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Abstract: Reconnaissance unmanned aerial vehicles are specifically designed to estimate parameters
and process intercepted signals for the purpose of identifying and locating radars. However, distin-
guishing quasi-simultaneous arrival signals (QSAS) has become increasingly challenging in complex
electromagnetic environments. In order to address the problem, a framework for self-supervised
deep representation learning is proposed. The framework consists of two phases: (1) pre-train an
autoencoder. For learning the unlabeled QSAS representation, the ConvNeXt V2 is trained to extract
features from masked time–frequency images and reconstruct the corresponding signal in both time
and frequency domains; (2) transfer the learned knowledge. For downstream tasks, encoder layers
are frozen, the linear layer is fine-tuned to classify QSAS under few-shot conditions. Experimental
results demonstrate that the proposed algorithm can achieve an average recognition accuracy of over
81% with the signal-to-noise ratio in the range of −16∼16 dB. Compared to existing CNN-based and
Transformer-based neural networks, the proposed algorithm shortens the time of testing by about
11× and improves accuracy by up to 21.95%.

Keywords: unmanned aerial vehicles; quasi-simultaneous arrival signal; self-supervised representation
learning; transfer learning

1. Introduction

Due to the flexible usage of drones or unmanned aerial vehicles (UAV), they are
generally not restricted by terrain or climate conditions, making them ideal for carrying
high-performance equipment for reconnaissance purposes [1–3]. Reconnaissance UAV
intercept signals transmitted by radars [4]. These signals are then amplified and processed
to identify their features. However, radars transmit signals with different modulations
within a short period of time, causing the UAV to intercept signals of pulse fronts to not
arrive exactly simultaneously. Identifying quasi-simultaneous arrival signsal (QSAS) poses
major challenges.

Most existing technologies in radar signal identification focus on intra-pulse mod-
ulation recognition. Currently, there are two main approaches for the identification of
intra-pulse modulation types: one is based on manual feature extraction combined with
machine learning (ML) methods, and the other is based on deep learning (DL) methods.
The first approach involves extracting handcrafted features from the raw radar data and
using ML, such as support vector machines (SVM), k-nearest neighbors (KNN) [5–7]. How-
ever, this approach heavily relies on the domain expertise and feature engineering, which
can be time-consuming and may not capture all the relevant information in the data. The
second approach automatically learns hierarchical representations from the raw radar
data by using DL, such as deep residual network (ResNet) and visual geometry group
(VGG) [8–10]. DL can effectively capture the complex patterns and variations in radar
signals, leading to improved performance compared to traditional ML.
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However, these method treat QSAS as a single pulse for signal sorting and recognition,
resulting in the loss of valuable multi-pulse information. Furthermore, the presence of mul-
tiple labels for QSAS further increases the difficulty of the labeling task, and obtaining data
labels is often difficult [11], making it challenging to obtain large amounts of labeled data
for supervised training [12]. Therefore, there is growing interest in using only unlabeled
signals for self-supervised learning (SSL) of QSAS.

SSL pre-training can overcome the limitations of supervised learning (SL) by en-
abling the learning of generic features representation from unlabeled data, which can be
transferred to downstream tasks with few-shot learning. Various SSL methods such as
self-distillation [13], contrast learning [14], and masked autoencoders (MAE) [15] have
even outperformed SL [16]. For instance, unlike Vision Transformers (ViT) [17], the power-
ful MAE [18] does not necessarily require a good recipe with strong regularization. The
new SSL called ConvNeXt V2 [19] is proposed in 2023, which has benefited from better
initialization. To leverage the advantages of convolutional neural networks (CNN) fully,
we extend the ConvNeXt V2 scheme to QSAS identification.

ConvNeXt V2 focuses on the neural network architecture and the training method, but
the quality of training data also plays a significant role in overall model performance [20–24].
While ConvNeXt V2 can achieve good results through tuning parameters, it’s important to
consider the impact of the dataset. In this case, we aim to apply a standard ConvNeXt V2
to QSAS identification with minimal modifications. To construct the dataset, we use a label
powerset [25–29] and short-time Fourier transform (STFT) [30–34] on multi-label radar
signals. However, QSAS is not simply a combination of different modulations and contains
a lot of noise. Therefore, it is crucial to explore how to train the network and perform
transfer learning (TL) [35,36] to adapt to different signal-to-noise ratios (SNR) [37,38] and
improve noise adaptation.

