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Abstract: The application of 3D UAV path planning algorithms in smart cities and smart buildings
can improve logistics efficiency, enhance emergency response capabilities as well as provide services
such as indoor navigation, thus bringing more convenience and safety to people’s lives and work.
The main idea of the 3D UAV path planning problem is how to plan to get an optimal flight path
while ensuring that the UAV does not collide with obstacles during flight. This paper transforms the
3D UAV path planning problem into a multi-constrained optimization problem by formulating the
path length cost function, the safety cost function, the flight altitude cost function and the smoothness
cost function. This paper encodes each feasible flight path as a set of vectors consisting of magnitude,
elevation and azimuth angles and searches for the optimal flight path in the configuration space by
means of a metaheuristic algorithm. Subsequently, this paper proposes an improved tuna swarm
optimization algorithm based on a sigmoid nonlinear weighting strategy, multi-subgroup Gaussian
mutation operator and elite individual genetic strategy, called SGGTSO. Finally, the SGGTSO algo-
rithm is compared with some other classical and novel metaheuristics in a 3D UAV path planning
problem with nine different terrain scenarios and in the CEC2017 test function set. The comparison
results show that the flight path planned by the SGGTSO algorithm significantly outperforms other
comparison algorithms in nine different terrain scenarios, and the optimization performance of
SGGTSO outperforms other comparison algorithms in 24 CEC2017 test functions.

Keywords: 3D UAV path planning; tuna swarm optimization algorithm; multi-subgroup Gaussian
mutation operator; elite individual genetic strategy; CEC2017; smart city

1. Introduction

Unmanned aerial vehicles (UAVs) have attracted a lot of attention in recent years
because of their small size, flexibility and adaptability to the environment. With the
rapid development of the Internet of Things and computer technology, UAVs have been
widely used in important fields such as communication [1], tracking [2], environmental
monitoring [3], agricultural management [4], and disaster monitoring [5]. The 3D UAV
path planning algorithm has important values and applications in smart cities and smart
buildings, for example, UAVs can be applied for logistics distribution in smart cities, UAVs
can be used for rapid response and rescue in disaster events or emergencies in cities and
UAVs can provide indoor navigation services in large smart buildings. High-performance
3D UAV path planning algorithms can help UAVs plan the shortest distance and safest
path, thus improving logistics efficiency, achieving rapid rescue and providing real-time
guidance. When a UAV executes a mission independently, the environment it faces does
not provide good feedback to the controller, so it is indispensable for the UAV to plan its
own path to complete the mission successfully. Autonomous UAV path planning means
that after determining the start and end points of the path, the UAV not only needs to find
the shortest distance path, but also take into account altitude factors, fuel costs and safety
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factors, etc., and optimize the integrated cost function in compliance with the dynamical
constraints [6].

In recent years, researchers have been conducting more and more useful explorations
on the path planning problems for UAVs [7–15]. UAV path planning is a complex and
multi-constrained optimization problem that requires comprehensive consideration of
flight path length, fuel consumption, obstacle avoidance, and robustness. Li et al. proposed
a flipping ambiguity avoidance 3D localization method for multiple UAVs based on an
improved Gray Wolf Optimization algorithm [16]. Majeed et al. proposed an algorithm for
UAV navigation planning in urban environments, which delves into how UAVs plan the
shortest paths in a multi-obstacle environment and explores the effect of different obstacle
sizes and shapes on path planning [17]. Zhou et al. proposed an AoI-based trajectory
planning algorithm combined with deep reinforcement learning in the case of unknown
ground environment sampling [18]. Wang et al. developed a UAV path planning algorithm
based on an improved mayfly algorithm, which takes into account constraints such as path
distance and safety requirements, enabling the UAV to autonomously plan the best path
that meets the constraints [19].

With the increasing iteration of science and technology, researchers have advanced
the research on autonomous path planning for UAVs. Up to now, scholars have pioneered
several mainstream path planning algorithms to assist UAVs in performing their tasks, such
as deep reinforcement learning [20], artificial potential fields [21], random trees [22], linear
programming algorithms [23] and A* algorithms [24], among others. Although it has been
argued in much literature that these methods are effective, some of these methods have
high complexity and tend to fall into locally optimal paths when solving path planning
problems in complex multi-constrained path environments.

Several factors such as flight distance cost, flight altitude, safety cost and UAV climbing
cost need to be considered when optimizing the 3D UAV path planning problem, so the 3D
path selection problem for UAVs proves to be an NP-hard problem. For the optimization of
NP-hard problems, metaheuristic algorithms are a decent choice. Over the past 30 years,
a number of performance-efficient metaheuristics have been proposed by experts in the
field. Up to now, some classical and novel metaheuristics are as follows: the Particle Swarm
Optimization (PSO) [25] proposed by the foraging behavior of bird flocks, the Gray Wolf
Optimization (GWO) [26] based on the hunting behavior of gray wolf swarm, the Beluga
Whale Optimization Algorithm [27] proposed by imitating the foraging behavior of beluga
whale swarm, the Dwarf Mongoose Optimization (DMO) [28] based on the living habits of
dwarf mongooses and the Artificial Hummingbird Algorithm (AHA) [29] simulating the
special flight behavior of hummingbirds in nature. In addition, some metaheuristics are
evolutionary law-based algorithms, human-based algorithms and physical and chemical
law-based algorithms such as Differential Evolution (DE) [30], Teaching–Learning-Based
Optimization (TLBO) [31] and Multi-Verse Optimizer (MVO) [32].

By observing the living and hunting behavior of tuna swarms, Xie et al. proposed
a novel metaheuristic algorithm called Tuna Swarm Optimization algorithm (TSO) [33]
in 2021. Tuna are extremely fast predators in the ocean, and they usually use population
cooperation to catch their prey. Biologists have concluded that tuna swarms have two
main aggressive behaviors: spiral foraging strategy and parabolic foraging strategy. TSO
simulates the above tuna population behavior and then conducts the global optimization
search process of the algorithm.

TSO is widely applied due to the advantages of it being easy to understand and few
preset parameters. The TSO algorithm is high-performance, but there is still some potential
for improvement. In this paper, based on the idea of multi-subpopulation symbiosis, the
tuna swarm in the algorithm is divided into two categories: elite swarm and ordinary
swarm. The elite swarm is improved using the elite Gaussian mutation operator, and the
ordinary populations are modified using the non-uniform Gaussian mutation operator. In
addition, this paper combines the sigmoid nonlinear weights to improve the linear param-
eters in TSO, and finally, further adjustments are made in the improved TSO algorithm
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using an elite individual genetic strategy. Based on the above strategies, this paper pro-
poses a sigmoid nonlinear parameter Gaussian mutation elite individual genetic strategy
tuna swarm optimization algorithm, called SGGTSO. A detailed description of SGGTSO
is shown in Chapter 4 of this paper. Up to now, many metaheuristic algorithms have
been shown to have significant thinking effects on the UAV 2-dimensional path planning
problem; however, no researcher has used TSO-related algorithms for UAV path selection;
therefore, this paper applies SGGTSO in 3D UAV path planning problem.

