, which is encoded using a single-layer
graph neural network for attention coding. The resulting feature map is then combined
with the original feature map through a skip connection to obtain a fused feature map.
This fused feature map undergoes further MLP coding and skips connections to generate
a secondary fused feature map. By incorporating these operations and connections, the
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encoding and aggregation of feature point information are enhanced, ultimately improving
the recall effect of the Transformer-based CosPlace algorithm.

Figure 4. Attentional GNN module network structure.

In the Attentional GNN network module, three 1D convolution operations on the
feature map F are performed. Each convolution operation has an input channel and output
channel of 512, a convolution kernel size of 1, and a step size of 1. These operations result
in three transformed feature maps, namely q, k, and v. Next, self-attention is applied to
the transformed feature maps. Self-attention involves computing the attention weights
between different positions within each feature map. Specifically, calculate the attention
scores by taking the dot product between q and k. The self-attention mechanism can be
mathematically represented as follows:

x = vTso f tmax(
qTk√
128

), (3)

q and k represent the queries and keys, respectively. The softmax function is applied to
normalize the attention scores. Additionally, 128 represents the dimension of the keys. By
computing the attention scores, a weighted sum of the values (v) based on the attention
weights is obtained. This allows the network to focus on important features and capture
contextual information. The output of the self-attention operation is a refined representation
of the feature map F, which incorporates both local and global dependencies. It is worth
noting that the self-attention operation is performed across multiple heads (4 heads) to
capture different relationships and enhance the overall representation power of the network.

In the attention-based GNN network module, after the self-attention operation, the
resulting tensor x is further processed using a 1D convolution operation. This operation
has an input channel of 512 and an output channel of 512. The convolution kernel size
is 1, and the step size is also set to 1. This convolutional operation is applied to refine and
compress the information in x, resulting in a tensor denoted as f (x).

After obtaining f (x), perform a fusion between the concatenated tensors F (from the
backbone network) and f (x). Then perform an encoding operation by applying an MLP.
The MLP consists of fully connected layers, as shown in Figure 5, which help capture the
complex relationships and interactions between the feature maps. The output of this MLP
encoding operation is a fused feature map F′ that incorporates the contextual information
from both F and f (x).

The purpose of this fusion and encoding process is to enhance the representation
power of the feature maps and capture higher-level features that are beneficial for visual
positioning tasks. By combining the features from different stages of the network, the
performance of the Transformer-based visual positioning algorithm is improved.

The formula for the fusion and encoding operations using the MLP is as follows:

F′ = MLP(F; f (x)), (4)

In this formula, the input to the MLP is the fused feature maps (F; f (x)), and the
output is denoted as F′. The secondary fused feature map after the MLP coding and skip
connection is denoted as F̄. It can be represented as:

F̄ = F + F′, (5)



Drones 2023, 7, 498 9 of 22

In this formula, F represents the feature map obtained from the backbone network,
and F′ represents the refined feature map obtained after the encoding operation using the
MLP. This final feature map F̄ incorporates both the low-level features from the backbone
network and the higher-level contextual information captured through the fusion and
encoding processes. It represents a more comprehensive and enriched representation of the
input image, which can be used for further processing and classification tasks in the visual
positioning algorithm.

Figure 5. MLP encoder.

3.3. Aggregation Module

In the module shown in Figure 6, the feature map F̄ obtained from the previous
step is further processed before being passed into the classifier. This processing involves
dynamically adaptive pooling and a fully connected layer.

Figure 6. Aggregation module.

The feature map F̄ is first subjected to an L2 normalization operation to obtain F̄_norm.
The F̄_norm can be mathematically represented as follows:

F̄_norm = ‖F̄‖2, (6)

Then the normalized feature map F̄_norm dynamically is subjected to an adaptive
pooling using the GeM pooling operation.