Figure 1 shows the conceptual representation of the SSL of QSAS identification, where
the first phase (the upper part of the figure) is SSL for pre-training and the second phase
(the lower part of the figure) is the few-shot of SL for fine-tuning based on the features
learned from pre-training. Since observing QSAS in the time domain is difficult, STFT
is applied to observe the existence of signal overlap in the time-frequency more clearly
(the left part of the figure). In order to learn features in both time and frequency domains,
instead of just predicting the amplitudes at different times, we randomly mask patches in
both time-frequency domains and then use a sparse convolution-based [39] ConvNeXt V2
to extract features from the unmasked patches in SSL. Then, we reconstruct the masked
signal using only a simple ConvNeXt V2 block that learns inter-contextual correlations in
time-frequency domains. The encoder of the pre-trained model is transferred for the QSAS
identification task. We add the linear layer after the encoder network and use a few-shot
learning to fine-tune the model for QSAS identification.

Unlabelled

Few-shot Modulation type

Reconstructed 

SignalTransfer 

Learning

Self-Supervised 

Learning

Supervised 

Learning

Encoder Decoder

ConvNeXt

STFT

radar receiver

Figure 1. A conceptual representation of the SSL of QSAS identification.

Our main contributions can be summarized as follows:
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1. We adopt an autoencoder called ConvNeXt V2 to identify QSAS in two-dimensional
time-frequency images. The overlapping QSAS in time domain can be distinguished
effectively by STFT which significantly improves the accuracy of the model. This
model consists of a complex encoder and a simple decoder. To improve its perfor-
mance, we pre-train it in an unsupervised manner as a generative model on massive
time-frequency images with a 60% mask ratio. Then, we fine-tune the encoder for
few-shot QSAS identification performance.

2. We conduct thorough experiments on our self-built QSAS dataset, which includes
six kinds of combinations of continuous wave (CW), linear frequency modulation
(LFM) and binary phase shift keying (BPSK). These combinations obey the rules that
the arriving time delay is within one pulse width (PW), and the frequency is close.
We perform a very detailed analysis of various parameters and conduct ablation
experiments on different aspects such as spatial masking strategy, decoder setting,
relationship between patchsize and mask ratio and the number of pre-training epochs.
The simulation results demonstrate that our method achieves high identification
accuracy and exhibits more robustness in a low SNR environment.

The structure of this paper is as follows: In Section 2, we analyze the model and
formula representation of the QSAS dataset. In Section 3, we introduce the architecture of
the SSL model. In Section 4, we analyze the results of the experiments. In Section 5, we
conclude our work.

2. QSAS Dataset
2.1. Signal Model

We assume that the raw radar signal received by the reconnaissance receiver on UAV
consists of two parts: signal and noise [40], and the formula is expressed as

x(t) = s(t) + n(t), (1)

where s(t) is the received effective signal, commonly uses non-modulation of CW(t), or
LFM(t) [41], or BPSK(t) [42], n(t) is multi-environmental noise [43].

To be specific, the CW form is relatively simple, using a single carrier frequency
without intra-pulse modulation. The signal model is as follows:

CW(t) = A sin(2π fct), (2)

where A is signal amplitude, fc is intermediate frequency (IF), t = 0 : 1
fs

: PW − 1
fs

, where
fs is sampling frequency.

The frequency of the LFM signal changes linearly with time, and the signal model is

LFM(t) = A sin
[

2π

(
fc −

B
2

)
t + kπt2

]
, (3)

where k = B
PW is the frequency modulation slope of LFM, and B is the signal bandwidth,

namely the frequency variation range.
The phase of BPSK changes with the reversal of the encoding mode, and the signal

model is
BPSK(t) = A sin(2π fct + φm(t)), φm(t) ∈ {0, π}, (4)

where φm(t) is the 13-bit Barker code that determines the phase value to be either 0 or π.
We assume that the white noise signal and colored noise can be found in various

electromagnetic environments and conform to Gaussian distribution of N
(
µ, σ2). The

power spectral density (PSD) of white noise is constant across an infinite frequency range
of −∞∼+∞ [44], so the probability density function is

p(t) =
1√
2πσ

exp
[
− (t− µ)2

2σ2

]
. (5)
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The amplitude of colored noise is correlated at each moment [45], so the PSD is the
Fourier transform of the autocorrelation function R(p):

P(ω) = ∑
p∈Z

R(p) exp(−jωp). (6)

The SNR is the ratio of the power of the signal σ2
s to the power of the noise σ2

n :

SNR = 10 · lg
(

σ2
s /σ2

n

)
. (7)

UAVs usually regard the raw signal as a single modulation for subsequent processing,
e.g., s(t) = {CW(t), LFM(t), BPSK(t)}, but the received signal often has the condition of
various modulations, e.g., s(t) = {CW(t) + LFM(t + τ), CW(t) + BPSK(t + τ), LFM(t) +
BPSK(t + τ)}, where τ represents the delay of signal arrival time.

