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Abstract: The space–air–ground collaborative network can provide computing service for ground
users in remote areas by deploying edge servers on satellites and high-altitude platform (HAP)
drones. However, with the growing number of ground devices required to be severed, it becomes
imperative to address the issue of spectrum demand for the HAP drone to meet the access of a large
number of users. In addition, the long propagation distance between devices and the HAP drone, and
between the HAP drone and LEO satellites, will lead to high data transmission energy consumption.
Motivated by these factors, we introduce a space–air–ground collaborative network that employs
the non-orthogonal multiple access (NOMA) technique, enabling all ground devices to access the
HAP drone. Therefore, all devices can share the same communication spectrum. Furthermore, the
HAP drone can process part of the ground devices’ tasks locally, and offload the rest to satellites
within the visible range for processing. Based on this system, we formulate a weighted energy
consumption minimization problem considering power control, computing frequency allocation,
and task-offloading decision. The problem is solved by the proposed low-complexity iterative
algorithm. Specifically, the original problem is decomposed into interconnected coupled subproblems
using the block coordinate descent (BCD) method. The first subproblem is to optimize power
control and computing frequency allocation, which is solved by a convex algorithm after a series of
transformations. The second subproblem is to make an optimal task-offloading strategy, and we solve
it using the concave–convex procedure (CCP)-based algorithm after penalty-based transformation
on binary variables. Simulation results verify the convergence and performance of the proposed
iterative algorithm compared with the two benchmark algorithms.

Keywords: space–ground–air collaborative network; mobile edge computing; drone communication;
non-orthogonal multiple access (NOMA); task offloading and resource allocation

1. Introduction

With the rapid development of emerging applications such as Internet of Things
(IOT) and Augmented Reality (AR)/Virtual Reality (VR), the fifth generation (5G) and
future wireless networks need to meet the connectivity needs of massive mobile devices [1],
while ensuring low latency [2] and low energy consumption [3]. In recent years, significant
advancements have been made in low-earth orbit (LEO) satellite communication, with
the successful commercialization of satellite constellations such as Starlink and OneWeb.
Therefore, satellite communication is considered a crucial component of future networks.
By carrying edge servers, LEO satellites can provide offloading services for ground devices
(GDs) [4–6]. Although LEO satellites can directly provide services for ground devices,
severe path loss causes ground devices to consume a lot of energy to upload data to LEO
satellites, and satellite communication has a high communication delay. These have brought
many new challenges to meeting the GDs’ Quality of Service (QoS) requirements.
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Recently, the high-altitude platform (HAP) drone has attracted the attention of many
companies and researchers. Flying or hovering at an altitude of 20–50 km [7], the HAP
drone is an unmanned aerial vehicle (UAV) in which a base station is deployed. HAP
drones are mainly divided into solar stratospheric UAVs and floating air balloons. At
present, companies such as Softbank, DLR, and Facebook are conducting in-depth research
on HAP drones. The HAP drone can provide communication services by establishing
line-of-sight (LoS) links with GD [8]. Furthermore, due to the payload of the HAP drone
exceeding 100 kg [9,10], the HAP drone can also be equipped as an edge server to provide a
task-offloading service for GDs. Compared with LEO satellite constellations such as Iridium
and Starlink [11], the communication link between HAP drones and ground devices is more
stable, and a ground device needs to consume less energy to transmit the same amount
of data. Hence, space–air–ground collaborative networks are considered a promising
approach to meeting the access and task-processing needs of massive ground devices.

However, when orthogonal multiple access (OMA) techniques such as frequency-
division multiple access (FDMA) are used as the means of communication between the
HAP drone and GDs, due to the large number of connected devices, the bandwidth
available to each device is very limited [12]. Therefore, the non-orthogonal multiple access
(NOMA) technique can be used for communication between the HAP drone and ground
devices, and at this time, all devices can communicate with the HAP drone through the
same spectrum [13]. The process of task offloading from ground devices to the HAP
drone is the process of data uplink transmission. Using the NOMA technique in this
process, all devices transmit data on the same spectrum, and the receiver (i.e., HAP drone)
applies an advanced multi-user detection (MUD) technique such as successive interference
cancellation (SIC) to extract data from different users based on their respective channel
conditions [14].

Based on the above discussion, we propose a space–air–ground collaborative network
to make the HAP drone and LEO satellites cooperate for mobile edge computing. Further,
we formulate a weighted energy consumption minimization problem considering power
control, computing frequency allocation, and task-offloading decision. The main challenges
we face can be summarized as follows:

• How to properly control the transmission power of ground devices and the HAP
drone? In this system, distinct communication methods are employed for the interac-
tions between devices and the HAP drone, as well as between the HAP drone and LEO
satellites. Consequently, it is imperative to develop specific power control strategies
tailored to each transmission method.

• How to reasonably allocate the computing resources of each edge server? In this
system, the HAP drone can directly obtain the computing capability of edge nodes
(deployed on LEO satellites) and the computing requirements of GDs. Based on this
information, HAP drones need to allocate a reasonable size of computing resources
for each task.

• How to make a task-offloading decision? Considering a partial offloading model, each
task can be split into two parts: the first part of it is processed at the HAP drone and
the rest of it is offloaded to LEO satellite for processing. Therefore, the task-splitting
strategy needs to be appropriately made. In addition, there are multiple LEO satellites
in the field view of the HAP drone, and it is necessary to determine the target LEO
satellite for each task offloading.

In this paper, we propose a space–air–ground collaborative network. Specifically,
considering the difference in the number of access devices, the communication between the
ground device and the HAP drone and the communication between the HAP drone and the
LEO satellite adopt the NOMA technique and FDMA technique, respectively. Subsequently,
the HAP drone can process all or part of the tasks locally, or offload device tasks to LEO
satellites within its visible range. The main contributions of this paper are summarized
as follows.
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(1) Considering the limited energy and resources of nodes in the system, we formulate
an optimization problem of joint task offloading and resource allocation, aiming to
minimize the weighted total energy consumption of the system. This problem is a
mixed-integer non-linear programming (MINLP) problem.

(2) We propose a low-complexity iterative algorithm based on a block coordinate descent
(BCD) method to solve this MINLP problem, which reduces the complexity of the orig-
inal problem by converting the original problem into two subproblems for the iterative
solution. For the first subproblem, we transform the problem into a convex optimiza-
tion problem and solve it with the convex algorithm. For the second subproblem, we
convert this to a continuous variable problem by using a penalty-based transformation,
and then we solve it by a concave–convex procedure (CCP)-based algorithm.

(3) The simulation experiments have verified the convergence of the proposed algorithm
in this paper. Furthermore, compared to the other two benchmark algorithms, the
algorithm proposed in this paper consistently achieves a smaller overall system-
weighted energy consumption under the same conditions.

The rest of this paper is structured as follows. The related works are discussed
in Section 2. The system model is introduced in Section 3, including communication
models, task offloading, and computation models. In Section 4, we formulate an energy
minimization problem. Section 5 presents a proposed low-complexity iterative algorithm.
The convergence and performance of the proposed algorithm are proven in Section 6.
Finally, conclusions are given in Section 7.

2. Related Works

The related works of this paper include space–air–ground collaborative edge com-
puting and NOMA-assisted edge computing. In the following, we introduce their specific
research progress.

2.1. Space–Air–Ground Collaborative Edge Computing

Recently, several space–air–ground collaborative edge computings were intro-
duced [9,15–19].