The contributions of this paper can be summarized as follows:

• This paper proposes a sigmoid nonlinear parameter Gaussian mutation elite individ-
ual genetic strategy tuna swarm optimization algorithm (SGGTSO). The proposed
SGGTSO significantly improves the global optimization capability of TSO as well as
the convergence speed and accuracy.

• This paper develops a 3D UAV path planning method based on the SGGTSO algorithm,
which has excellent global search capability and can plan a flight path closer to the
global optimum in more complex terrain environments.

• The remainder of this paper is structured as follows: Section 2 details the spherical
vector-based path planning method and presents the fitness cost function used in
subsequent experiments. Section 3 describes the basic TSO algorithm. Section 4
details the three improved operators and SGGTSO. Section 5 designs a comparative
experiment of SGGTSO in the CEC2017 function set. Section 6 applies SGGTSO
to nine different terrain scenarios for UAV path planning. Section 7 discusses the
achievements of SGGTSO in the experiments in this paper, concludes the shortcomings
of SGGTSO and outlooks future research directions of the algorithm. Section 8 provides
a comprehensive conclusion of the paper.

2. Mathematical Model for 3D UAV Path Planning

The 3D UAV path planning problem is to search for an optimal flight path while
meeting some cost constraints and safety constraints. The fitness cost function used in the
path planning problem in this paper refers to the reference [34].

2.1. Path Cost Function

The path cost is mainly related to the flight distance from the start point to the end
point of the UAV. In this paper, the flight path of the UAV is divided into several path nodes,
and each path node is represented by the coordinates Pij = (xij, yij, zij). The Euclidean

distance between two neighboring path nodes is denoted by
∥∥∥∥−−−−→PijPi,j+1

∥∥∥∥.Therefore, the path

cost function of the UAV can be represented by Equation (1).

F1(Xi) =
n−1

∑
j=1

∥∥∥∥−−−−→PijPi,j+1

∥∥∥∥ (1)

where n denotes the number of nodes in the flight path of the UAV, and the nth node is
the end point of the flight. Xi represents the set of path nodes that the UAV needs to pass
through in the flight path.

2.2. Security Cost Function

Besides the optimal flight distance, the optimal path also needs to focus on flight
safety factors. In the experiment of this paper, we assume that each obstacle in the path is
represented by a cylinder and suppose that K is the set of all threatening obstacles, Ck is the
coordinate of the center of the obstacle and the radius of the obstacle is Rk. Figure 1 shows
the obstacle threat figure from the path node Pij to the path node Pi,j+1. D is the diameter
of the UAV, S represents the danger distance between the UAV and the collision domain
and dk represents the distance between the UAV path and the center of the obstacle Ck.
There are several factors that affect the danger distance S, such as operating environment,
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signal strength and positioning accuracy. For example, the value of S can be taken smaller
when the GPS signal is strong and vice versa when S is taken larger. In summary, for
the obstacle set K, the security cost function F2 for Pij to Pi,j+1 can be summarized by
Equations (2) and (3).

F2(Xi) =
n−1

∑
j=1

K

∑
k=1

Tk(
−−−−→
PijPi,j+1) (2)

Tk(
−−−−→
PijPi,j+1) =


0, if dk > S + D + Rk

(S + D + Rk)− dk, if D + Rk < dk ≤ S + D + Rk

∞, if dk ≤ D + Rk

(3)
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2.3. Flight Altitude Cost Function

When a UAV executes its mission, its flight altitude is usually limited to a certain
range. For example, when using a UAV for aerial photography, the clarity of the aerial
photos has some relationship with the flight altitude. The flight altitude cost function of
the UAV can be described by Equations (4) and (5).

F3(Xi) =
n

∑
j=1

Hij (4)

Hij =


∣∣∣∣∣hij − (hmax+hmin)

2

∣∣∣∣∣, if hmin ≤ hij ≤ hmax

∞, otherwise

(5)

where hij is the flight altitude of the UAV relative to the ground and hmax and hmin are the
maximum and minimum values of the flight altitude scope. The flight altitude scope of
UAV is shown in Figure 2.

2.4. Smooth Cost

Smoothing cost is used to calculate the rotation angle and climb speed required for the
UAV during flight. Figure 3 shows the 3D coordinate schematic of the UAV flight from Pij
to Pi,j+2. Pij

′, P′i,j+1 and P′i,j+2 are the projections of coordinate points Pij, Pi,j+1 and Pi,j+2

on the XOY plane. We project the three-dimensional flight path of the UAV onto the XOY
plane of the coordinate axis, and the angle formed by the extension of the path Pij

′ to P′i,j+1
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and the path P′i,j+1 to P′i,j+2 is noted as φij. The vector
→

Pij
′P′i,j+1 can be calculated using

Equation (6).
−−−−→
Pij
′P′i,j+1 =

→
k × (

−−−−→
PijPi,j+1 ×

→
k ) (6)

where
→
k is the unit vector in the z-axis direction. φij is calculated as follows:

φij = arctan


∥∥∥∥∥−−−−−→Pij

′Pi,j+1
′ ×

−−−−−→
Pi,j+1

′Pi,j+2
′
∥∥∥∥∥

−−−−−−→
Pij
′Pi,j+1

′ ·
−−−−−−−→
Pi,j+1

′Pi,j+2
′

 (7)
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Figure 3. UAV flight 3-dimensional coordinate figure.

P′′i,j+2 is the projection point of the projection of Pi,j+2 onto the plane where the vector
→

PijPi,j+1 is located. The angle formed by the vector
→

Pi,j+1Pi,j+2 and the vector
→

Pi,j+1P′′i,j+2 is
denoted as θi,j+1 and is calculated as follows:

θij+1 = arctan

 zi,j+1 − zij∥∥∥∥−−−−−→Pij
′Pi,j+1

′
∥∥∥∥
 (8)
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In summary, the equation for the smooth cost F4 is as follows:

F4 = a1

n−2

∑
j=1

φij + a2

n−1

∑
j=1

∣∣θij − θi,j−1
∣∣ (9)

where a1 is the penalty factor for the turn angle in the UAV flight path and a2 is the penalty
factor for the climb angle in the UAV flight path.