Definition of QSAS: In the electromagnetic environment, numerous radars transmit
massive signals. In the same PW, there are various signals that arrival with a delay of
τ(τ ≤ PW), and have similar frequency. We call such signals with overlapping information
in time-frequency domains QSAS. The presence of QSAS makes it difficult to carry out
accurate signal sorting, signal recognition and other subsequent work.

It is difficult for raw signals to directly observe the aliasing state in data. In such cases,
time-frequency transform can be employed to estimate the joint distribution of signal in
time-frequency domains. This representation helps to reveal the relationship between the
time domain and frequency domain [46]. One commonly used time-frequency transform is
STFT. STFT adds a short-time sliding window to the signal processing process to perform
Fourier transform, which allows for the reflection of time-frequency information of signals.
Moreover, the time-frequency visualization can be easily realized by the spectrogram
function in Matlab. Therefore, the STFT is used to calculate the time-frequency spectrum:

STFT(t, f ) =
∫ +∞

−∞
s(τ)h∗(τ − t) exp(−j2π f τ)dτ, (8)

where s(τ) represents the one-dimensional time domain signal, t and f represent the time
and the frequency, respectively. h∗(τ − t) represents the window function.

2.2. Label Powerset

The construction of the QSAS dataset involves three main steps: original signal
simulation, data augmentation and data annotation. The original signal is simulated
according to the signal model described in the previous subsection, and we use simple
augmentation methods such as image scaling. Data annotation is the key to the difference
between QSAS and intra-pulse signals of a single modulation.

One of the challenges with QSAS is that it contains various modulations, and their
labels are parallel without any connection between them. To address this, the multi-label
classification (MLC) problem is transformed into a single label classification (SLC) problem
using the Label Powerset method to facilitate the use of the subsequent model. This method
treats each label combination as a unique category and converts a multi-label dataset into a
single-label multi-category dataset.

As shown in Table 1, if we have six samples named CWBPSK, CWLFM, dBPSK, dCW,
dLFM and LFMBPSK, and each sample has three labels. The Label Powerset method
assigns new labels to each sample according to the original multi-label value of the sample.
This form a new label set {0, 1, 2, 3, 4, 5}. Then, it only needs to train a SLC to predict the
label combination of each instance. Moreover, this method is extensible and can handle any
number of labels.
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Table 1. Multi-label problem transformation method.

Samples Attribute
Multi-Label Set

New Label
CW LFM BPSK

1 CWBPSK 1 0 1 0
2 CWLFM 1 1 0 1
3 dBPSK 0 0 1 2
4 dCW 1 0 0 3
5 dLFM 0 1 0 4
6 LFMBPSK 0 1 1 5

3. The Method of QSAS Identification

We begin with an overview of the network structure during the pre-training phase.
We explain how the network enables SSL and the advantages it provides. The details
required to use the model in downstream tasks are then detailed. These include the
network structure and loss function.

3.1. Pre-Training

Definition of Self-Supervised Representation Learning: Automatically learn fea-
tures with a recognition ability applicable to multiple downstream tasks under the absence
of signal labels.

In the pre-training phase, the state of the art MAE is used to learn the time-frequency
information representation of QSAS as shown in Figure 2. MAE covers patches of the
input image at random and reconstructs missing pixels for learning a low-dimensional
representation of data. After the STFT, we send time-frequency images to the autoencoder.
The design rules of the autoencoder are as follows:

1. Asymmetrical encoder–decoder network architecture is used. The encoder only op-
erates on visible patches, and the potential feature representation of visible patches
is obtained through convolution operation, namely the blue block in the figure. The
lightweight decoder can refactor signals in time-frequency domains based on un-
derlying features and mask tokens (orange blocks) by combining time-frequency
information.

2. High mask ratio increases the difficulty and improves the generalization ability of
model learning. When the mask ratio is high, the model needs to learn from limited
information and reconstruct the original data, which can force the model to learn more
robust feature representation, thus improving the generalization ability of the model.
In addition, a high mask ratio can reduce the model’s dependence on local details,
thus improving the model’s ability to understand the overall structure. However, a
too high mask ratio will also lead to information loss and underfitting of the model,
so it is necessary to make reasonable adjustment in practice.