Nan Cheng et al. [15] presented a space–air–ground integrated network (SAGIN)
edge/cloud computing architecture for offloading the computation-intensive applications
considering remote energy and computation constraints, where flying UAVs provide near-
user edge computing and satellites provide access to the cloud computing. In [16], the
authors proposed a framework of edge computing-enabled SAGINs to support various
Internet of Vehicles (EC-IoV) services for vehicles in remote areas whose main objective
of the framework is to minimize the task completion time and satellite resource usage. A
deep learning-driven offloading and caching algorithm is proposed to achieve real-time
decision-making. In [17], Bomin Mao et al. considered the UAVs and satellites to offer
wireless-powered IoT device edge computing and cloud computing services, respectively,
and focus on the computation offloading problem and consider deep learning techniques
to optimize the task success rate considering the energy dynamics and channel conditions.
A deep learning-based optimization strategy for offloading policies is proposed, employing
a long short-term memory (LSTM) model to effectively address the dynamic characteristics
of energy harvesting performance.

The authors in [9] conducted a study on a satellite–air-integrated edge computing net-
work to provide edge computing services for ground user (GUE) equipment by combining
LEO satellites and HAPs. The authors minimized the weighted total energy consumption
of GUEs, HAPs, and satellites in the network, including communication and calculation
energy consumption, through joint GUE association, multi-user multi-input multi-output
transmission precoding, calculation task allocation, and resource allocation. Ahmad Al-
sharoa and Mohamed-Slim Alouini [18] studied the goal of optimizing resource allocation
and the location of HAP under the framework of the integration of ground base stations,
high-altitude platforms, and satellite stations, and realized the improvement of the user
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throughput. The authors divided the scene into two stages: the short-term stage and
long-term stage to formulate and solve the optimization problem. In the short-term stage,
user association and resource allocation are considered, and in the long-term stage, the
location optimization problem of HAP is considered. Long Zhang et al. [19] proposed
a satellite-to-air integrated computing (SAIC) architecture in a disaster environment, in
which the computing tasks from two layers of users (i.e., ground/air user equipment) were
either executed locally on HAPs or offloaded to LEO satellites for computing. Under SAIC
architecture, the problem of joint two-layer user association and unloading decisions with
the goal of maximizing the total rate is studied.

2.2. NOMA-Assisted Edge Computing

The authors in [20] integrated cloud-edge computing and NOMA to propose a net-
work communication model, which can provide users with energy-efficient and low-latency
services. The model considers the energy consumption, transmission delay, and quality of
service; the authors jointly optimized the offloading decision and its radio resource alloca-
tions for NOMA transmission to reduce the system cost (the weighted sum of consumed
energy and delay). Zhiguo Ding et al. [21] proposed a hybrid NOMA-MEC scheme, in
which a user first offloads parts of its task by using a time slot allocated to another user and
then offloads the remainder of its task during a time slot solely occupied by itself, where
the power and time allocation is jointly optimized to reduce the energy consumption of
computation offloading. In [22], the authors investigated the edge user allocation problem
in the NOMA-based MEC system. The authors introduced a decentralized game-theoretic
approach to allocating maximum users to edge servers in a specific area at the lowest
computing resource and transmit power costs. The authors in [23] proposed a novel coop-
erative MEC that exploits the combination of NOMA and multiple helpers. In the proposed
system featuring a user, multiple helpers, and a base station, the user can simultaneously
offload its computation-intensive tasks to the helpers using NOMA when there is no strong
direct transmission link between the user and the BS. Then, the helpers can compute and
offload these tasks through NOMA. Ming Zeng et al. [24] aimed to minimize the overall
delay for offloading in a multi-user NOMA-MEC network under maximum power con-
straint and maximum energy constraint for offloading users, and they proposed a NOMA
scheme that can achieve substantial delay reduction compared with time division multiple
access (TDMA). In [25], a NOMA-based vehicle edge computing (VEC) network model
is proposed, and the cost minimization problem is constructed. Under the premise of
ensuring the delay tolerance of all vehicle users (VUEs), the total system cost is minimized
through the joint optimization of offloading decision-making, VUE clustering, subchannel
and computation resource allocation, and transmission power control. The authors in [26]
proposed a general hybrid NOMA-MEC offloading strategy, which includes conventional
orthogonal multiple access (OMA) and pure NOMA-based offloading as special cases. A
multi-objective optimization problem is formulated to minimize the energy consumption
for MEC offloading.

3. System Model

In the space–air–ground collaborative network, there are multiple LEO satellites
equipped with mobile edge computing servers within the visual range of the HAP drone,
which can be denoted asM = {1, 2, . . . , M}. All satellites can provide edge computing
services for ground devices (GDs). The computation capacity of LEO satellite m is Fm; this
means that the maximum number of CPU cycles per second for satellite m is Fm. In this
scenario, the HAP drone is also equipped with an edge computing server. The computation
capacity of the HAP drone is Fh. On the ground, there are N GDs, which can be denoted as
N = {1, 2, . . . , N}. For GD n, its task can be denoted as {Dn, cn, Tn}, where Dn is the input
data size of task n, cn represents the number of CPU cycles required to process 1bit task n,
and Tn represents the maximum delay to process the task n. The computation capacity of
GD n can be denoted as Fn.
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3.1. NOMA-Based Communication Model
3.1.1. GD-HAP Drone Uplink Communication Model

All GDs transmit data to the HAP drone based on the NOMA technique. The received
signal of the HAP drone from GD n can be denoted as

yn = hh,n
√

pnsn︸ ︷︷ ︸
desired signal

+∑i∈N\{n} hh,i
√

pisi︸ ︷︷ ︸
intra−inter f erence

+ n̂n︸︷︷︸
noise

(1)

where hh,n, hh,i are channel gains between the HAP drone and GD n, and between the HAP
drone and GD i. pn, pi are transmission power of GD n and GD i. n̂n is the additional white
Gaussian noise (AWGN), which is considered to satisfy the distribution of n̂ ∼ CN(0, σ2).

The signal-to-interference-plus-noise-ratio (SINR) at HAP drone from GD n is

γn =

∣∣hh,n
∣∣2 pn

∑i∈N\{n}
∣∣hh,i

∣∣2 pi + σ2
(2)

Then, we can get the data rate between HAP and GD n

Rn = Bh log2(1 + γn) (3)

where Bh is the bandwidth for each GD.

3.1.2. Consideration of SIC Decoding

In the stage of device upload data, all GDs transmit their tasks to the HAP drone
simultaneously based on the NOMA technique. All GDs are sorted by channel gains∣∣hh,1

∣∣ ≥ ∣∣hh,2
∣∣ ≥ . . . ≥

∣∣hh,N
∣∣ (4)

Then, the HAP drone utilizes the SIC technique to decode data from GDs. According to
the principles of SIC, the HAP drone first decodes the information from the GD with larger
channel gain, and then removes it from the interference terms of other GDs. Therefore, the
offloading rate of i-th GD can be expressed as [27]

Ri,h = Bh log2(1 +

∣∣hh,i
∣∣2 pi

∑N
j=i+1

∣∣∣hh,j

∣∣∣2 pj + σ2
) (5)

3.2. FDMA-Based Communication Model

The communication between the HAP drone and LEO satellites adopts the Frequency
Division Multiple Access (FDMA) technique; the data rate between the HAP drone and
LEO satellite m can be denoted as

Rh,m = Bs log2(1 +

∣∣hh,m
∣∣2 ph,m

σ2 ) (6)

where hh,m is the channel gain between the HAP drone and LEO satellite m. Bs is the
allocated bandwidth for each LEO satellite. Assuming that the total available bandwidth is
Btotal , the bandwidth allocated to each LEO is Bs =

Btotal
M .