F̄_gem = (
1
N

N

∑
i=1

(F̄_normi)
p)1/p, (7)

By setting p as a learnable parameter and adapting it through the network, the GeM
module enables a flexible pooling operation that can dynamically adjust between average
pooling and max pooling. This adaptability allows the network to learn the optimal pooling
strategy for the given task without prior knowledge of whether average pooling or max
pooling would be more effective. This pooling operation helps capture discriminative
information from the feature map.

After the GeM pooling, the resulting pooled features are flattened and passed through
a fully connected layer. This fully connected layer has an output dimension of 512, which
means it transforms the features into a 512-dimensional representation. After the Flatten
and Linear operations, an L2 normalization is performed on the obtained descriptor to
normalize its magnitude. The descriptor D can be mathematically represented as follows:

D = ‖ f (F̄_gem)‖2, (8)

In this formula, f represents the fully connected operation. The output of the Aggre-
gation module is then passed into the classifier for the final classification. Overall, this
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module refines the features obtained from the previous steps and prepares them for final
classification, enabling accurate positioning and navigation of the UAV based on visual
information. Instead of using a traditional classification layer, the classifier in this case
utilizes a cosine similarity measure layer. Mathematically, the cosine similarity between
two vectors D and Label is computed as:

cosθ =
D · LabelT

‖D‖ · ‖Label‖ , (9)

The output of the classifier can be represented as follows:

output = s× (cosθ −m), (10)

This formula, which includes parameters s and m, is a modified version of the softmax
operation. The modified softmax operation with parameters s and m helps the model to bet-
ter capture the similarities and differences between image descriptors, leading to improved
classification accuracy or similarity measurement in the context of visual positioning tasks.
Set m = 0.4 and s = 30.

The cross-entropy loss function is commonly used in classification tasks, including
visual positioning. It measures the dissimilarity between the predicted probability distribu-
tion and the true label distribution. In the context of the trained network model, the loss
function can be formulated as follows:

Loss = − 1
32 ∑

i

5965

∑
c=1

Labeliclog(outputic), (11)

The loss function calculates the cross-entropy loss for each sample in the batch. The
number of categories is 5965, the batch size is 32, Labelic is the symbol function that in-
dicates whether the true category of sample i is equal to c (1 if true, 0 otherwise), and
outputic is the predicted probability of sample i belonging to category c. For each sample,
it compares the predicted probability of the true category with the true label distribu-
tion, penalizing incorrect predictions and encouraging the network to improve its accu-
racy. The loss function is summed over all samples in the batch and across all categories
(represented by the summation symbol ∑). The goal of the training process is to minimize
this loss by adjusting the network’s parameters through backpropagation and gradient
descent. By optimizing the cross-entropy loss function, the classifier can effectively utilize
the extracted features to make accurate predictions about the pose or position of the UAV
in the visual positioning algorithm.

During the evaluation, query descriptors Dqu obtained through the aggregation layer
performed a strong L2 distance search in database descriptors Dda obtained through the ag-
gregation layer to obtain 20 predicted results for every query image. predictions represents
the predicted query results. Assuming that the number of query images is L, the size of the
predictions is L × 20.

predictions = L2(Dqu, Dda), (12)

For real label data, real query labels perform KNN searches in real database labels to
obtain real query results with distances less than 25 m. positives represents the real query
results generated based on tags. The positives is composed of L one-dimensional arrays,
each of which is different in length, and each array represents a sample.

positives = KNN(Labelqu, Labelda), (13)

Finally, it is judged whether the prediction result of predictions exists in the real
query result of positives to obtain the discriminant result. By checking whether the first
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1, 5, 10, and 20 results of the predictions also exist in the positives generated according to
the labels, the recalls under different thresholds are calculated.

R@1 =
∑L−1

i=0 ((predictions[i][0] in positives[i]) = 1)
L

× 100%, (14)

predictions[i][0] in positives[i] indicates that the first result of the ith sample in predictions
exists in the ith sample of positives. ∑L−1

i=0 ((predictions[i][0] in positives[i]) = 1) denotes
the total number of positive samples that the first result of L samples in predictions exists
in L samples of positives.