2.5. Integrated Cost Function for UAV Path Planning

When choosing the optimal path, the UAV has to consider the distance cost, flight
altitude cost, safety cost and smoothing cost to finally plan an optimal path that is safe and
efficient. Combining F1~F4 the mathematical model of the final cost function of UAV path
planning is as follows:

F(Xi) =
4

∑
k=1

bkFk(Xi) (10)

where bk represents the weight coefficient of the kth cost function. The set Xi includes
the coordinates of the n path nodes Pij = (xij, yij, zij). The cost function F(Xi) perfectly
establishes an NP-hard mathematical model for the optimization objectives and constraints
of the UAV path planning problem, which provides sufficient conditions for the subsequent
experiments of this paper to use metaheuristic algorithms to optimize the UAV path
planning problem.

2.6. Spherical Vector-Based UAV Path Planning Method

The spherical vector-based UAV path planning method encodes each feasible path
from the start point to the end point as a set of vectors. In this method, each vector
specifically describes the flight motion of the UAV during flight from one path node to the
next path node. Each vector in the vector group of the UAV path planning method based
on spherical vectors is composed of three vectors: ρ ∈ (0, path_length), θ ∈ (−π/2, π/2)
and φ ∈ (−π, π). ρ represents the magnitude, θ represents the flight elevation angle of the
UAV and φ represents the flight azimuth of the UAV. Thus, each feasible path Ωi with n
flight nodes can be represented by a set of 3N-dimensional spherical vectors as follows:

Ωi = (ρi1, θi1, φi1, ρi2, θi2, φi2, · · · , ρin, θin, φin) (11)

The basic principle of the spherical vector-based path planning method is to utilize
the relationship between the magnitude, elevation and azimuth angles during flight and
the speed, turn angle and climb angle of the UAV to improve the safety and effectiveness of
the planned path. The spherical vector-based method can help the metaheuristic algorithm
search in configuration space instead of Cartesian space; therefore, it can effectively mini-
mize the search space of the algorithm and thus increase the algorithm’s ability to discover
a better flight path for the UAV.

3. Basic Tuna Swarm Optimization Algorithm

The tuna swarm optimization algorithm is a novel metaheuristic algorithm created
by modeling the spiral feeding behavior and parabolic feeding behavior of tuna swarm.
TSO has been widely studied and applied once it was proposed. Wumaier Tuerxun et al.
improved TSO using the tent chaotic mapping strategy and the parameter adjustment
strategy and applied the algorithm to improve the accuracy of wind speed prediction for
wind farms [35]. Wang et al. improved TSO using the circle chaotic mapping strategy,
Lévy operator and nonlinear adaptive operator to enhance the comprehensive optimiza-
tion performance of TSO and used the modified algorithm to improve the classification
performance of the BP neural network [36]. Jingyu Wang et al. used the chaos factor to
modify the TSO algorithm and proved that the modified algorithm has excellent effects on
forest canopy image segmentation [37].
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3.1. TSO Initialization

Assuming there are N individuals in the tuna population, the TSO can be initialized
using Equation (12).

Xi = rand · (ub− lb) + lb =
[

x1
i x2

i · · · xj
i

]{
i = 1, 2, . . . , N

j = 1, 2, . . . , Dim
(12)

where Xi is the ith candidate solution which is also the ith tuna in the TSO algorithm; lb
and ub are the lower and upper bounds of the solution space. Each candidate solution in
TSO has Dim dimensions.

3.2. The Parabolic Feeding Strategy of the TSO

Tuna usually chose eel and squid, etc., as the main catching target. Since these preys
are very agile, it is difficult for a single tuna to catch the prey independently. Therefore,
the elite of tuna will organize a swarm of fish together to attack the prey cooperatively. In
the cooperative attack behavior, the tuna will follow the companion in front of them to
form a parabolic shape of the whole population to close in on the prey; biologists called
this behavior the tuna parabolic foraging strategy. This swarm behavior can be modeled
using Equations (13) and (14).

Xt+1
i =

{
Xt

best + rand · (Xt
best − Xt

i ) + TF · p2 · (Xt
best − Xt

i ), if rand < 0.5
TF · p2 · Xt

i , if rand ≥ 0.5
(13)

p = (1− t
tmax

)
(t/tmax)

(14)

where Xt
best is the optimal individual during the ith algorithm execution, Xt

i is the tuna
individual during the tth algorithm execution and Xt

i+1 is the new individual generated
during the t + 1th execution. The value of TF is a randomly selected value of 1 or −1.

3.3. The Spiral Foraging Strategy of the TSO

In the long-term hunting action, the tuna swarm also gradually formed another kind
of population hunting strategy; biologists call this strategy spiral hunting strategy. When
the tuna group executes this strategy, the whole population will swarm together to form
a spiral vortex; at this time, the swimming of the tuna group will not only be influenced
by the best individual, but they will also occasionally follow the other part of the swarm
to search. Inspired by the spiral foraging of tuna, scholars proposed the spiral renewal
strategy of TSO. In the spiral foraging strategy of TSO, the position update of tuna in the
population will be pulled by the optimal individuals; in addition, the position update of
tuna will occasionally be influenced by random individuals in the population, and the
spiral foraging approach of TSO can be modeled using Equations (15)–(19). In TSO, the
two foraging methods are randomly selected.

Xt+1
i =



α1 ·
(
Xt

rand + τ ·
∣∣Xt

rand − Xt
i

∣∣)+ α2 · Xt
i ,

i = 1
α1 ·

(
Xt

rand + τ ·
∣∣Xt

rand − Xt
i

∣∣)+ α2 · Xt
i−1,

i = 2, 3, . . . , N
α1 ·

(
Xt

best + τ ·
∣∣Xt

best − Xt
i

∣∣)+ α2 · Xt
i ,

i = 1,
α1 ·

(
Xt

best + τ ·
∣∣Xt

best − Xt
i

∣∣)+ α2 · Xt
i−1,

i = 2, 3, . . . , N

, if rand < t
tmax

, if rand ≥ t
tmax

(15)

α1 = a + (1− a) · t
tmax

(16)
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α2= (1− a)− (1− a) · t
tmax

(17)

τ = ebl · cos(2πb) (18)

l = e3 cos(((tmax+1/t)−1)π) (19)

Xt
rand is the position of one other tuna randomly selected in the population as a

reference during the position update of the tuna, α1 is the weight coefficient that controls
the closeness of individual tuna swimming toward the optimal tuna or random tuna and
α2 is the weight coefficient that controls the swimming of tuna toward the previous tuna.
a is a constant, and in this paper, a = 0.7. t and tmax represent the current and maximum
number of iterations.

3.4. Pseudo-Code of TSO

The pseudo-code for TSO is as shown in Algorithm 1.