The details of the autoencoder network are shown in the Figure 3, where k represents
the size of the convolution kernel, s represents the step length, namely the sampling interval,
and p represents the padding. The small yellow block represents a ConvNeXt V2 block, as
detailed on the right. The small blue block represents the downsample, as detailed on the
right. The data conversion process is as follows: firstly, the whole time-frequency graph
is downsampled and divided into multiple patches, and the input image is compressed
into a low-dimensional representation. Then, we add a mask to randomly patches of the
image area, and a dense tensor is converted into a sparse tensor. After feature extraction
by multiple sparse convolution layers of the encoder, the sparse tensor is converted into a
dense tensor. Then we restore the masked area by the decoder.
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Figure 2. Simple illustration of autoencoder network model.

Wherein, the generating process of a mask is as follows: Firstly, a mask tensor is
defined. Its shape is the same as the input image. Its initial value is all 1. Then, we generate
a random set of rectangles representing the areas to be masked. Then, we set the value of
the corresponding rectangular region in the mask tensor to 0. In order to accommodate the
convolution operation, we upsample the input mask, enlarge to the size of the last layer,
and add a dimension to mask by the unsqueeze function, so its type is the same as the
input data. Then, the mask tensor is used as a multiplication factor to multiply the input
patches to obtain the masked image.
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Figure 3. Autoencoder network structure diagram.

3.1.1. Encoder

The encoder, shown in the light green background in the Figure 3, compose data
downsampling, to sparse, complex CNN layers and dense. Data downsampling is to use
the convolution layer with a convolution kernel size of 4 and step length of 4 to segment
the image into patches. The details of the complex network layer are in the next subsection.
The uniqueness of the encoder lies in the sparse and dense. We treat the mask input as a set
of sparse patches, namely a two-dimensional sparse pixel array, and use sparse convolution
to process the visible part.

Because of the disorder of sparse data, voxelizing the points and applying convolution
to three-dimensional grids is a natural solution [47]. Sparse convolution is a practical
substitution for vanilla 3D convolution, and skips the non-active regions that only operate
when the center of the convolutional kernel covers active voxels. Active voxels are stored
as sparse tensors for fixed convolution operations. Sparse input data are transformed into
a sparse matrix, which only stores non-zero positions (effective sites) and corresponding
weight values. Submanifold sparse convolution (SSC) is used to reduce the influence of
sparsity. SSC is calculated only when the center of the convolution kernel slides through
the activate sites of the sparse matrix. The size and shape of the convolution kernel can be
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adjusted adaptively, and the same sparsity degree can be maintained in the whole network,
which is suitable for deep CNN.

The traditional convolution operation is to convolve every site of the input tensor,
which leads to a lot of redundant computation. Sparse convolution only convolves non-zero
sites in the input tensor, so a large number of multiplication operations in the convolution
operation can be turned to 0. The SSC reduces the amount of computation and improves
the efficiency of training and testing under the condition of making full use of the input
information.

3.1.2. Decoder

The decoder is a single ConvNext V2 block, shown in the blue background in the
Figure 3, that uses a full CNN to generate mask tokens. The decoder restores the low-
dimensional representation of the time-frequency image obtained by the encoder to the
original image. With a lightweight decoder, we reconstruct the original image based on
underlying features and mask tokens. Specifically, the decoder receives underlying features
output by the encoder and mask tokens, restores the underlying feature representation
to the original image through deconvolution operation, and fills the mask in the original
image according to the mask tokens.

Mean squad error (MSE ) is the reconstructed loss function, and the error was calcu-
lated only on the mask part. The goal of the network is to minimize the reconstruction
error. We try to reconstruct the sample as close to the original sample as possible, so that
the network can learn the effective representation of the original image.

MSE =
∑(pred− target)2

3p2 only if mask = 1, (9)

where pred represents the predicted value, and target represents the true value. For each
sample, we calculate (pred− target)2 and sum up the squared differences for all samples.
Then, we divide this sum by 3p2, where 3 represents the number of channels per pixel, and
p represents the resolution of the patch, namely patch size, and p2 represents the number
of pixels per channel.

3.2. Fine-Tuning

Transfer learning: Pre-train the existing large-scale dataset, then transfer the learned
knowledge to the classification task of few-shot, and fine-tune parts of layers to improve
the classification accuracy.

After pre-training the encoder map, input the data to the low-dimensional represen-
tation, which can be used as the feature representation of the data for the subsequent
fine-tuning. During the fine-tuning, the weight is converted to the standard form, and the
dense layer does not need special treatment. As shown in the Figure 4, we freeze the first
few layers, that is, transfer the corresponding structural parameters of the encoder to the
fine-tuning network, then add layer normalization and linear layer and train them.
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Figure 4. Fine-tuning phase network structure diagram.