R@5 =
∑L−1

i=0 ((any o f predictions[i][: 5] in positives[i]) = 1)
L

× 100%, (15)

∑L−1
i=0 ((any o f predictions[i][: 5] in positives[i]) = 1) denotes the total number of positive

samples that any of the first five results of L samples in predictions exists in L samples
of positives.

R@10 =
∑L−1

i=0 ((any o f predictions[i][: 10] in positives[i]) = 1)
L

× 100%, (16)

∑L−1
i=0 ((any o f predictions[i][: 10] in positives[i]) = 1) denotes the total number of positive

samples that any of the first ten results of L samples in predictions exists in L samples
of positives.

R@20 =
∑L−1

i=0 ((any o f predictions[i][: 20] in positives[i]) = 1)
L

× 100%, (17)

∑L−1
i=0 ((any o f predictions[i][: 20] in positives[i]) = 1) denotes the total number of positive

samples that any of the first twenty results of L samples in predictions exists in L samples
of positives.

4. Results
4.1. Dataset

Considering the SF-XL dataset training set, it consists of a substantial 41.2 million
images, amounting to approximately 1TB in size. This poses a significant challenge due
to the sheer volume of data involved. Thus, our training set consists of a subset of the
SF-XL dataset; the number of images is 59,650, the number of groups is 1, the number of
images per category is 10, and the number of categories is 5965. Test Set: The database
size is 27,191 images, and the query size is 1000 images. Verification Set: The database
size is 8015 images, and the query size is 7993 images. UAV Test Set: The database
size is 533 aerial images, and the query size is 93 aerial images. Figures 7–9 represent
examples of the training set, the test set, and the verification set. Figure 10 provides an
example of the UAV test set, which includes aerial images of 292 buildings obtained from
Google Earth Pro software 1.3.36.242.

Figure 7. Training set example.
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Figure 8. Test set example.

Figure 9. Verification set example.

Figure 10. Drone test set example.

To construct the training set, a subset of SF-XL with a latitude range of 37.70 to 37.81
was chosen. In Figure 7, five street scenes from the training set are presented, each corre-
sponding to latitudes 37.70, 37.71, 37.72, 37.73, and 37.74. These examples illustrate that the
training set encompasses diverse scenes, including variations in illumination conditions.
For the test set, the database comprises 27,191 images that cover the entire geographic
area of SF-XL in 2013. Figure 8 showcases five schematic diagrams from the database,
revealing a mixture of street and building images. Furthermore, the database incorporates
images of the same building captured from different perspectives. The test set comprises
1000 query images collected from Flickr, intentionally selected from a distinct domain to
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closely resemble real-world scenes. Figure 8 exhibits five query images, indicating that
they also contain a combination of street and building scenes. To form the validation set,
a set of images throughout the city, encompassing 8015 database images and 7993 query
images, was chosen. In Figure 9, five database images exhibiting different street views,
along with five query images displaying varying illumination conditions within the same
scene as the database, are presented. For the UAV test set, the Google Earth Pro software
was utilized to capture images of 292 buildings, ensuring they had similar perspectives to
those in the University-1652 drone dataset [41]. Each building was photographed from two
different perspectives, which were subsequently divided into database images and query
images for the drone test set. Some of the query images also have images with the same
perspective as the database images. Furthermore, the image obtained by Google Earth Pro
can also obtain the kml file containing the image coordinate information. The kml file ob-
tained from Google Earth Pro contains image coordinate information, including longitude,
latitude, and heading data. This information is leveraged to generate retrieval labels for
the UAV test images. To obtain the retrieval labels, the kml file’s longitude, latitude, and
heading details are used. An online conversion tool is employed to derive the UTM coordi-
nates from the latitude and longitude coordinates. Consequently, five retrieval labels for a
UAV image are obtained, comprising UTM coordinates, latitude and longitude coordinates,
and heading information. Figure 10 showcases five database images exhibiting distinct
buildings, alongside five query images captured from various rotation angles, all within
the collected UAV test set.