Algorithm 1 Pseudo-code of TSO Algorithm

Initialization: Set parameters N, Dim, a, z and tmax
Initialize the position of tuna Xi (i = 1, 2, . . . , N) by (1),Counter t = 0
while t < tmax do

Calculate the fitness value of all tuna
Update the position and value of the best tuna Xt

best
for (each tuna) do

Update α1, α2 and p by (16), (17), (14)
if (rand < z) then

Update Xt+1
i by (12)

else if (rand ≥ z) then
if (rand < 0.5) then

Update Xt+1
i by (15)

else if (rand ≥ 0.5) then
Update Xt+1

i by (13)
end if

end if
end for

end while
t = t + 1
return the best fitness value f (Xbest) and the best tuna Xbest

4. The Proposed SGGTSO

To enhance the comprehensive optimization performance of the TSO algorithm as well
as the applicability of the TSO algorithm to the 3-dimensional UAV path planning problem,
this paper proposes a multi-group sigmoid nonlinear parameter Gaussian mutation elite
individual genetic strategy tuna swarm optimization algorithm (SGGTSO).

4.1. Sigmoid Nonlinear Weighting Operators

In the TSO algorithm, the parameter p in Equation (14) is a key factor in controlling
and balancing the global exploitation and local exploration capabilities of TSO. A quality
metaheuristic algorithm needs to strictly control the global and local search ability. During
the research of metaheuristics, many scholars proved that optimizing the weight coefficients
of the algorithm or introducing nonlinear parameters into the algorithm can significantly
optimize the comprehensive performance of the algorithm [38–41]. In the initial search
phase of the metaheuristic algorithm, there is a huge gap between almost all candidate
solutions in the algorithm and the global optimal solution; therefore, the global exploitation
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ability needs to be enhanced in the initial search phase of the metaheuristic algorithm. In
the later stage of the search of the metaheuristic algorithm, the gap between the candidate
solutions found in the algorithm and the optimal solution is smaller; so at this time, the
local exploration ability of the algorithm needs to be improved to fine-tune the candidate
solution set so as to improve the probability of the algorithm to find the optimal solution.

Sigmoid is a very classical activation function in deep learning theory, and its mathe-
matical model can be represented by Equation (20).

S(x) =
1

1 + e−x , x ∈ R (20)

The derivative curve of sigmoid is centered at the origin O and decreases to the
positive and negative directions of the X-axis, respectively, and its derivative values at
(−∞,−5) and (5,+∞) tend to 0. In this paper, the [−5, 5] part of the sigmoid derivative
curve is applied to modify the weight coefficient p. The equation of the improved p1 can be
expressed by Equation (21).

p1 =
1

1 + 1.5e
10t

tmax−5
− 0.1r (21)

where t and tmax are the current iteration and the maximum iteration, respectively. r is a
random value between (0, 1).

Analysis for Equations (13) and (14) reveals that the global and local optimization
ability of TSO is closely related to the p2. Figure 4 shows the comparison curves of the
modified weighting coefficient p2

1 and the weighting coefficient p2 in the original TSO.
Compared to the original weight parameter p2, the modified weight parameter p2

1 using
sigmoid has significant volatility. The irregular fluctuation helped the tuna individuals to
update to get more uniform positions when executing the parabolic foraging strategy, thus
further enriching the population diversity of the algorithm. The weight factor p2

1 decreases
rapidly during the iterative process, which can help the algorithm to move from global
development to local exploration relatively smoothly.
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4.2. Multi-Subgroup Gaussian Mutation Strategy

Taking the metaheuristic algorithm to deal with the minimization optimization prob-
lem as an example, in this paper, while keeping the original population size of TSO un-
changed, the population individuals are sorted according to the fitness value from smallest
to largest; the sub-swarm with the smaller fitness value is called the elite swarm, and the
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other swarm is called the ordinary swarm, and these two types of swarms perform different
Gaussian mutation strategies, respectively.

4.2.1. Gaussian Mutation Strategy Based on Elite Learning Mechanism

Using the elite learning strategy for the tuna individuals in the elite swarm, the elite
learning mechanism enhances the ability of elite tuna individuals to escape from local
extremes, thus achieving that the elite tuna guide the other tuna individuals to update their
positions, and thus accelerating the convergence of the algorithm.

The equation of Gaussian distribution is as follows:

Gauss(t) =
1

σ
√

2π
exp(− (t− u)2

2σ2 ) (22)

where u = 0. The variance σ, which is the learning rate, is calculated as shown in
Equation (23).

σ = σmax − (σmax − σmin)
t

tmax
(23)

where σmax = 1 and σmin = 0.1. The learning rate σ decreases as the number of iterations
increases, which can help the Gaussian distribution function to obtain a wider search range
at the beginning of the iteration, thus helping the elite tuna individuals to jump out of the
local optimum more easily. Conversely, in the later iteration, the Gaussian distribution is
concentrated in a smaller area, thus helping the tuna individuals to explore finely in the
area near the origin, which is helpful to improve the convergence accuracy of SGGTSO.

In summary, the mathematical modeling of Gaussian variation strategies based on
elite learning for an elite swarm is as follows:

Xt+1
i = Xt

i + r · 1
2

t2 Xt
best − Xt

worst
2

Gauss(t) (24)

r =
{

1, i f rand ≥ 0.5
0, otherwise

(25)

where the value of rand is a random number within (0, 1).

4.2.2. Non-Uniform Gaussian Mutation Strategy

Individuals at the tail end of the tuna group have worse fitness values, so this subgroup
is called the ordinary population. Tuna individuals in this type of ordinary swarm can
better retain their own characteristics instead of only following elite individuals to update
their positions. In order to further increase the population diversity of tuna swarms, this
paper uses a non-uniform Gaussian mutation strategy [42] for tuna in ordinary populations,
and the details are as follows:

Xt+1
i = Xt

i + ∆(t, Gt
i ) (26)

∆(t, y) = y(1− r(
1−t

tmax )
2

) (27)

Gt
i = N((Xt

best − Xt
i ), σ) (28)

where ∆(t, Gt
i ) is the non-uniform Gaussian mutation step, which is the mutation operator

obtained by adaptively adjusting the step size through the Gaussian distribution (Gt
i ). r is a

random number uniformly generated in the interval [0, 1], σ is the standard deviation of the
Gaussian distribution and the expectation value of the Gaussian distribution is (Xt

best −Xt
i ).

In the experiments in this paper, σ= 1.
The non-uniform Gaussian mutation strategy selects the difference between the op-

timal individual and the current tuna individual as the expectation value and uses an
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adaptive adjustment learning strategy for the step size of Gaussian mutation, this update
method helps to maintain the diversity of the population, thus better balancing the global
exploitation and local exploration of SGGTSO.

4.3. Elite Individual Genetic Strategy

Genetic algorithm (GA) [43] is a classical metaheuristic algorithm that mimics the
evolutionary genetic cross-genetic inheritance of organisms in nature. In this paper, the
basic methods of TSO and GA are merged so that the SGGTSO algorithm proposed in this
paper can combine the advantages of both algorithms [44]. The three tuna individuals with
the best fitness values in the population were selected as the main genetic targets.