Based on 3GPP specifications, the free space path loss (FSPL) in dB between GD and
HAP drone, and between HAP drone and LEO satellite can be expressed as [28].

FSPL(dh,i, f c) = 32.45 + 20 log10( fc) + 20 log10(dh,i) (7)

where dh,i =
√
(xh − xi)2 + (yh − yi)2 + (hh − hi)2 is the distance between the HAP drone

and LEO satellite, or between the HAP drone and GD. {xh, yh, hh} is the coordinate of the
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HAP drone. {xi, yi, hi} is the coordinate of the LEO satellite or GD i (i ∈ M∪N ). fc is the
carrier frequency in GHz of the transmitted signal. Therefore, the channel gain between
HAP and LEO or GD i ∈ {M∪N} can be formulated as

∣∣hh,i
∣∣2 = 10−

FSPL(dh,i , f c)
10 (8)

3.3. Task Offloading and Computation Model
3.3.1. GD-HAP Drone Task Offloading Model

In this system, all GDs offload their tasks to the HAP drone. For GD n, its task
transmission time from GD n to the HAP drone can be formulated as

ttrans
n =

Dn

Rn,h
(9)

And the energy consumption of GD n to offload its task to HAP drone can be ex-
pressed as

Etrans
n = pn × ttrans

n = pn
Dn

Rn,h
(10)

3.3.2. HAP Drone Transmission and Computation Model

In this paper, we adopt a partial offloading protocol [9]. For GD n, the HAP and the
LEO satellite process different portions of its computation task. When the HAP drone
receives the task of GD, it can execute part of it on the local server. At the same time,
the HAP drone offloads the rest of the task to the LEO satellite, which is executed by the
LEO satellite server. GD n’s task can be divided into two parts: δn(0 ≤ δn ≤ Dn) bits
are executed at the HAP drone’s MEC server, and Dn − δn bits are offloaded to the LEO
satellite for processing. Therefore, the time delay for executing GD n’s task at HAP can be
formulated as

tn,h =
cnδn

fn,h
(11)

And the energy consumption for executing GD n’s task at HAP can be expressed as

En,h = κh( fn,h)
2cnδn (12)

where fn,h is the computation resource allocated to GD n’s task by the HAP drone. κh is a
constant relative to the hardware architecture of the HAP drone.

When the HAP drone offloads the rest of the GD n’s task to the LEO satellite m, the
transmission delay of task offloading can be denoted as

tn,h,m = αn,m
Dn − δn

Rh,m
+ Th,m (13)

where αn,m ∈ {0, 1}, ∀n ∈ N , m ∈ M is the offloading indicator of GD n by the HAP drone.
αn,m = 1 indicates that the HAP drone offloads GD n’s task to the LEO satellite m, and
αn,m = 0, otherwise. Th,m is the round-trip propagation delay between the HAP drone and
LEO satellite m, which can be formulated as

Th,m = 2

√
(xh − xm)2 + (yh − ym)2 + (hh − hm)2

c
(14)

where c is the speed of light. The energy consumption of task offloading can be expressed as

En,h,m = phm ∗ tn,h,m = ph,m(αn,m
Dn − δn

Rh,m
+ Th,m) (15)
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3.3.3. LEO Satellite Computation Model

In this paper, the LEO cannot offload the GD’s task to another LEO satellite. If the HAP
drone offloads GD n’s task to LEO satellite m, the computation delay of task n executed on
LEO m can be denoted as

tn,m =
αn,mcn(Dn − δn)

fn,m
(16)

where fn,m is the computation resource allocated to GD n’s task by LEO satellite m. Further-
more, the energy consumption of task computation on LEO satellite m can be formulated as

En,m = αn,mκm( fn,m)
2cn(Dn − δn) (17)

where κm is a constant relative to the hardware architecture of LEO satellite m.

3.4. Overall Delay and Energy Consumption

The processing delay of GD n’s task can be divided into two parts. The first part is the
time delay processed by the HAP drone, and the second part is the time delay processed by
the LEO satellite, which can be expressed as

Tall
n,h =

Dn

Rn,h
+

cnδn

fn,h
(18)

and

Tall
n,m,s = ttrans

n + tn,h,m + tn,m

=
Dn

Rn,h
+ αn,m

Dn − δn

Rh,m
+ Th,m +

αn,mcn(Dn − δn)

fn,m
(19)

The weighted energy consumption of the system can be formulated as

Esys = ωgEtrans + ωhEh + ωsEs

= ωg

N

∑
n=1

(pn
Dn

Rn,h
) + ωh

N

∑
n=1

κh( fn,h)
2cnδn

+ ωh

N

∑
n=1

M

∑
m=1

(ph,mαn,m(
Dn − δn

Rh,m
+ Th,m))

+ ωs

N

∑
n=1

M

∑
m=1

(αn,mκm( fn,m)
2cn(Dn − δn))

(20)

4. Strategy Design and Problem Formulation

In this section, we first present the process of resource allocation and task offload-
ing. Then, we formulate the optimization problem of joint task offloading and resource
allocation to minimize the weight energy consumption of the system.

4.1. Strategy Design

This paper studies the space–air–ground collaborative network shown in Figure 1,
where the HAP drone directly connects with LEO satellites and ground devices through
Ka-band and C-band, respectively. The HAP drone serves as the control node in this system,
responsible for collecting information from all nodes in the system (user task information,
satellite computing resource information, etc.), and making and distributing task offloading
and resource allocation strategy. The implementation process of task offloading and
resource allocation strategy design can be divided into four steps:
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• Information collection: in this step, the HAP drone collects information from LEO
satellitesM within its visual range, and information from GDs N connected to the
HAP drone (including computational resources, channel information, etc.).

• Task-offloading request: In this step, the GDs connected to the HAP drone send a
task-offloading request to the HAP drone, which includes specific information about
the task, such as the data size, required CPU cycles per bit of data processing, and the
maximum processing tolerance delay.

• Strategy-making and distribution: After the HAP drone collects information from
each node and receives task-offloading requests from the GDs, the HAP drone makes
an appropriate strategy for resource allocation and task offloading based on this
information. The resource allocation and task-offloading strategy will be sent to the
respective GDs and LEO satellites via C-band and Ka-band.

• Task processing: After receiving the resource allocation and task-offloading strategy
from the HAP drone, the GDs send the task to the HAP drone according to the strategy,
and then the HAP drone and LEO satellites process the tasks based on the resource
allocation and task-offloading strategy.

GD - HAP drone link HAP drone - LEO link

FDMA

NOMA

GD HAP drone LEO satellite Edge server

Figure 1. The scenario of the space–air–ground collaborative network.