4.2. Training Environment

The network models were trained on two servers equipped with Ubuntu 18.04 and
CUDA 11.1. The deep learning framework PyTorch was used for training the models.
The ResNet18, ResNet50, ResNet101, and VGG16 backbone architectures were selected
for research. For the ResNet18 architecture, three variations were trained: ResNet18,
AGResNet18 (AGCosPlacle network applied to ResNet18), and PE + AGResNet18
(AGResNet18 with an additional sinusoidal position coding module). The ResNet18,
AGResNet18, and PE + AGResNet18 models were trained on an RTX3060 GPU. For the
other backbone architectures (ResNet50, ResNet101, and VGG16), the following mod-
els were trained: ResNet50, AGResNet50 (AGCosPlacle network applied to ResNet50),
ResNet101, AGResNet101 (AGCosPlacle network applied to ResNet101), VGG16, and
AGVGG16
(AGCosPlacle network applied to VGG16). These models were trained on an RTX3090
GPU. The choice of different backbones and variations of the AGCosPlacle network allows
for a comparative analysis of their performance in the visual positioning tasks.

AGCosPlace hyperparameter settings: grouping parameters, training parameters, and
data augmentation parameters are set as shown in Tables 1–3.

Table 1. Grouping parameters.

Groups Parameters Setting

M 10
α 30
N 5
L 2

ground_num 1
Min_images_per_class 10

Figure 11 depicts the Loss curves obtained during the training of various models,
including ResNet18, AGResNet18, ResNet50, AGResNet50, ResNet101, AGResNet101,
VGG16, and AGVGG16.
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Table 2. Training parameters.

Training Parameters Setting

resized 512 × 512
batch size 32

epoch 50
iterations_per_epoch 10,000

lr 0.00001
classifiers_lr 0.01

optimizer Adam
seed 0

Table 3. Data augmentation parameters.

Data Augmentation Parameters Setting

brightness 0.7
contrast 0.7

hue 0.5
saturation 0.7

random_resized_crop 0.5

Figure 11. Loss curve of CosPlace and AGCosPlace models training.

It can be seen from Figure 11 that the loss curves corresponding to the AGCosPlace
network models (AGResNet18, AGResNet50, AGResNet101, AGVGG16) with our designed
Attentional GNN module have lower loss values, which have better convergence effects
than the models with CosPlace network models (ResNet18, ResNet50, ResNet1011, VGG16).

4.3. Performance Evaluation of AGCosPlace and CosPlace

The evaluation of the trained models (ResNet18, AGResNet18, PE + AGResNet18,
ResNet50, AGResNet50, ResNet101, AGResNet101, VGG16, and AGVGG16) was per-
formed using the positive sample distance threshold set to 25. The recall rate at different
ranks, including R@1, R@5, R@10, and R@20, was used to measure the performance. The
results are presented in Table 4.

In our research, experiments using a 512-dimensional descriptor were conducted to
align with the optimal performance achieved by the CosPlace algorithm. To accelerate the
training process, a selective training strategy was employed for the ResNet and VGG16
networks. Specifically, only the third and fourth layers of the ResNet network were trained,
while the preceding layers were frozen. Similarly, for the VGG16 network, only the last
layer was trained, while the previous layers were frozen.

Considering the number of trainable layers, the ResNet-based AGCosPlace algorithm
shows improvements in the four evaluation indicators (R@1, R@5, R@10, and R@20) com-
pared with the baseline ResNet models, as shown in Table 4. Specifically, AGResNet18
achieves a 0.6% increase in R@1, 0.1% increase in R@5, 0.3% increase in R@10, and a 1%
increase in R@20 compared with ResNet18. AGResNet50 outperforms ResNet50 with a
1% increase in R@1, a 1.9% increase in R@5, a 1.8% increase in R@10, and a 1.1% increase
in R@20. AGResNet101 shows improvements of 0.3% in R@1, 0.4% in R@5, 0.8% in R@10,
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and 0.6% in R@20 compared with ResNet101. However, in the case of AGVGG16, a slight
decrease in performance is observed. AGVGG16 exhibits a 0.2% decrease in R@1, a 1.5%
decrease in R@5, a 1.4% decrease in R@10, and a 0.2% decrease in R@20 compared with
VGG16. Based on these results, it can be concluded that the Attentional GNN module
designed in this study is more suitable for enhancing the performance of the ResNet
network compared with VGG16. The improvements achieved by AGCosPlace indicate
the effectiveness of the Attentional GNN module in enhancing the feature representation
capabilities of ResNet-based models.