Inspired by the ConvNeXt V2 neural network structure, we make full use of the advan-
tages of the local connection and weight sharing of CNN to obtain excellent performance
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of QSAS identification. ConvNeXt [14] trains the ResNet-50 in the same way as the Trans-
former [48] training method. On this basis, ConvNeXt experiments with Macro design,
ResNeXt, Inverted bottleneck, Large kernel size, and Various layer-wise Micro. ConvNeXt
V2 modifies the supervised ConvNeXt network into a SSL network by referring to MAE, but
all the networks are proposed and tested in ImageNet and other datasets [49,50]. The radar
signal is very different from the open dataset. Therefore, we combine the characteristics
of the radar signal to further follow up the network parameters. The specific structure of
the ConvNeXt V2 block (small yellow part) and downsampling block (small blue part) in
the network is shown in Figure 3. The specific design process and important details of the
whole network are as follows.

First, the network downsamples the image through a convolution layer with a convo-
lution kernel size of 4× 4 and a step distance of 4, and the height and width of the image
are reduced to 1

4 of the original. Then, it successively passes Stage 1, Stage 2, Stage 3 and
Stage 4. Each stage is composed of a series of ConvNeXt V2 blocks. We will talk about the
structure of the ConvNeXt V2 block. If the height, width and channel of the input feature
map are h, w and dim, through the depthwise convolution with kernel size of 7× 7, step
size of 1, padding of 3 and through a LayerNorm, then the output size is still h× w× dim.
Then, through a convolution layer, which has a kernel size of 1× 1 and activation function
of Gaussian error linear units (GELU). Then, the height and width remain the same, and
dim increases by 4 times. Then, through a convolution layer, which has a kernel size of
1× 1 and the DropPath layer, the output size reduces to h× w× dim. Then, add the input
as output. Linear, as a fully connected layer, maps input features to different class labels.

The network follows the structure of VGG [51], which divides the backbone network
into four different stages. The number of blocks in each stage is (2, 2, 6, 2), and the input
channel is (20, 20, 40, 80). So the stage ratio is 1:1:3:1, consistent with Swin-transformer [52].

Depthwise convolution is a special case of group convolution in ResNeXt. The con-
volution kernel’s channel is 1 and only convolves with a single channel of the input. The
number of convolution kernels is the same as the channel of the input and the channel of
the output, as shown in Figure 5a. So the channel of the feature matrix does not change,
and a better balance between FLOPs and accuracy can be achieved.

3 channel Input 3 Filters 3 Maps

k7, dim→dim

k1, dim→4×dim

k1, 4×dim→dim

(a)  (b)  

3 channel Input 3 Filters 3 Maps

k7, dim→dim

k1, dim→4×dim

k1, 4×dim→dim

(a)  (b)  

Figure 5. The depthwise convolution and the inverse bottleneck layer. (a) Depthwise convolution;
(b) Inverse bottleneck.

The inverse bottleneck layer with two large, middle and small ends can effectively
avoid information loss, as shown in the Figure 5b. In addition, the depthwise convolution
is moved up and the convolution kernel size is changed to 7× 7, which is consistent with
the window size in Swin-transformer.

We use three regularization techniques: LayerNorm (LN), Global Response Normal-
ization (GRN) and DropPath. The details are as follows. We only add one GELU activation
function between two 1× 1 convolutions.

1. LN is added only before the first 1× 1 convolution. LN normalizes each dimension of
each sample, turns the mean to 0, and turns the variance to 1. It is helpful to solve
the problem of gradient vanishing and gradient explosion in neural networks and
improve the generalization performance of the model.
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2. GRN normalizes the features of different channels, makes features comparable, and
then enhances the feature competition among channels. GRN can avoid overfitting
and improve the generalization performance of the model.

Xi = γ× Xi ×
‖Xi‖

∑j=1,...,c
∥∥Xj

∥∥ + β + Xi, (10)

where, Xi denotes the input data, ‖Xi‖ denotes the L2 norm for the ith channel, C
denotes the number of channels, and γ and β are two learnable parameters.

3. DropPath randomly selects some network layers for each training sample in the
process of forward propagation and sets their output to 0. Some paths of the network
are deleted randomly, so different paths will be deleted for each training sample.
Another feature of DropPath is that it operates on a network hierarchy. Specifically,
DropPath works on the deep structure of the network. The deep structure is often the
bottleneck of the network and tends to lead to overfitting. Therefore, DropPath can
help regularize the network on the deep structure, thus reducing overfitting.