4.2. Problem Formulation

In the previous section, we defined the system’s weighted energy consumption as the
weighted sum of the energy consumption of each node. In order to minimize the system’s
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weighted energy consumption, a joint optimization problem of task offloading and resource
allocation is formulated as follows:

OP : min
P,F,α,δ

Esys (21a)

s.t. 0 ≤ pn ≤ Pmax
n , ∀n ∈ N (21b)

0 ≤ ph,m ≤ Pmax
h , ∀m ∈ M (21c)

0 ≤ fn,h, fn,m, ∀n ∈ N , m ∈ M (21d)
N

∑
n=1

fn,h ≤ Fh (21e)

N

∑
n=1

fn,m ≤ Fm, ∀m ∈ M (21f)

0 ≤ δn ≤ Dn, ∀n ∈ N (21g)

Tall
n,h ≤ Tn, ∀n ∈ N (21h)

Tall
n,m,s ≤ Tn, ∀n ∈ N , m ∈ M (21i)

αn,m ∈ {0, 1}, ∀n ∈ N , m ∈ M (21j)
M

∑
m=1

αn,m = 1, ∀n ∈ N (21k)

where P = {pn|∀n ∈ N} ∪ {ph,m|∀m ∈ M} ∈ Z1×(M+N) is the set of all transmit powers,
F ∈ ZN×(M+1) is the set of total computation resources for the HAP drone and all LEO
satellites, α = {αn,m|∀n ∈ N , m ∈ M} ∈ ZN×M and δ = {δn|∀n ∈ N} ∈ Z1×N are
collections of target access LEO satellite selection and task-splitting decisions.

Constraints (21b) and (21c) indicate that the transmit power cannot exceed the maxi-
mum power. Constraint (21d) represents that the CPU frequency allocation variables are
non-negative. Constraints (21e) and (21f) are constraints of the total computation capacity
for the HAP drone and each LEO satellite. Constraint (21g) is the constraint of task-splitting
variables. Constraints (21h) and (21i) ensure that the processing delay of the task cannot
exceed the maximum tolerable delay. Constraints (21j) and (21k) restrict the variables αn,m
to binary integer variables, and each task cannot be offloaded to multiple LEO satellites.

5. Algorithm Design forOPOPOP
In this section, we propose a joint task-offloading and resource allocation optimization

scheme to solve the problem OP . First, we decouple the OP to two subproblems based
on the BCD method, one for the optimization of all devices’ transmission power and
computation resources with fixed task-offloading decisions {α, δ}, which can be denoted as

P1 : min
P,F

Esys (22a)

s.t. (21b)–(21f), (21h), (21i) (22b)

Furthermore, task-offloading decisions are optimized based on fixed transmission and
computation allocation strategy, and this subproblem can be denoted as

P2 : min
α,δ

Esys (23a)

s.t. (21g)–(21k) (23b)

By alternately solving these two subproblems, we can obtain an optimized resource
allocation and task-offloading strategy.
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5.1. Algorithm Design forP1P1P1

Problem P1 is non-convex and thus difficult to solve directly. To solve the problem
P1, in this subsection, we convert this to convex form and solve it by convex algorithm.
Considering that the transmit power allocation problem of the HAP drone is non-convex,
we can denote

f1(Ph) = min
Ph

N

∑
n=1

M

∑
m=1

(ph,mαn,m(
Dn − δn

Rh,m
+ Th,m))

= min
Ph

M

∑
m=1

(
N

∑
n=1

αn,m(Dn − δn))
ph,m

Bs log2(1 +
ph,m

∣∣hh,m
∣∣2

σ2 )

+
M

∑
m=1

(
N

∑
n=1

αn,m)Th,m ph,m (24a)

s.t. (21d) (24b)

where Ph = {ph,m|m ∈ M} ∈ Z1×M, which is the set of transmit power from the HAP
drone to LEO satellites. We introduce new variables τh = {τh,m|m ∈ M} ∈ Z1×M, which
can be denoted as

τh,m =
1

Rh,m
=

1

Bs log2(1 +
ph,m

∣∣hh,m
∣∣2

σ2 )

, ∀m ∈ M (25)

then, Ph can be expressed as

ph,m =
σ2∣∣hh,m
∣∣2 (2 1

Bsτh,m − 1), ∀m ∈ M (26)

We can rewrite f1(Ph) as

g1(τh) = min
τh

M

∑
m=1

(
N

∑
n=1

αn,m(Dn − δn))
σ2∣∣hh,m
∣∣2 (2 1

Bsτh,m − 1)τh,m

+
M

∑
m=1

(
N

∑
n=1

αn,m)Th,m
σ2∣∣hh,m
∣∣2 (2 1

Bsτh,m − 1) (27a)

s.t.
1

Bs log2(1 +
pmax

h

∣∣hh,m
∣∣2

σ2 )

≤ τh,m∀m ∈ M (27b)

This is a convex optimization problem, which is easy to solve. Further, considering
the transmit power allocation problem of all GDs is also non-convex. Let Pn = {pn|∀n ∈
N} ∈ Z1×N be the set of all ground devices’ transmit power, and we can denote the GD’s
transmit power allocation problem as

f2(Pn) = min
Pn

N

∑
n=1

pn
Dn

Bh log2(1 +
|hh,n|2 pn

∑N
j=n+1|hh,j|2 pj+σ2

)

(28a)

s.t. (21c) (28b)
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We introduce new variables {t1,n|∀n ∈ N} ∈ Z1×N , which represent the transmission
delay for GDs to transmit the task data to the HAP. Furthermore, we can transform the
f2(Pn) to

g2(Pn, {t1,n}) = min
Pn ,{t1,n}

N

∑
n=1

pnt1,n (29a)

s.t.
Dn

Bh log2(1 +
|hh,n|2 pn

∑N
j=n+1|hh,j|2 pj+σ2

)

≤ t1,n, ∀n ∈ N (29b)

(21c) (29c)

Note that the constraint (29b) is non-convex, which can be rewritten as

Dn ≤ t1,nBh log2(1 +

∣∣hh,n
∣∣2 pn

∑N
j=n+1

∣∣∣hh,j

∣∣∣2 pj + σ2
)

= t1,nBh log2(∑
N
j=n

∣∣hh,n
∣∣2 pj + σ2)− t1,nBh log2(∑

N
j=n+1

∣∣hh,n
∣∣2 pj + σ2) (30)

To solve non-convex constraint, we introduce new variables t2,n ≤ Bh log2(∑
N
j=n
∣∣hh,n

∣∣2 pj +

σ2) and t3,n ≥ Bh log2(∑
N
j=n+1

∣∣hh,n
∣∣2 pj + σ2). Thus, constraint (30) can be rewritten as

Dn ≤ t1,nt2,n − t1,nt3,n, ∀n ∈ N . It is obvious that this is also non-convex. We can transform
it into the Difference of Convex (DC) program

0 ≥ Dn − t1,nt2,n + t1,nt3,n

= Dn +
t2
1,n + t2

2,n

2
− (t1,n + t2,n)

2

2
+

(t1,n + t3,n)
2

2
−

t2
1,n + t2

3,n

2
(31)

Further, we transform the above formula into a convex optimization form using the
Taylor expansion around current point {t′1,n, t′2,n, t′3,n|∀n ∈ N}.