Table 4. Performance of 9 network models based on SF-XL test set.

Model Desc.dim
channels.
num.in.
last.conv

R@1 (%) R@5 (%) R@10 (%) R@20 (%)
Train_Time

(Days)

ResNet18 512 512 53.7 66.0 71.5 75.3 2
AGResNet18 512 512 54.3 66.1 71.8 76.3 2

PE+
AGResNet18

512 512 53.5 65.9 71.3 76.5 2

ResNet50 512 2048 59.1 72.1 76.9 80.5 2
AGResNet50 512 2048 60.1 74.0 78.7 81.6 3

ResNet101 512 2048 62.4 73.8 77.8 82.4 4
AGResNet101 512 2048 62.7 74.2 78.6 83.0 5

VGG16 512 512 61.0 73.3 77.7 80.6 3
AGVGG16 512 512 60.8 71.8 76.3 80.4 3

Furthermore, experiments were conducted by incorporating a sinusoidal position
encoding module into the AGResNet18 network. However, the results presented in the
table indicate that the position encoding module only improves the recall rate at a threshold
of R@20 while diminishing the performance at the other three recall rate values. Based
on this observation, we have decided not to include the position encoding module in our
further research on the remaining network models.

The training time for ResNet18, AGResNet18, and PE + AGResNet18 on the RTX3060
is the same, as they have similar network structures. Similarly, ResNet50 and ResNet101,
which have deeper network structures, require more training time compared with ResNet18.
The RTX3090, being a more powerful GPU compared with the RTX3060, can significantly
reduce the training time for complex networks such as ResNet50. Therefore, the training
time for ResNet50 on the RTX3090 can be similar to the training time for ResNet18 on the
RTX3060. The addition of the Attentional GNN module increases the complexity of the
network model and the number of parameters, which can further impact the training time.

In the case of simpler networks such as AGResNet18 and AGVGG16 (where only the
last layer is trained), the additional training time required compared with ResNet18 and
VGG16 is not significant. Since the majority of the network remains frozen, which has a
relatively smaller number of parameters. However, for more complex networks such as
AGResNet50 and AGResNet101, the training time can be extended by approximately one
day compared with ResNet50 and ResNet101. This increase in training time is due to the
added complexity of the Attentional GNN module and the larger number of parameters to
train in these networks. The additional computations required by the attention mechanisms
and the increased model capacity contribute to the longer training duration. The complexity
of each network can be inferred from the number of convolutional output channels in the
last layer of the aforementioned table and the corresponding training times.

From the perspective of network complexity, it can be observed that for the Cos-
Place models (ResNet18, ResNet50, and ResNet101), increasing the depth of the network
structure leads to improved performance in terms of R@1, R@5, R@10, and R@20 metrics.
This improvement is consistent with the common understanding that deeper networks
have the potential to capture more complex features and representations, leading to better
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recognition accuracy. Similarly, for the AGCosPlace models (AGResNet18, AGResNet50,
and AGResNet101), increasing the depth of the network structure also results in improved
performance across R@1, R@5, R@10, and R@20 metrics. The inclusion of the Attentional
GNN module in AGCosPlace further enhances the network’s ability to capture and ag-
gregate feature point information, leading to better recognition accuracy. Regarding the
VGG16 network model, although its structure is not as complex as ResNet50, it still achieves
slightly better performance than ResNet50 in terms of R@1, R@5, R@10, and R@20 metrics.
However, it is important to note that the training time for the VGG16 network model is one
day longer than ResNet50. Therefore, considering the trade-off between performance and
training efficiency, network research based on ResNet models is generally more efficient.