The residual connection structure can effectively avoid the problem of gradient disap-
pearing and gradient explosion, so that the network can learn features in deeper layers.

Using a separate downsample layer, a 2× 2 convolution with step size 2 is inserted
between different stages, and a LN is added before and after downsampling.

The loss function selects the cross entropy loss function.

4. Experiments

In this section, we assess the performance of the proposed approach using a specific
simulation and computation environment. The details of this environment are provided in
Table 2.

Table 2. The simulation and computation environment setting.

Configuration Type Configuration Instruction

CPU 12th Gen Intel(R) Core(TM) i9-12900K
3.20 GHz

RAM 128 GB
GPU NVIDIA GeForce RTX3090
OS Ubuntu 20.04

programming language Python
model framework Pytorch

4.1. Datasets and Settings

To verify the performance of the proposed method, we construct a dataset of QSAS.
We use three typical radars modulations: CW, LFM and BPSK. For each modulation, we set
corresponding parameters, as shown in the Table 3:

Table 3. The parameter of the dataset.

Data Generation Parameter Parameter Size Setting

fs (MHz) 80
noise white/colored

SNR (dB) −16 dB∼16 dB
A 0.5/0.75/1

fc (MHz) 25/30/35
PW (µs) 10/15/20/25
B (MHz) 3.75–6.25

time delay (µs) 0/2.5/5
time-frequency graph resolution 224
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Each modulation generates 108 samples according to the above parameter range, and
a total of 34,668 samples are combined in pairs. Overall, 5% of the samples are labeled for
few-shot training and 20% are used for testing. To facilitate subsequent data reading, data
are stored in a folder by label.

The super parameter settings of the pre-training and fine-tuning phases is shown in
Table 4.

Table 4. The parameter settings of pre-training and fine-tuning.

Parameter Pre-Training Fine-Tuning

model ConvNeXt V2 Atto ConvNeXt V2 Atto
weight init trunc. normal (0.2) -
optimizer AdamW AdamW

base learning rate 1.5 × 10−4 2 × 10−4

weight decay 0.05 0.3
optimizer momentum β1, β2 = 0.9, 0.95 β1, β2 = 0.9, 0.999

batch size 196 32
learning rate schedule cosine decay cosine decay

warmup epochs 40 0
warmup schedule linear -

training epochs 800 250
augmentation RandomResizedCrop RandAug (9, 0.5)

drop path - 0.1
head init - 0.001

4.2. Network Evaluation

During the pre-training phase, we visualize six types of data processing processes.
In Figure 6, the left side is the original image, the middle is the input mask image, and
the right side is the output reconstructed image. It can be observed that the model is
capable of reconstructing the signal even in the presence of significant lost information in
the time-frequency domain. This is achieved by utilizing patches from the preceding and
succeeding positions. Furthermore, in certain cases where only a single signal is visible, the
model can predict the presence of multiple signals.

(a)  CWBPSK (b)  dCW

(c)  CWLFM (d)  dLFM

(e)  LFMBPSK (f)  dBPSK

Figure 6. (a–f) Visualization of data changes in the pre-training phase.

In the fine-tuning phase, we use the recognition accuracy to demonstrate the effective-
ness of the model during the test phase:

Accuracy =
True

True + False
, (11)
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where True indicates all results that are predicted correctly, and False indicates all results
that are missed or misreported.

Figure 7 displays the classification results of non-noise signals. It is notable that the
results become stable after 80 epochs. The model’s accuracy steadily improves after several
epochs, and there is no occurrence of overfitting.

Figure 7. Non-noise signal train loss and test accuracy change with epochs.

On the QSAS dataset, we conduct experiments using two settings, namely in-domain
pre-training (i.e., pre-training and fine-tuning on the same dataset) and cross-domain
pre-training (i.e., pre-training and fine-tuning on different dataset). Table 5 shows that
for the test with SNR of 0 dB, the effect of using the non-noise pre-training model for
fine-tuning is a little better than that of using 0 dB signal for the pre-training model, which
also verifies what the author mentioned in BERT [53], that using pure data for pre-training
has better performance to fine-tune data with noise. Therefore, a large number of non-noise
signals are used for pre-training, and −16 dB∼16 dB, 4 dB as the step signals are used for
fine-tuning training, and signals with different SNR are tested.

Table 5. Pre-training dataset selection experiment. Train ↓ shows the selected train data; Test →
shows the selected test data.