During the SGGTSO iteration, the three selected tuna (gi1~gi3) individuals with the
best fitness value are compared with all individuals (gj1~gjN), and if tuna i has a better
fitness value than tuna j, then tuna i is genetically crossed with tuna j. On the contrary,
tuna i and tuna j are genetically mutated.

Each genetic crossover process will produce two new individuals, NewXi
j and NewXi+1

j .
The equation for tuna genetic crossover is as follows:

NewXi
j = (r + 1) · Xgi

j + (1− r) · Xgj
j , i ∈ [1, N], j ∈ [1, Dim] (29)

NewXi+1
j = (r + 1) · Xgj

j + (1− r) · Xgi
j , i ∈ [1, N], j ∈ [1, Dim] (30)

where Xi
j, Xgi

j and Xgj
j denote gene j of the Xi, Xgi and Xgj, respectively. r is a random

number in the range [0, 2].
Each genetic mutation process will also produce two new tuna individuals, NewXi

j

and NewXi+1
j . In the gene mutation process, the probability of gene mutation is set to µ,

which means that µ ∗Dim genes will mutate in individual tuna NewXi
j and NewXi+1

j . The
equation for tuna genetic mutation is as follows:

NewXi
j = Xgi

j + δ · γ, i ∈ [1, N], j ∈ [1, µ ∗Dim] (31)

NewXi+1
j = Xgj

j + δ · γ, i ∈ [1, N], j ∈ [1, µ ∗Dim] (32)

δ = 0.1 · (ub− lb) (33)

where ub and lb are the boundaries of the SGGTSO search space. γ is a random value that
conforms to a normal distribution.

After the crossover and mutation process of the tuna population, a new swarm NewX
can be created, and then NewX can be fused with the original tuna population X. Finally,
the individuals with excellent fitness values are retained according to the elite selection
strategy, while maintaining no change in the population size. The elite individual genetic
strategy greatly enriches the swarm diversity of the tuna population by crossover and
mutation operations on individuals in the swarm. In addition, the worse individuals in the
population can acquire the genes of the superior individuals in the swarm, thus ensuring
that the tuna individuals in the swarm are always maintained at a high-quality level.
Therefore, the elite individual genetic strategy can significantly accelerate the convergence
rate of SGGTSO.

4.4. Pseudo-Code of SGGTSO

The pseudo-code for SGGTSO is shown in Algorithm 2.
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Algorithm 2 Pseudo-code of SGGTSO Algorithm

Initialization: Set parameters N, Dim, a, z and tmax
Initialize the position of tuna Xi (i = 1, 2, . . . , N) by (1)
Counter t = 0
while t < tmax do

Calculate the fitness value of all tuna
Update the position and value of the best tuna Xt

best
for (i=1:N/2) do

Update α1, α2 and p2
1 by (16), (17), (21)

if (rand < z) then
Update Xt+1

i by (12)
else if (rand ≥ z) then

if (rand < 0.5) then
Update Xt+1

i by (15) and subsequently by (24)
else if (rand ≥ 0.5) then

Update Update Xt+1
i by (13) subsequently by (24)

end if
end if

end for
for (i=N/2+1:N) do

Update α1, α2 and p by (16), (17), (21)
if (rand < z) then

Update Xt+1
i by (12)

else if (rand ≥ z) then
if (rand < 0.5) then

Update Xt+1
i by (15) and subsequently by (26)

else if (rand ≥ 0.5) then
Update Xt+1

i by (13) subsequently by (26)
end if

end if
end for

Update X by Elite individual genetic strategy
t = t + 1

end while
return the best fitness value f (Xbest) and the best tuna Xbest

5. Comparative Experiments and Data Analysis

In order to evaluate whether the SGGTSO proposed in this paper has significant
advantages over some other classical and novel metaheuristics, the CEC2017, a classical
and authoritative collection of benchmark functions, is selected for a comprehensive test
of SGGTSO.

5.1. Details of the Benchmark Function Set

The CEC2017 benchmark function [45] collection is a highly authoritative collection of
functions for testing the comprehensive outperformance of metaheuristics, which covers
unimodal, multimodal, hybrid and conforming functions. In this paper, CEC2017 is applied
to evaluate SGGTSO comprehensively and extensively, and the details of the CEC2017
test function set are shown in Table 1. F1~F2 are unimodal functions, F3~F9 are unimodal
functions, F10~F19 are hybrid functions and F20~F29 are composition functions.
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Table 1. CEC2017 benchmark functions.

Function Function Number Dim Range fmin

Shifted and Rotated Bent Cigar Function F1 100 [−100, 100] 100
Shifted and Rotated Zakharov Function F2 100 [−100, 100] 300

Shifted and Rotated Rosenbrock’s Function F3 100 [−100, 100] 400
Shifted and Rotated Rastrigin’s Function F4 100 [−100, 100] 500

Shifted and Rotated Expanded Scaffer’s F6 Function F5 100 [−100, 100] 600
Shifted and Rotated Lunacek Bi_Rastrigin Function F6 100 [−100, 100] 700

Shifted and Rotated Non-Continuous Rastrigin’s Function F7 100 [−100, 100] 800
Shifted and Rotated Levy Function F8 100 [−100, 100] 900

Shifted and Rotated Schwefel’s Function F9 100 [−100, 100] 1000
Hybrid Function 1 (N = 3) F10 100 [−100, 100] 1100
Hybrid Function 2 (N = 3) F11 100 [−100, 100] 1200
Hybrid Function 3 (N = 3) F12 100 [−100, 100] 1300
Hybrid Function 4 (N = 4) F13 100 [−100, 100] 1400
Hybrid Function 5 (N = 4) F14 100 [−100, 100] 1500
Hybrid Function 6 (N = 4) F15 100 [−100, 100] 1600
Hybrid Function 6 (N = 5) F16 100 [−100, 100] 1700
Hybrid Function 6 (N = 5) F17 100 [−100, 100] 1800
Hybrid Function 6 (N = 5) F18 100 [−100, 100] 1900
Hybrid Function 6 (N = 6) F19 100 [−100, 100] 2000

Composition Function 1 (N = 3) F20 100 [−100, 100] 2100
Composition Function 2 (N = 3) F21 100 [−100, 100] 2200
Composition Function 3 (N = 4) F22 100 [−100, 100] 2300
Composition Function 4 (N = 4) F23 100 [−100, 100] 2400
Composition Function 5 (N = 5) F24 100 [−100, 100] 2500
Composition Function 6 (N = 5) F25 100 [−100, 100] 2600
Composition Function 7 (N = 6) F26 100 [−100, 100] 2700
Composition Function 8 (N = 6) F27 100 [−100, 100] 2800
Composition Function 9 (N = 3) F28 100 [−100, 100] 2900
Composition Function 10 (N = 3) F29 100 [−100, 100] 3000

5.2. Competition Algorithms and Experimental Parameter Settings

The comparison experiments in this paper are chosen for the case of the CEC2017
benchmark function with dimension 100, and the algorithms Accelerated Particle Swarm
Optimization (APSO) [46], Artificial Rabbits Optimization (ARO) [47], Beluga Whale Op-
timization (BWO), Whale Optimization Algorithm (WOA) [48] and TSO are chosen as
control group experiments to compare with SGGTSO. It is worth mentioning that APSO
is an improved version of the classical algorithm PSO, and ARO and BWO are novel
metaheuristics that have been proposed recently.