0 ≥ Dn +
t2
1,n + t2

2,n

2
−

(t′1,n + t′2,n)
2

2
− (t′1,n + t′2,n)(t1,n − t′1,n + t2,n − t′2,n)

+
(t1,n + t3,n)

2

2
−

(t′1,n)
2 + (t′3,n)

2

2
− t′1,n(t1,n − t′1,n)− t′3,n(t3,n − t′3,n)

(32)

Now, this constraint is convex. Furthermore, the Esys can be rewritten as

Êsys = ωg

N

∑
n=1

pnt1,n + ωh

N

∑
n=1

κh( fn,h)
2cnδn

+ ωh

M

∑
m=1

(
N

∑
n=1

αn,m(Dn − δn))
σ2∣∣hh,m
∣∣2 (2 1

Bsτh,m − 1)τh,m

+ ωh

M

∑
m=1

(
N

∑
n=1

αn,m)Th,m
σ2∣∣hh,m
∣∣2 (2 1

Bsτh,m − 1)

+ ωs

N

∑
n=1

M

∑
m=1

(αn,mκm( fn,m)
2cn(Dn − δn))

(33)
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Through the above transformation of problem P1, we can rewrite P1 as problem P3, and
solving problem P3 can realize the solution of problem P1. P3 can be formulated as

P3 : min
F,τh ,t

Êsys (34a)

s.t.
1

Bs log2(1 +
pmax

h

∣∣hh,m
∣∣2

σ2 )

≤ τh,m∀m ∈ M (34b)

Bh log2(∑
N
j=n

∣∣hh,n
∣∣2 pj + σ2) ≥ t2,n, ∀n ∈ N (34c)

Bh log2(∑
N
j=n+1

∣∣hh,n
∣∣2 pj + σ2) ≤ t3,n, ∀n ∈ N (34d)

t1,n +
cnδn

fn,h
≤ Tn, ∀n ∈ N (34e)

t1,n + αn,m(Dn − δn)τh,m + Th,m

+
αn,mcn(Dn − δn)

fn,m
≤ Tn, ∀n ∈ N (34f)

(21b), (21d)− (21f), (32) (34g)

where t = {t1,n, t2,n, t3,n|n ∈ N}. This is a convex optimization problem, and we can solve
it by using existing convex solvers, e.g., CVX toolbox [29].

5.2. Algorithm Design forP2P2P2

With fixed {P, F}, the optimization objective Esys is only related to Eh and Es. This also
means that Etrans in the objective function does not need to be optimized in this problem,
so the P2 can be rewritten as

P4 : min
α,δ

(ωhEh + ωsEs) (35a)

s.t. (21g)–(21k) (35b)

The constraint (21j) shows that α are 0–1 integer variables in P4, so this is an integer
programming problem. The objective function (35a) and constraint (21i) are non-convex.
This is an MINLP problem, which is difficult to solve. To solve this problem, we introduce
the auxiliary variables ὰ = {ὰn,m|∀n ∈ N , m ∈ M} ∈ ZN×M; the constraint (21j) can be
transformed to [30]

αn,m ∗ (1− ὰn,m) = 0, ∀n ∈ N , m ∈ M (36)

and
αn,m = ὰn,m, ∀n ∈ N , m ∈ M (37)

To simplify the solution to the P4, we can add the constraints (36) and (37) as penalties
to the objective function of P4, at which point P4 can be rewritten as problem P5

P5 : min
α,δ

(ωhEh + ωsEs) + λ
N

∑
n=1

M

∑
m=1

(|(αn,m − ὰn,m)|2 + |αn,m(1− ὰn,m)|2) (38a)

s.t. 0 ≤ αn,m ≤ 1, ∀n ∈ N , m ∈ M (38b)

(21g)–(21i), (21k) (38c)

Note that P5 is still non-convex because (35a) and (21i) are non-convex. To simplify
the problem-solving process, we begin by transforming the problem into a Difference of
Convex (DC) program problem. Based on the CCP method, we can find a non-convex
feasible set near the current feasible point by the iterative convex approximation method
and then solve a new convex approximation in each iteration [31]. We convert the non-
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convex problem into a convex optimization problem by performing Taylor expansion on
the current point, and (ωhEh + ωsEs) can be rewritten as

E′ = ωh

N

∑
n=1

κh( fn,h)
2cnδn

+ ωh

N

∑
n=1

M

∑
m=1

ph,m(
Dn

Rh,m
+ Th,m)αn,m

+ ωh

N

∑
n=1

M

∑
m=1

ph,m

Rh,m
(

1
2
(α2

n,m + δ2
n)−

(α′n,m + δ′n)
2

2

− ((αn,m − α′n,m)((α
′
n,m + δ′n)− ((δn − δ′n)((α

′
n,m + δ′n))

+ ωs

N

∑
n=1

M

∑
m=1

κm( fn,m)
2cnDnαn,m

−ωs

N

∑
n=1

M

∑
m=1

κm( fn,m)
2cn(

1
2
(α2

n,m + δ2
n)−

(α′n,m + δ′n)
2

2

− ((αn,m − α′n,m)((α
′
n,m + δ′n)− ((δn − δ′n)((α

′
n,m + δ′n))

(39)

where {α′n,m|∀n ∈ N , m ∈ M} and {δ′n|∀n ∈ N} denote the current feasible point. Fur-
thermore, (21i) can be rewritten as

(
Dn

Rn,h
+

cnDn

fn,m
)αn,m + (

Dn

Rn,h
+

cn

fn,m
)θn,m + Th,m +

Dn

Rn,h
≤ Tn, ∀n ∈ N , m ∈ M (40)

where θn,m ≥
α2

n,m+δ2
n

2 − (α′n,m+δ′n)
2

2 − ((α′n,m + δ′n))(αn,m − α′n,m + δn − δ′n). So, the problem
P5 can be transformed to

P6 : min
α,δ

E = E′ + λ
N

∑
n=1

M

∑
m=1

(|(αn,m − ὰn,m)|2 + |αn,m(1− ὰn,m)|2) (41a)

s.t. (21g), (21h), (21k), (38b), (40) (41b)

This is a standard convex optimization problem that can be solved by the CVX tool-
box. Throughout each iteration, solving problem P6 is equivalent to solving problem
P2. However, it is crucial to note that the solution obtained for P6 may not adhere to the
constraints set by P2, as P2 specifically requires α to be integers. Therefore, it is imperative
to continuously iterate and solve P6 until the α values converge to integers, signifying the
completion of the solution for problem P2. To solve this problem, we need to update the
variables ὰ in each iteration according to the association strategy α′ of the previous round,
and the closed form of ὰ can be expressed as [30]

ὰn,m =
α′n,m + (α′n,m)

2

1 + (α′n,m)
2 , ∀n ∈ N , m ∈ M (42)

Based on the above discussion, we can summarize the iterative algorithm as Algorithm 1.
In each iteration, the first step is to obtain new power control and computing resource
allocation strategies based on the previous round’s resource allocation and task-offloading
strategies. Next, based on the new power control and computing resource allocation
strategies, as well as the previous round’s task-offloading strategy, a new task-offloading
strategy is obtained by solving P6. Then, the penalty coefficient λ, i.e., λ = µλ, is updated.
Finally, the iteration stops when the weighted system energy consumption of the current
iteration and the previous iteration does not exceed the maximum tolerance value ε.
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Algorithm 1: Joint Task-Offloading and Resource Allocation Algorithm for solv-
ing OP

1: Input: maximum tolerance ε, constant parameter µ, where µ > 1, the maximum
number of iterations Itermax, initial feasible point {P0, t0, α0, δ0}.

2: for i = 1 to Itermax do
3: Update the communication and computation resource allocation strategy
{Pi, ti, Fi} by solving P3 based on {Pi−1, ti−1, αi−1, δi−1}.