Train ↓ �Test → Non-Noise SNR = 0 dB

Non-noise 98.12 87.92
SNR = 0 dB 96.39 82.52

Table 6 shows the average recognition accuracy of the SNR from −16 dB∼16 dB with
different noise, Acc1 shows the testing accuracy in the presence of white noise, while Acc2
shows the testing accuracy in the presence of colored noise. Comparing the results under
different noise conditions, we find that the accuracy decreases when the noise is enhanced.
However, there is no significant difference in the model’s recognition performance be-
tween the two types of noise, indicating that the model has a strong generalization ability.
Subsequent experiments will be conducted based on white noise. From Acc1, we can
see that the average recognition accuracy of the network is above 81%. When it is above
0 dB, the recognition accuracy can reach more than 90%, and when it is above −16 dB, the
recognition accuracy can reach more than 57%. It can be seen that our model is suitable for
low SNR QSAS identification.
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Table 6. Average accuracy with different SNR.

SNR (dB) Acc1 Acc2 SNR (dB) Acc1 Acc2

16 97.92 96.77 −4 74.30 70.09
12 97.85 96.56 −8 64.21 60.03
8 97.44 94.98 −12 60.81 56.85
4 94.75 90.81 −16 57.02 55.24
0 87.92 82.51 mean 81.36 80.10

In the form of confusion matrix, we summarize and visualize the dataset labels accord-
ing to two criteria, the real label and the prediction label recorded in the test experiment
results, where the rows in the matrix represent the real value and the columns in the
matrix represent the predicted value as shown in Figure 8. We observe that the scheme can
accurately separate the six signals under the condition of high SNR. Under the condition of
low SNR, it can also achieve good results for aliasing related to CW and LFM. However,
for samples involving BPSK, there are some misjudgments, which may be due to the single
frequency of BPSK. Therefore, it is easy to be recognized as CW, and there are strong
frequency components around the IF of the BPSK. When the noise is too strong, it is easy to
be confused as LFM with a low frequency modulation slope.

(a)  SNR=16dB (b)  SNR=12dB (c)  SNR=8dB

(d)  SNR=4dB (e)  SNR=0dB (f)  SNR=  4dB

(g)  SNR=  8dB (h)  SNR=  12dB (i)  SNR=  16dB

Figure 8. (a–i) Confusion matrix under different SNR. The darker the color, the greater the value.
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4.3. Ablation Study

Hyperparameters refer to the parameters that need to be set manually during model
training. In order to prove the rationality of each module of our method, we conduct
ablation experiments on some key parameters.

4.3.1. Spatial Masking Strategy

We study different mask strategies and mask ratio ablation. According to MAE’s
proposal, we study a larger mask ratio, starting from a mask ratio of 50%, gradually
increasing the masking ratio and adopting the random mask strategy proposed by MAE.
The model performance is best when 60% of the area is masked, as shown in Figure 9.

Although the horizontal and vertical input images, respectively, represent the time-
frequency domain information of the signal, VideoMAE [54] has studied that the effect of
masking for different domains is not ideal in autoencoder pre-training.

Using separate time-frequency domain masks will increase the computational com-
plexity of the algorithm. Separate time-frequency domain masks can also cause unique
identity problems. Since the time-frequency domain masks are processed separately, it is
possible for the encoder to limit the global features by combining different time domain or
frequency domain masks, thus reducing the generalization of the algorithm. The full mask
method can consider features of time domain and frequency domain at the same time, so
as to retain the information of the RE signal better. The full mask will dynamically adjust
the radar signal according to the time-frequency domain features, so as to better retain the
information of the signal. Therefore, full mask is a more effective radar signal processing
method.

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
Mask ratio

95.5

96.0

96.5

97.0

97.5

98.0

Ac
c 

(%
)

Figure 9. Mask strategy ablation experiment.

4.3.2. Decoder Setting

We conducted ablation experiments that constitute different decoder blocks with
different numbers and dimensions, as shown in the Table 7. Experimental results show
that using a simple block has the best performance. Increasing the number of decoders
or increasing the depth introduces more computing costs, but does not result in better
improvements.

Table 7. Decoder ablation experiment.

Depth Dim Acc

4 128 97.03
1 512 97.21
1 256 97.04
1 128 98.12
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The above two ablation experiments also demonstrate the validity of high mask ratio
and asymmetric encoder decoder designs.

4.3.3. Relationship Between Patch Size and Mask Ratio

Table 8 shows ablation experiments with different patch sizes. When the patch size
is 32, we divide the input picture with a resolution of 224× 224 into 7× 7 patches; when
the patch size is 16, we divide the input picture with a resolution of 224× 224 into 14× 14
patches. We observe that under the condition of 60% mask ratio, the patch size of 32 has
better recognition accuracy. We consider that it might be difficult for the model to predict
fine-grained signal details. However, when the mask ratio was increased, the recognition
accuracy on smaller patches is quite good, but this increased the training time of the model.
We chose the patch size of 32.