In the experiments of this paper, the maximum number of iterations is set to 1000,
and the population size of each algorithm is set to 30. In order to make the experimental
results more convincing, the experiments are repeated 15 times and the data, such as the
mean value of each algorithm, are published in this paper. The parameter settings for
each algorithm are detailed in Table 2. The symbol ∼ means that the algorithm has no
preset parameters.

Table 2. Parameter setting for each algorithm.

Algorithm Parameter Value

APSO α = 1, β = 0.5
ARO ∼
BWO W f ∈ [0.05, 0.1]
WOA b = 1
TSO a = 0.7, z = 0.05

SGGTSO a = 0.7, z = 0.05 , µ = 0.05
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5.3. Experimental Results and Numerical Analysis

Table 3 details the performance of each algorithm on the CEC2017 test set, with mean
representing the average of 15 replicate experiments of each algorithm and std representing
the standard deviation of 15 replicate experiments of each algorithm.

Table 3. Experimental results of each algorithm in CEC2017.

Function Performance APSO ARO BWO WOA TSO SGGTSO

F1
Mean 2.86 × 10+11 8.70 × 10+09 2.54 × 10+11 6.36 × 10+10 3.54 × 10+09 2.18 × 10+05

Std 2.78 × 10+10 2.39 × 10+09 7.02 × 10+09 5.66 × 10+09 1.27 × 10+09 8.23 × 10+04

F2
Mean 6.29 × 10+05 3.40 × 10+05 3.51 × 10+05 8.97 × 10+05 3.86 × 10+05 1.33 × 10+05

Std 1.31 × 10+05 1.91 × 10+04 1.40 × 10+04 1.78 × 10+05 6.45 × 10+04 1.94 × 10+04

F3
Mean 8.66 × 10+04 2.22 × 10+03 9.46 × 10+04 1.24 × 10+04 1.48 × 10+03 7.72 × 10+02

Std 1.53 × 10+04 2.99 × 10+02 6.56 × 10+03 2.27 × 10+03 1.81 × 10+02 6.07 × 10+01

F4
Mean 1.86 × 10+03 1.29 × 10+03 2.11 × 10+03 1.90 × 10+03 1.33 × 10+03 1.26 × 10+03

Std 1.31 × 10+02 6.92 × 10+01 3.24 × 10+01 1.63 × 10+02 6.04 × 10+01 6.74 × 10+01

F5
Mean 6.82 × 10+02 6.45 × 10+02 7.12 × 10+02 7.03 × 10+02 6.67 × 10+02 6.38 × 10+02

Std 6.48 5.98 1.80 7.60 4.19 8.03

F6
Mean 5.44 × 10+03 2.70 × 10+03 3.85 × 10+03 3.64 × 10+03 3.05 × 10+03 2.51 × 10+03

Std 2.47 × 10+02 2.63 × 10+02 7.15 × 10+01 1.96 × 10+02 1.90 × 10+02 2.50 × 10+02

F7
Mean 2.28 × 10+03 1.63 × 10+03 2.58 × 10+03 2.33 × 10+03 1.77 × 10+03 1.66 × 10+03

Std 1.00 × 10+02 9.38 × 10+01 3.17 × 10+01 1.25 × 10+02 1.00 × 10+02 8.88 × 10+01

F8
Mean 3.79 × 10+04 2.87 × 10+04 7.87 × 10+04 7.12 × 10+04 2.91 × 10+04 2.28 × 10+04

Std 4.54 × 10+03 3.24 × 10+03 3.22 × 10+03 1.78 × 10+04 6.21 × 10+03 2.18 × 10+03

F9
Mean 2.44 × 10+04 1.72 × 10+04 3.23 × 10+04 2.78 × 10+04 2.11 × 10+04 1.60 × 10+04

Std 1.17 × 10+03 1.34 × 10+03 5.04 × 10+02 1.67 × 10+03 3.41 × 10+03 1.78 × 10+03

F10
Mean 3.90 × 10+05 4.67 × 10+04 2.75 × 10+05 2.36 × 10+05 4.36 × 10+04 2.27 × 10+03

Std 1.10 × 10+05 1.46 × 10+04 4.67 × 10+04 1.16 × 10+05 1.34 × 10+04 2.17 × 10+02

F11
Mean 1.78 × 10+11 5.95 × 10+08 1.88 × 10+11 1.28 × 10+10 3.13 × 10+08 4.11 × 10+07

Std 3.52 × 10+10 1.19 × 10+08 9.99 × 10+09 3.44 × 10+09 1.70 × 10+08 1.41 × 10+07

F12
Mean 4.23 × 10+10 1.18 × 10+05 4.31 × 10+10 5.64 × 10+08 9.76 × 10+04 8.65 × 10+03

Std 6.95 × 10+09 4.64 × 10+04 2.26 × 10+09 2.23 × 10+08 5.46 × 10+04 4.82 × 10+03

F13
Mean 7.12 × 10+07 3.17 × 10+06 8.15 × 10+07 1.41 × 10+07 9.99 × 10+05 8.47 × 10+05

Std 5.12 × 10+07 1.66 × 10+06 2.44 × 10+07 6.51 × 10+06 5.23 × 10+05 3.51 × 10+05

F14
Mean 1.79 × 10+10 1.34 × 10+04 2.18 × 10+10 1.04 × 10+08 2.07 × 10+04 3.95 × 10+03

Std 3.14 × 10+09 1.58 × 10+04 2.46 × 10+09 7.41 × 10+07 8.60 × 10+03 1.77 × 10+03

F15
Mean 1.71 × 10+04 6.01 × 10+03 2.23 × 10+04 1.56 × 10+04 6.46 × 10+03 6.07 × 10+03

Std 2.83 × 10+03 5.72 × 10+02 1.55 × 10+03 2.22 × 10+03 7.89 × 10+02 5.85 × 10+02

F16
Mean 3.51 × 10+06 5.01 × 10+03 3.68 × 10+06 1.29 × 10+04 6.40 × 10+03 5.91 × 10+03