4: Update variables ὰi with fixed variables αi−1 based on (42)
5: Obtain optimal {αi, δi} by solving P6 with given {Fi, ti, αi−1, δi−1, ὰi}.
6: Update penalizing coefficient λ by λ = µλ

7: if |Ei−Ei−1|
Ei−1

≤ ε

8: break.
9: end if
10: end for
11: Output: The optimal policy {Pi, Fi, αi, δi} and optimal energy system Ei

5.3. Complexity Analysis

In each iteration of Algorithm 1, the computational complexity is determined by the
computational complexities of P3 and P6. The number of optimization variables in prob-
lem P3 is I1 = MN + M + 4N, and the number of constraints is I2 = MN + 2M + 6N + 1.
We solve P3 using the interior point method; according to [32,33], the computational
complexity is O((I2

1 I2 + I3
1 )I0.5

2 ). The number of optimization variables in problem P6 is
I3 = MN + N, and the number of constraints is I4 = 2MN + 3N. Similarly, the computa-
tional complexity for P6 is O((I2

3 I4 + I3
3 )I0.5

4 ). Therefore, the computational complexity of
the proposed algorithm can be expressed as O((I2

1 I2 + I3
1 )I0.5

2 (I2
3 I4 + I3

3 )I0.5
4 L).

6. Numerical Result

In this section, numerical simulation results are provided to demonstrate the perfor-
mance of the proposed algorithm. We consider a square area of 2000 m × 2000 m; the
HAP drone is located in the center of this area with an altitude of 20 km [34]. In this
system, multiple LEO satellites are randomly distributed at an altitude of 200 km, and
GDs are randomly distributed on the ground in this area. We use the MATLAB R2020b
(version 9.9.0.1467703) to simulate, and the cvx toolbox used is also installed on MATLAB.
Simulation results are obtained on the PC with the Intel Core i5-10505 CPU, 16G RAM, and
a 64-bit operating system x64-based processor.

In the proposed system, the NOMA communication scheme is adopted between GDs
and the HAP drone, and the FDMA communication scheme is adopted between the HAP
drone and LEO satellites. The HAP drone communicates with GDs using 5 GHz bands on
the C-band and adopts 31 GHz bands on Ka-band to communicate with LEO satellites. The
communication bandwidth between the GD and HAP drones and between the HAP drone
and LEO satellites is 100 MHz [9]. AWGN spectral density is −174 dBm/Hz [35]. All GDs
have the same maximum transmission power of 23 dBm [36], and the maximum transmit
power of the HAP drone is 43 dBm [37]. To simplify the experiment, we assume that the
delay constraints of all tasks are the same, which are 3 s, and the CPU cycles to compute
one-bit tasks are also the same (unless otherwise specified, it is 1000 cycle/bit [38]). The
computing capacity of the HAP drone is Fh = 10 GHz. We consider that the HAP drone
has a stronger computing capacity than a single LEO satellite, so we set the computing
capacity of each LEO satellite to be Fm = 2 GHz. We set ωg = 1, ωh = 0.5, and ωs = 0.2.

For comparison, the following task-offloading and resource allocation algorithms
are employed in the simulations: (i) Pure HAP: all tasks are executed at the HAP drone,
and computing and communication resource allocation is obtained by solving P3 (that
is {αn,m = 0, ∀n ∈ N , m ∈ M} and {δn = Dn, ∀n ∈ N}). (ii) OMA: the communication
scheme between the GD and HAP drones is FDMA. Computing and communication
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resource optimization are solved by the convex optimization algorithm, and the task-
offloading strategy is obtained by solving P6. (iii) Proposed: the optimization algorithm
proposed in this paper.

Figure 2 verifies the convergence of the proposed algorithm in this paper. We plot
two curves for the number of ground devices 20 and 40. From Figure 2, we found that the
proposed iterative algorithm can quickly converge to a stable solution, and this verifies
the convergence properties of our proposed algorithm. So, the algorithm we proposed
is an effective algorithm with rapid convergence. The proposed algorithm is based on
a single time slot, during which the LEO satellite is assumed to be quasi-static. When
considering satellite movement, we can update resource allocation and task scheduling
strategies according to multi-dimensional resource information of different time slots.
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Figure 2. Convergence process of proposed algorithm under a different number of ground devices.

Figure 3 shows the sum of weighted energy consumption against the data size of GDs’
tasks, in which the time constraints of all GDs are 3 s. The number of LEO satellites is
M = 3, and the number of GDs is N = 40. From Figure 3, we can obtain that as the data
size of GDs’ tasks increases, the sum weighted energy consumption of the system tends to
increase for all schemes because the required energy consumption of the GDs offloading
tasks to the edge server of the HAP drone or LEO satellite is positively related to the data
size of all tasks. Compared with the two types of benchmark algorithms, the proposed
algorithm can ensure the minimum weighted energy consumption, which shows that this
algorithm can reduce the weighted energy consumption of the system by optimizing task
offloading and resource allocation.
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Figure 3. Weighted energy consumption of the system versus different task data size.
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Figure 4 demonstrates the energy consumption of the system for the three algorithms
versus the different number of ground devices. In this figure, we set the number of LEO
satellites M = 3. The performance is compared at different data sizes of tasks, between
300 Kb and 400 Kb, and between 900 Kb and 1000 Kb. From the figure, we can get that the
larger the number of ground devices, the more energy consumption for ground devices to
offload their tasks. In this figure, we can also see that the proposed iterative algorithm has
much lower energy consumption compared to the two benchmark algorithms. Moreover,
the greater the amount of task data, the more the performance of the proposed algorithm
will be improved.
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Figure 4. Weighted energy consumption of the system versus different number of ground devices.

Figure 5 shows the energy consumption for the three algorithms versus different max-
imum tolerance delay, where T = {2, 2.5, 3, 3.5, 4, 4.5, 5} (s). We set the number of ground
devices as 20, and there are three LEO satellites. Based on the analysis of Figure 5, it is
evident that the energy consumption of all algorithms decreases as the maximum tolerance
delay increases. This is because with the increasing of the maximum tolerance delay, the
transmit power of GDs and HAP drone can be smaller, and the CPU resource allocated to all
tasks can also be smaller, which results in lower system energy consumption. By comparing
the energy consumption of the three algorithms, we can get that the proposed algorithm
can obtain smaller system energy consumption, and the smaller the tolerance delay of tasks,
the more obvious the ability of the proposed algorithm to reduce energy consumption.
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Figure 5. Weighted energy consumption of the system versus different maximum tolerance delay.
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Figure 6 displays the weighted energy consumption versus different required CPU
numbers for one-bit task data. In this figure, we set the number of ground devices as 40,
and we set the number of LEO satellites as 3. From Figure 6, we can see that, for a fixed
number of ground devices and LEO satellites, the energy consumption increases with the
required number of CPU cycles for one-bit data. The energy consumption is consistently
lower than the other two benchmark algorithms.
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Figure 6. Weighted energy consumption of the system versus different CPU cycles for one-bit
task data.

Figure 7 depicts the energy consumption of the system for three different algorithms
with a different number of LEO satellites. We compared the performance of three algorithms
in two scenarios where the number of ground devices is 20 and 40. Compared with the
other two algorithms, the energy consumption of the pure HAP algorithm is always the
highest and does not change with the number of LEO satellites. This is because the task-
offloading process of the pure HAP algorithm does not involve the participation of LEO
satellites. The energy consumption of the other two algorithms decreases with the increase
in the number of LEO satellites. This is because the weight of satellite energy consumption
is lower, and as the number of satellites increases, more task data can be allocated to LEO
satellites. The energy consumption of the proposed algorithm is always the lowest, which
further illustrates the performance of the proposed algorithm.
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Figure 7. Energy consumption of the system versus different number of LEO satellites.