Table 8. Patch size ablation experiment.

Patch Size Mask Ratio Acc Time (s)

16 0.6 96.76 11
32 0.6 98.12 3
16 0.75 96.90 11

4.3.4. Number of Pre-Training Epochs

Table 9 shows ablation experiments on the influence of the number of pre-training
epochs on the model results. When the autoencoder model is continuously iterated, the
reduction of reconstruction loss was no longer obvious after reaching a certain number of
epochs. However, we find that the internal features could still be learned after multiple
epochs, thus improving the fine-tuning accuracy.

Table 9. Epochs ablation experiment.

Epoch Acc

450 96.38
800 98.12

4.4. Comparison

In addition, we compare the results with ConvNeXt, MAE, ViT, ResNet, VGG, SVM
and KNN. The relationship and difference between ConvNeXt V2 and the previous three
models are listed in Table 10. ResNet and VGG are widely recognized as universal DL
models in the field of signal identification, while SVM and KNN are traditional methods.

Table 10. The relationship and difference between ConvNeXt V2 and ConvNeXt, MAE, ViT.

Study Self-Supervised Supervised

Conv ConvNeXt V2 ConvNeXt
Transformer MAE ViT

MAE pre-trains the data for 800 epochs and then fine-tunes it for 250 epochs. Con-
vNeXt and ViT train for 250 epochs directly on 5% of the data. The recognition accuracy
of the four models under different SNR conditions is shown in Figure 10. The red bars
represent ViT recognition results, orange bars represent MAE recognition results, green bars
represent ConvNeXt recognition results, and blue bars represent ConvNeXt V2 recognition
results. It can be observed that low SNR has a significant influence on model accuracy.
However, the accuracy of ConvNeXt V2 models described in this paper is higher than other
models, which confirms the applicability of ConvNeXt V2 for QSAS identification.
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Figure 10. Average accuracy of contrast algorithm under different SNR.

The input for SVM and KNN is a 1 × 50,176 array obtained by flattening a 224 × 224
spectrogram. ResNet and VGG train for 250 epochs on 5% of the data. The average
recognition accuracy and test time of the eight models are shown in Table 11. The average
recognition accuracy refers to the accuracy averaged over the SNR range of −16 dB∼16 dB
with a step size of 4 dB. The test time refers to the time taken to predict the results of
6930 time-frequency graphs using only one NVIDIA GeForce RTX3090. It can be seen
that the traditional ML methods of SVM and KNN have the lowest accuracy, and the
prediction speed has no comparative significance. Our proposed method achieves the
highest recognition accuracy and the lowest time consumption. In terms of recognition
accuracy, the effect of convolution is much greater than that of Transformer, indicating
that different network models should be selected for different datasets. However, the time
consumption of SSL convolution is much lower than that of SL convolution. A single
graphics card can complete the recognition of 10,000-level pulses within 5 s. Moreover, the
CNN based on the ConvNeXt has higher performance than ResNet and VGG.

Table 11. The average accuracy and test time of the compared algorithms.

Method Acc Time (s) Method Acc Time (s)

SVM 58.56 170 ViT 74.95 13
KNN 35.94 260 MAE 59.41 9

ResNet 75.56 40 ConvNeXt 80.67 33
VGG 74.51 56 ConvNeXt V2 81.36 3

In general, the proposed methods demonstrate excellent performance in different
modulations of radars, and can be applied to practical radar signal processing.

5. Conclusions

In this paper, ConvNeXt V2 was adopted to identify QSAS in two-dimensional time-
frequency images. The motivation was to address the challenge raised by the fine-grained
identification of QSAS, which was ubiquitous in the field of signal recognition. Moreover,
the intercepted signal by UAV was simulated by overlapping information in time-frequency
domains. The training dataset for the model was designed by multiple parameters in
different noise environments, and the label powerset was used for the data annotation
task. Most importantly, the ablation study evaluated the impact of each parameter on
the performance for identifying QSAS. Compared with ConvNeXt, MAE, ViT, ResNet,
VGG, SVM and KNN, the classification accuracy of few-shot can be significantly improved
with the usage of the proposed pre-train and fine-tune phases, and the time consumption
was lower via SSL. The generalization was strong in different noise. Experimental results
showed that the proposed algorithm was superior to all other models in QSAS identification.
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Future work can study the interpretability of neural networks for the essential features of
radars.
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