Std 3.56 × 10+06 5.52 × 10+02 1.90 × 10+06 4.27 × 10+03 7.86 × 10+02 4.75 × 10+02

F17
Mean 1.10 × 10+08 3.52 × 10+06 1.59 × 10+08 1.21 × 10+07 1.40 × 10+06 1.16 × 10+06

Std 7.05 × 10+07 1.65 × 10+06 5.53 × 10+07 6.90 × 10+06 7.71 × 10+05 3.89 × 10+05

F18
Mean 1.64 × 10+10 9.82 × 10+03 2.10 × 10+10 1.40 × 10+08 4.89 × 10+04 5.14 × 10+03

Std 2.92 × 10+09 4.26 × 10+03 3.07 × 10+09 1.22 × 10+08 4.92 × 10+04 4.28 × 10+03

F19
Mean 6.16 × 10+03 5.23 × 10+03 7.61 × 10+03 6.60 × 10+03 5.68 × 10+03 5.04 × 10+03

Std 5.31 × 10+02 3.80 × 10+02 3.31 × 10+02 5.62 × 10+02 7.06 × 10+02 4.18 × 10+02

F20
Mean 4.91 × 10+03 3.09 × 10+03 4.71 × 10+03 4.36 × 10+03 3.36 × 10+03 3.18 × 10+03

Std 2.26 × 10+02 6.34 × 10+01 8.29 × 10+01 2.06 × 10+02 1.18 × 10+02 8.59 × 10+01

F21
Mean 2.78 × 10+04 2.01 × 10+04 3.43 × 10+04 3.04 × 10+04 2.35 × 10+04 1.93 × 10+04

Std 9.26 × 10+02 1.54 × 10+03 9.49 × 10+02 1.56 × 10+03 3.25 × 10+03 2.09 × 10+03
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Table 3. Cont.

Function Performance APSO ARO BWO WOA TSO SGGTSO

F22
Mean 7.41 × 10+03 3.61 × 10+03 6.08 × 10+03 5.14 × 10+03 4.70 × 10+03 3.85 × 10+03

Std 6.58 × 10+02 1.07 × 10+02 1.32 × 10+02 2.67 × 10+02 3.84 × 10+02 2.28 × 10+02

F23
Mean 1.35 × 10+04 4.69 × 10+03 9.12 × 10+03 6.62 × 10+03 6.39 × 10+03 4.89 × 10+03

Std 9.35 × 10+02 1.68 × 10+02 4.36 × 10+02 3.63 × 10+02 7.44 × 10+02 1.48 × 10+02

F24
Mean 3.37 × 10+04 4.58 × 10+03 2.73 × 10+04 8.16 × 10+03 4.20 × 10+03 3.47 × 10+03

Std 6.30 × 10+03 1.57 × 10+02 1.18 × 10+03 6.83 × 10+02 1.87 × 10+02 6.77 × 10+01

F25
Mean 5.30 × 10+04 2.38 × 10+04 5.05 × 10+04 3.79 × 10+04 2.70 × 10+04 2.07 × 10+04

Std 4.98 × 10+03 2.63 × 10+03 1.00 × 10+03 4.87 × 10+03 2.31 × 10+03 2.15 × 10+03

F26
Mean 1.44 × 10+04 4.26 × 10+03 1.17 × 10+04 6.19 × 10+03 4.58 × 10+03 3.90 × 10+03

Std 1.24 × 10+03 2.32 × 10+02 1.02 × 10+03 9.80 × 10+02 5.00 × 10+02 1.58 × 10+02

F27
Mean 3.53 × 10+04 5.81 × 10+03 2.75 × 10+04 1.11 × 10+04 4.61 × 10+03 3.59 × 10+03

Std 4.97 × 10+03 3.40 × 10+02 1.00 × 10+03 1.40 × 10+03 2.37 × 10+02 5.84 × 10+01

F28
Mean 2.52 × 10+05 8.09 × 10+03 3.42 × 10+05 1.82 × 10+04 8.89 × 10+03 7.70 × 10+03

Std 2.68 × 10+05 4.00 × 10+02 1.51 × 10+05 2.77 × 10+03 7.77 × 10+02 5.37 × 10+02

F29
Mean 3.31 × 10+10 5.04 × 10+06 3.86 × 10+10 1.29 × 10+09 2.31 × 10+06 5.25 × 10+04

Std 6.81 × 10+09 2.24 × 10+06 3.97 × 10+09 4.20 × 10+08 9.43 × 10+05 3.06 × 10+04

From the experimental data of CEC2017, SGGTSO’s optimization performance far
exceeds that of other competing algorithms. In terms of mean value, the average optimiza-
tion accuracy of SGGTSO is only slightly worse than its competitors in five functions (F7,
F16, F20, F22 and F23), and the average optimization accuracy of SGGTSO is the best among
all the remaining 24 benchmark functions. This clearly demonstrates the effectiveness
of SGGTSO for various types of optimization problems of different complexity and the
universality of SGGTSO. It also demonstrates that the sigmoid nonlinear weights can well
balance the development and exploration of SGGTSO, enabling SGGTSO to shift from
global exploitation to local exploration more smoothly during the iterative process. The
multi-subgroup Gaussian mutation operator further enriches the population diversity of
the SGGTSO algorithm, which makes the candidate solutions of the SGGTSO algorithm
more widely distributed in the search space, thus greatly enhancing SGGTSO to discover
the candidate solutions with higher accuracy as well as better quality. When the SGGTSO
algorithm finds a high-quality candidate solution, the elite individual genetic strategy can
help different individuals in the algorithm population to exchange information, prompting
elite individuals to genetically cross over with ordinary individuals, thus enabling SGGTSO
to quickly find a solution with higher accuracy as well as further speeding up the conver-
gence of SGGTSO. In terms of the std performance of SGGTSO, although SGGTSO’s std
values are best in only 15 benchmark functions, the std values in the remaining benchmark
functions are not significantly different from those of other competitors. This indicates that
SGGTSO’s optimization ability is not stable on some of the test sets, but overall SGGTSO’s
optimization ability is significantly improved compared to TSO.

Parts of the algorithm convergence curve figure of CEC2017 are shown in Figure 5.
The optimization capability of each algorithm is further analyzed based on the convergence
curves of each algorithm at CEC2017. Relative to SGGTSO, TSO, APSO, WOA and ARO
all fall into a local optimum on the F6 function. The APSO and BWO algorithms both
fall into local optima in the nine functions listed in Figure 5. The convergence speed
and convergence accuracy of SGGTSO in the nine convergence curves are significantly
improved compared to TSO, which further proves that the sigmoid nonlinear coefficient
strategy, multi-subgroup Gaussian mutation strategy and elite individual genetic strategy
proposed in this paper perfectly compensate for the poor convergence accuracy and slow
convergence speed of TSO.
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In order to more comprehensively analyze and compare the experimental data, this
paper uses the Friedman test to statistically analyze the performance difference between the
SGGTSO algorithm and the comparison algorithm on the CEC2017 test set. The Friedman
test is used to assess whether there is a significant difference between multiple samples
by means of the rank mean. The comparison results of Friedman’s method are listed in
Table 4.