7. Conclusions

In this paper, we focus on the space–air–ground collaborative network. Ground
devices communicate with the HAP drone based on the NOMA technique. The HAP
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drone can process part of a GD’s task locally while offloading the rest of the task to LEO
satellites for processing. We formulate an optimization problem to jointly optimize multiple
resource allocation and task offloading to minimize the weighted energy consumption
of the system while ensuring the maximum task tolerance delay is met. We proposed
an iterative algorithm that can converge quickly to reduce the complexity of the original
problem. The simulation results verify the convergence and performance of the proposed
algorithm compared to the other two benchmark algorithms. There are two main research
directions in the future. In terms of scenarios, the research on scenarios involving multiple
HAP drones and multiple satellites, covering a broader range, will become a new research
trend. In terms of algorithms, distributed algorithms such as federated learning will receive
more in-depth research.

Author Contributions: Conceptualization, C.M. and C.G.; methodology, C.G. and N.J.; validation,
N.J., C.G., and B.H.; formal analysis, C.G. and N.J.; investigation, H.W. and Y.X.; writing—original
draft preparation, C.G.; writing—review and editing, C.M., H.W., and B.H.; supervision, C.M. and
H.W.; project administration, Y.X.; funding acquisition, C.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the 2020 National Key R&D Program “Broadband Communica-
tion and New Network” special “6G Network Architecture and Key Technologies” 2020YFB1806700.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lee, Y.L.; Qin, D.; Wang, L.-C.; Sim, G.H. 6G Massive Radio Access Networks: Key Applications, Requirements and Challenges.

IEEE Open J. Veh. Technol. 2021, 2, 54–66. [CrossRef]
2. Huynh, D.V.; Nguyen, V.-D.; Chatzinotas, S.; Khosravirad, S.R.; Poor, H.V.; Duong, T.Q. Joint Communication and Computation

Offloading for Ultra-Reliable and Low-Latency With Multi-Tier Computing. IEEE J. Sel. Areas Commun. 2023, 41, 521–537.
[CrossRef]

3. Chen, Q.; Meng, W.; Quek, T.Q.S.; Chen, S. Multi-Tier Hybrid Offloading for Computation-Aware IoT Applications in Civil
Aircraft-Augmented SAGIN. IEEE J. Sel. Areas Commun. 2023, 41, 399–417. [CrossRef]

4. Centenaro, M.; Costa, C.E.; Granelli, F.; Sacchi, C.; Vangelista, L. A Survey on Technologies, Standards and Open Challenges in
Satellite IoT. IEEE Commun. Surv. Tutor. 2021, 23, 1693–1720. [CrossRef]

5. Xie, R.; Tang, Q.; Wang, Q.; Liu, X.; Yu, F.R.; Huang, T. Satellite-Terrestrial Integrated Edge Computing Networks: Architecture,
Challenges, and Open Issues. IEEE Netw. 2020, 34, 224–231. [CrossRef]

6. Kim, T.; Kwak, J.; Choi, J.P. Satellite Edge Computing Architecture and Network Slice Scheduling for IoT Support. IEEE Internet
Things J. 2022, 9, 14938–14951. [CrossRef]

7. Jia, Z.; Sheng, M.; Li, J.; Han, Z. Toward Data Collection and Transmission in 6G Space–Air–Ground Integrated Networks:
Cooperative HAP and LEO Satellite Schemes. IEEE Internet Things J. 2022, 9, 10516–10528. [CrossRef]

8. Sudheesh, P.G.; Mozaffari, M.; Magarini, M.; Saad, W.; Muthuchidambaranathan, P. Sum-Rate Analysis for High Altitude Platform
(HAP) Drones With Tethered Balloon Relay. IEEE Commun. Lett. 2018, 22, 1240–1243. [CrossRef]

9. Ding, C.; Wang, J.-B.; Zhang, H.; Lin, M.; Li, G.Y. Joint Optimization of Transmission and Computation Resources for Satellite and
High Altitude Platform Assisted Edge Computing. IEEE Trans. Wirel. Commun. 2022, 21, 1362–1377. [CrossRef]

10. Qiu, J.; Grace, D.; Ding, G.; Zakaria, M.D.; Wu, Q. Air-ground heterogeneous networks for 5G and beyond via integrating high
and low altitude platforms. IEEE Wirel. Commun. 2019, 26, 140–148. [CrossRef]

11. Thompson, S.; Martin, S.; Bevly, D. Single Differenced Doppler Positioning with Low Earth Orbit Signals of Opportunity and
Angle of Arrival Estimation. In Proceedings of the ION International Technical Meeting, 25–28 January 2021; pp. 497–509.
Available online: https://www.ion.org/publications/abstract.cfm?articleID=17845 (accessed on 20 May 2023).

12. Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A Survey of Non-Orthogonal Multiple Access for 5G. IEEE Commun.
Surv. Tutor. 2018 , 20, 2294–2323. [CrossRef]

13. Ding, Z.; Fan, P.; Poor, H.V. Impact of Non-Orthogonal Multiple Access on the Offloading of Mobile Edge Computing. IEEE Trans.
Commun. 2019, 67, 375–390. [CrossRef]

14. Kiani, A.; Ansari, N. Edge Computing Aware NOMA for 5G Networks. IEEE Internet Things J. 2018, 5, 1299–1306. [CrossRef]
15. Cheng, N.; Lyu, F.; Quan, W.; Zhou, C.; He, H.; Shi, W.; Shen, X. Space/Aerial-Assisted Computing Offloading for IoT Applications:

A Learning-Based Approach. IEEE J. Sel. Areas Commun. 2019, 37, 1117–1129. [CrossRef]
16. Yu, S.; Gong, X.; Shi, Q.; Wang, X.; Chen, X. EC-SAGINs: Edge-Computing-Enhanced Space–Air–Ground-Integrated Networks

for Internet of Vehicles. IEEE Internet Things J. 2022, 9, 5742–5754. [CrossRef]

http://doi.org/10.1109/OJVT.2020.3044569
http://dx.doi.org/10.1109/JSAC.2022.3227088
http://dx.doi.org/10.1109/JSAC.2022.3227031
http://dx.doi.org/10.1109/COMST.2021.3078433
http://dx.doi.org/10.1109/MNET.011.1900369
http://dx.doi.org/10.1109/JIOT.2021.3132171
http://dx.doi.org/10.1109/JIOT.2021.3121760
http://dx.doi.org/10.1109/LCOMM.2017.2785847
http://dx.doi.org/10.1109/TWC.2021.3103764
http://dx.doi.org/10.1109/MWC.0001.1800575
https://www.ion.org/publications/abstract.cfm?articleID=17845
http://dx.doi.org/10.1109/COMST.2018.2835558
http://dx.doi.org/10.1109/TCOMM.2018.2870894
http://dx.doi.org/10.1109/JIOT.2018.2796542
http://dx.doi.org/10.1109/JSAC.2019.2906789
http://dx.doi.org/10.1109/JIOT.2021.3052542


Drones 2023, 7, 482 19 of 19

17. Mao, B.; Tang, F.; Kawamoto, Y.; Kato, N. Optimizing Computation Offloading in Satellite-UAV-Served 6G IoT: A Deep Learning
Approach. IEEE Netw. 2021, 35, 102–108. [CrossRef]

18. Alsharoa, A.; Alouini, M.-S. Improvement of the Global Connectivity Using Integrated Satellite-Airborne-Terrestrial Networks
With Resource Optimization. IEEE Trans. Wirel. Commun. 2020, 19, 5088–5100. [CrossRef]

19. Zhang, L.; Zhang, H.; Guo, C.; Xu, H.; Song, L.; Han, Z. Satellite-Aerial Integrated Computing in Disasters: User Association and
Offloading Decision. In Proceedings of the IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June
2020; pp. 554–559.