In summary, our designed AGCosPlace algorithm, utilizing the ResNet network as
the backbone, demonstrates improvements in the R@1, R@5, R@10, and R@20 indicators
when the descriptor dimension is set to 512. This improvement validates the effectiveness
of our algorithm in addressing the issue of poor recall rates observed in Transformer-based
CosPlace research. By incorporating the Attentional GNN module and leveraging the
ResNet architecture, the performance of the CosPlace algorithm is successfully enhanced.

In addition, a Drone test set is created to simulate a UAV perspective, following the
format of the SF-XL test set. This test set comprises 533 aerial images with UTM coordinate
information for the database and 93 aerial images with UTM coordinate information for the
queries. Evaluate the performance of our proposed algorithm based on this UAV dataset
and apply it to the UAV visual positioning task. The evaluation results of the AGCosPlace
and CosPlace network models using aerial images are presented in Table 5.

Table 5. Performance of 9 network models based on Drone test set.

Model Test Set Desc.dim
channels.
num.in.
last.conv

R@1 (%) R@5 (%) R@10 (%) R@20 (%)

ResNet18 Drone 512 512 61.3 66.7 66.7 68.8
AGResNet18 Drone 512 512 64.5 67.7 67.7 71.0

PE+
AGResNet18

Drone 512 512 64.5 67.7 67.7 68.8

ResNet50 Drone 512 2048 66.7 68.8 69.9 71.0
AGResNet50 Drone 512 2048 66.7 69.9 72.0 74.2

ResNet101 Drone 512 2048 64.5 69.9 72.0 72.0
AGResNet101 Drone 512 2048 62.4 67.7 71.0 72.0

VGG16 Drone 512 512 67.7 74.2 75.3 76.3
AGVGG16 Drone 512 512 69.9 72.0 74.2 76.3

From Table 5, it can be observed that the proposed AGCosPlace visual positioning
algorithm performs well on the UAV-based dataset, particularly when ResNet18 and
ResNet50 are used as the backbone networks. It is evident that AGResNet18 outperforms
ResNet18 by 3.2%, 1%, 1%, and 2.2% under the R@1, R@5, R@10, and R@20 indicators,
respectively. While the PE + AGResNet18 network, incorporating position coding, achieves
promising results compared with ResNet18, the addition of the position coding module
does not further improve the performance of AGResNet18. The PE + AGResNet18 network
performs equally to AGResNet18 under the R@1, R@5, and R@10 indicators but exhibits
attenuated performance under the R@20 indicator. This suggests that the position-coding
module does not enhance the performance of the AGCosPlace visual positioning model on
the aerial image test set.

With regards to deeper network models, for ResNet50, the addition of the Attentional
GNN module in AGResNet50 results in a performance improvement of 1.1%, 2.1%, and
3.2% under the R@5, R@10, and R@20 indicators, respectively, compared with ResNet50.
However, the performance remains the same as ResNet50 under the R@1 indicator. In the
case of ResNet101, the network model is already well-trained on the aerial image test set,
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and the inclusion of the Attentional GNN module causes overfitting, leading to inferior
performance of AGResNet101 compared with ResNet101 at R@1, R@5, and R@10. As for the
VGG16 network, the addition of the Attentional GNN module in AGVGG16 only results in
a 2.2% increase in performance under the R@1 indicator, while its performance deteriorates
under the R@5 and R@10 indicators. Consequently, the proposed AGCosPlace algorithm is
more suitable for improving the ResNet18 and ResNet50 backbone networks in the context
of testing based on aerial images.

During the visualization, query descriptors obtained through the aggregation layer
perform a strong L2 distance search in database descriptors obtained through the aggrega-
tion layer to obtain the predicted six results. For real label data, real query labels perform
KNN searches in real database labels to obtain real query results. If the predicted result
exists in the real query result, the judgment is correct, indicated by a green box; if it does
not exist in the real query result, the judgment is wrong, indicated by a red box.

Judge[j] = predictions[i][j] in positives[i], i = 0, . . . , L− 1 j = 0, . . . , 5 (18)

predictions represents the predicted query results, and the size is L× 6. L represents the
number of query images. positives represents the real query results generated based on
tags, which are composed of L arrays of different lengths. Judge is a 1× 6 array that stores
Boolean values. If the jth result of the ith sample in predictions exists in the ith sample of
positives, Judge[j] is True, represented by a green box. If it does not exist in the ith sample of
positives, Judge[j] is False, represented by a red box. The reasoning visualization diagrams
of the eight network models trained on both the SF-XL test set and the Drone test set are
in Appendix A.

5. Discussion

The AGCosPlace network, which combines the Attentional GNN module with ResNet18,
ResNet50, and ResNet101 networks, has shown improvements in the four indicators
(R@1, R@5, R@10, and R@20) on the SF-XL test set. This algorithm effectively enhances
the performance of the Transformer-based CosPlace algorithm without altering the input
image size. Our research has focused on specific datasets within the SF-XL dataset. In the
future, our algorithm can be applied to all SF-XL datasets for further improvement and
performance validation. Furthermore, the proposed algorithm has been verified on the
Drone test set, demonstrating its effectiveness in achieving accurate visual positioning for
UAV applications. The combination of the Attentional GNN module with ResNet18 and
ResNet50 networks has yielded even better performance, underscoring the generalizability
of the trained network model. However, the constructed UAV test set only includes
UAV perspective images captured under two rotation angles for performance verification,
which lacks verification in various scenarios such as different illuminations, weather
conditions, and terrains. Because the proposed AGCosPlace model is trained on the
training subset of SF-XL, which contains different illumination scenarios, its robustness
to UAV test sets with diverse illumination conditions can be expected. However, the
performance of AGCosPlace for UAV test sets in scenarios such as different weather and
terrains remains to be further explored. In future research, it would be beneficial to conduct
a comprehensive performance evaluation of visual positioning algorithms using UAV test
sets that encompass different scenarios. This evaluation will help to assess the algorithms’
capabilities to handle varying environmental conditions, such as different illumination,
weather patterns, and terrains. In addition, the research on visual positioning algorithms
for UAV applications may include labeling a larger number of UAV images to train the
network model of the proposed algorithm, further advancing its capabilities. This will
ultimately contribute to the development of more robust and versatile visual positioning
solutions for UAVs in real-world settings.
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Appendix A

Figures A1 and A2 depict the reasoning visualization diagrams of the eight network
models trained on both the SF-XL test set and the Drone test set.

In Figure A1, the query image from the SF-XL test set is used to generate inference
results from the trained network models. Each network model predicts six results, rep-
resented by green and red boxes. The green boxes indicate correctly matched images,
while the red boxes represent incorrect matches. It can be observed that even for the false
matching images, there exist some similar structural patterns to the query image, although
they are not actual matches.

Moving on to Figure A2, it shows the inference results for a query image from the
Drone test set generated by the trained network models. Similarly, green boxes indicate
correctly matched images, while red boxes indicate incorrect matches. Both the AGCos-
Place algorithm and the CosPlace algorithm demonstrate the ability to retrieve correctly
matched UAV images, thereby enabling UAV visual positioning. Notably, when the pre-
dicted correctly matched image has a different angle from the query image, the network
models of the AGCosPlace algorithm (AGResNet18, AGVGG16) and the CosPlace algo-
rithm (VGG16) yield more comprehensive detection results compared with other network
models. Moreover, the mismatched images identified by the proposed AGCosPlace algo-
rithm based on ResNet18 exhibit more similar structural patterns than those identified by
the CosPlace algorithm.

Figure A1. Cont.
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Figure A1. Visualization diagrams of AGCosPlace and CosPlace reasoning based on SF-XL test set.

Figure A2. Cont.
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Figure A2. Visualization diagrams of AGCosPlace and CosPlace reasoning based on Drone test set.
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