20. Du, R.; Liu, C.; Gao, Y.; Hao, N.; Wang, Z. Collaborative Cloud-Edge-End Task Offloading in NOMA-Enabled Mobile Edge
Computing Using Deep Learning. J. Grid Comput. 2022, 20, 14. [CrossRef]

21. Ding, Z.; Xu, J.; Dobre, O.A.; Poor, H.V. Joint Power and Time Allocation for NOMA–MEC Offloading. IEEE Trans. Veh. Technol.
2019, 68, 6207–6211. [CrossRef]

22. Lai, P.; He, Q.; Cui, G.; Chen, F.; Grundy, J.; Abdelrazek, M.; Hosking, J.; Yang, Y. Cost-Effective User Allocation in 5G
NOMA-Based Mobile Edge Computing Systems. IEEE. Trans. Mob. Comput. 2022, 21, 4263–4278. [CrossRef]

23. Yılmaz, S.S.; Özbek, B. Multi-Helper NOMA for Cooperative Mobile Edge Computing. IEEE Trans. Intell. Transp. Syst. 2022, 23,
9819–9828. [CrossRef]

24. Zeng, M.; Nguyen, N.-P.; Dobre, O.A.; Poor, H.V. Delay Minimization for NOMA-Assisted MEC Under Power and Energy
Constraints. IEEE Wirel. Commun. Lett. 2019, 8, 1657–1661. [CrossRef]

25. Du, J.; Sun, Y.; Zhang, N.; Xiong, Z.; Sun, A.; Ding, Z. Cost-Effective Task Offloading in NOMA-Enabled Vehicular Mobile Edge
Computing. IEEE Wirel. Commun. Lett. 2022, 17, 928–939. [CrossRef]

26. Ding, Z.; Xu, D.; Schober, R.; Poor, H.V. Hybrid NOMA Offloading in Multi-User MEC Networks. IEEE Trans. Wirel. Commun.
2022, 21, 5377–5391. [CrossRef]

27. Mao, S.; Leng, S.; Zhang, Y. Joint Communication and Computation Resource Optimization for NOMA-Assisted Mobile Edge
Computing. In Proceedings of the IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019;
pp. 1–6.

28. Standard 3GPP TR 38.811 (V15.4.0); Study on New Radio (NR) to Support Non-Terrestrial Networks (Release 15). 2020. Available
online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3234 (accessed on 20
May 2023).

29. Michael Grant and Stephen Boyd, (March 2014) CVX: Matlab Software for Disciplined Convex Programming, Version 2.1 [Online].
Available online: http://cvxr.com/cvx (accessed on 20 May 2023).

30. Cai, Y.; Cui, F.; Shi, Q.; Zhao, M.; Li, G.Y. Dual-UAV-Enabled Secure Communications: Joint Trajectory Design and User Scheduling.
IEEE J. Sel. Areas Commun. 2018, 36, 1972–1985. [CrossRef]

31. Lanckriet, G.; Sriperumbudur, B.K. On the Convergence of the Concave-Convex Procedure. Nips 2009, 22, 1759–1767.
32. Dai, Y.; Xu, D.; Maharjan, S.; Zhang, Y. Joint computation offloading and user association in multi-task mobile edge computing.

IEEE Trans. Veh. Technol. 2018, 67, 12313–12325. [CrossRef]
33. Cao, X.; Yang, B.; Shen, Y.; Yuen, C.; Zhang, Y.; Han, Z.; Vincent Poor, H.; Hanzo, L. Edge-Assisted Multi-Layer Offloading

Optimization of LEO Satellite-Terrestrial Integrated Networks. IEEE J. Sel. Areas Commun. 2023, 41, 381–398. [CrossRef]
34. Karabulut Kurt, G.; Khoshkholgh, M.G.; Alfattani, S.; Ibrahim, A.; Darwish, T.S.J.; Alam, M.S.; Yanikomeroglu, H.; Yongacoglu, A.

A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future. IEEE Commun. Surv. Tutor. 2021,
23, 729–779. [CrossRef]

35. Liu, B.; Liu, C.; Peng, M. Resource Allocation for Energy-Efficient MEC in NOMA-Enabled Massive IoT Networks. IEEE J. Sel.
Areas Commun. 2021, 39, 1015–1027. [CrossRef]

36. Tang, Q.; Fei, Z.; Li, B.; Han, Z. Computation Offloading in LEO Satellite Networks With Hybrid Cloud and Edge Computing.
IEEE Internet Things J. 2021, 8, 9164–9176. [CrossRef]

37. Zhu, X.; Jiang, C. Delay Optimization for Cooperative Multi-Tier Computing in Integrated Satellite-Terrestrial Networks. IEEE J.
Sel. Areas Commun. 2023, 41, 366–380. [CrossRef]

38. Ren, Q.; Abbasi, O.; Kurt, G.K.; Yanikomeroglu, H.; Chen, J. High Altitude Platform Station (HAPS) Assisted Computing for
Intelligent Transportation Systems. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Madrid,
Spain, 7–11 December 2021; pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MNET.011.2100097
http://dx.doi.org/10.1109/TWC.2020.2988917
http://dx.doi.org/10.1007/s10723-022-09605-2
http://dx.doi.org/10.1109/TVT.2019.2907253
http://dx.doi.org/10.1109/TMC.2021.3077470
http://dx.doi.org/10.1109/TITS.2021.3116421
http://dx.doi.org/10.1109/LWC.2019.2934453
http://dx.doi.org/10.1109/JSYST.2022.3167901
http://dx.doi.org/10.1109/TWC.2021.3139932
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3234
http://cvxr.com/cvx
http://dx.doi.org/10.1109/JSAC.2018.2864424
http://dx.doi.org/10.1109/TVT.2018.2876804
http://dx.doi.org/10.1109/JSAC.2022.3227032
http://dx.doi.org/10.1109/COMST.2021.3066905
http://dx.doi.org/10.1109/JSAC.2020.3018809
http://dx.doi.org/10.1109/JIOT.2021.3056569
http://dx.doi.org/10.1109/JSAC.2022.3227083

	Introduction
	Related Works
	Space–Air–Ground Collaborative Edge Computing
	NOMA-Assisted Edge Computing

	System Model
	NOMA-Based Communication Model
	GD-HAP Drone Uplink Communication Model
	Consideration of SIC Decoding

	FDMA-Based Communication Model
	Task Offloading and Computation Model
	GD-HAP Drone Task Offloading Model
	HAP Drone Transmission and Computation Model
	LEO Satellite Computation Model

	Overall Delay and Energy Consumption

	Strategy Design and Problem Formulation
	Strategy Design
	Problem Formulation

	Algorithm Design for OP-.4
	Algorithm Design for P1-.4
	Algorithm Design for P2-.4
	Complexity Analysis

	Numerical Result
	Conclusions
	References