Table 4. Friedman test results.

Algorithm Rank Mean

SGGTSO 1.21
ARO 2.14
TSO 2.69

WOA 4.31
APSO 5.10
BWO 5.55

The problem in this paper is to solve the minimization problem by each optimization
algorithm, so the smaller the rank mean of an algorithm in the result of the Friedman test,
the better the comprehensive optimization performance of this algorithm is proved. It is
clear from Table 4 that SGGTSO has the smallest rank mean and that the gap between
SGGTSO and the second-ranked ARO algorithm is large, which indicates that SGGTSO
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has significantly better optimization performance than other algorithms in the CEC2017
test function.

6. UAV Path Planning Experiments

This paper generates real digital elevation model (DEM) maps based on LiDAR
sensors [49]. The terrain area is simulated based on the terrain structure of Christmas
Island, Australia, and extended to generate nine UAV path planning test scenarios of
varying difficulty. Based on nine terrain environments of varying complexity, this paper
sets up experiments comparing SGGTSO with PSO, ARO, BWO, WOA and TSO. These
algorithms are based on the spherical vector-based path planning method introduced in
Section 2.5 of this paper to help UAVs with path planning. Algorithms such as SGGTSO
are applied to optimize the total cost function Equation (10) designed in this paper. Various
algorithms perform the search and optimization based on the planning method of spherical
vectors in the optimization process. First, each path obtained by the metaheuristic algorithm
is encoded into a set of vector groups consisting of magnitude, elevation angle and azimuth
angle and searched in the configuration space; then, the vector groups obtained by the
search are transformed into Cartesian space coordinates, and finally, the total cost function
value of each feasible path is calculated and the flight path with the smallest total cost
function value is found so as to find the optimal flight path.

6.1. Experimental Parameter Settings

The parameters of the 3D UAV path planning experiment designed in this paper are
shown in Table 5. In order to avoid the chance of experimental results, each algorithm is
repeated 15 times in the experiments of this paper. The 3D UAV path planning problem
studied in this paper is based on matlab2021a software for experiments.

Table 5. UAV path planning experimental parameters.

Parameter Meaning Parameter Value

Population size of each algorithm N = 100
Number of iterations of each algorithm Tmax = 200

Number of Path Nodes n = 12
Smoothing cost function weight parameters a1 = 1, a2 = 1

The weight parameter of the total cost function accounted for
by each cost function b1 = 5, b2 = 1, b3 = 10, b4 = 1

UAV flight altitude range 100 m~300 m
Diameter of UAV 1 m

Safe distance between UAV and obstacle 1 m
Coordinates of drone origination point (200, 100, 150)

UAV destination coordinates (800, 800, 250)

The 3D spatial coordinates and radius information of each obstacle in the nine terrain
scenarios designed for the experiments in this paper are shown in Table 6.

Table 6. Information about the location of obstacles.

Scenario Number Obstacle Coordinates Obstacle Radius

1
(382, 166, 100) 80
(300, 350, 150) 80
(500, 300, 150) 80

2
(500, 500, 100) 80
(700, 400, 150) 100

3
(300, 450, 150) 80
(700, 450, 150) 80
(500, 450, 150) 80
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Table 6. Cont.

Scenario Number Obstacle Coordinates Obstacle Radius

4

(650, 520, 150) 70
(400, 500, 150) 80
(500, 350, 150) 70
(710, 680, 80) 80

(600, 200, 150) 80

5

(350, 200, 150) 70
(400, 500, 150) 80
(510, 310, 150) 80
(590, 660, 150) 80
(770, 520, 150) 80

6

(400, 500, 100) 80
(600, 200, 150) 70
(500, 350, 150) 80
(350, 200, 150) 70
(700, 550, 120) 60
(550, 600, 150) 50

7

(400, 500, 100) 80
(600, 200, 150) 70
(500, 350, 150) 80
(350, 200, 150) 70
(700, 550, 150) 70
(650, 750, 150) 80

8

(400, 500, 100) 80
(600, 200, 120) 70
(500, 350, 150) 80
(350, 300, 180) 70
(700, 400, 130) 70
(600, 650, 150) 80
(780, 650, 80) 80

9

(200, 500, 100) 60
(400, 200, 80) 70

(530, 350, 150) 80
(400, 500, 180) 70
(580, 700, 130) 70
(620, 550, 150) 50
(770, 400, 80) 80
(420, 700, 80) 50

6.2. Comparison of SGGTSO with Other Algorithms on 3D UAV Path Planning Problems

Figure 6 shows the top views of the 3D UAV path planning routes of SGGTSO with
five competing algorithms in nine different scenarios.

The top view of the paths planned by each algorithm clearly shows that all the
algorithms in this experiment are able to plan viable paths that satisfy the safety constraints,
turning angles, climb/dive angles and height constraints. In the simple terrain scenarios 1,
2 and 3, all algorithms quickly help the UAV to plan a relatively high-quality flight path,
and there is little difference between the competing algorithms and SGGTSO in scenarios 1,
2 and 3. The difference between the five competing algorithms and SGGTSO can be clearly
seen in the remaining six terrain scenarios. In particular, in scenarios 4, 6 and 7, SGGTSO
finds a globally optimal flight path, while the rest of the algorithms can only find a locally
optimal flight path.

The fitness function values and convergence curves of each algorithm in scenarios 1 to
9 are shown in Table 7 and Figure 7, respectively.
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Table 7. Cost function values for each algorithm.

Scenario Performance PSO ARO BWO WOA TSO SGGTSO

1
Mean 4650.6195 4633.9072 4620.8785 4624.0420 4620.8825 4620.8503

Std 24.2194 12.2620 0.0060 8.1170 0 0

2
Mean 4714.7602 4998.3523 4691.9673 4929.2965 4691.3119 4685.4438

Std 55.3607 70.9725 5.1841 156.7188 11.5965 3.8348

3
Mean 4854.6124 5184.6107 4762.6187 5190.3488 4758.9456 4734.2076

Std 162.6225 105.2708 19.9683 340.2450 28.0142 5.5315

4
Mean 5203.2295 5678.0635 5308.2059 6274.2419 5276.3344 4999.6239

Std 174.0402 204.7676 101.6000 575.0824 87.3104 150.4596

5
Mean 4770.3717 5652.4226 5178.5399 5887.3553 4967.6791 4709.5364

Std 78.9964 218.4651 291.7278 425.5549 331.7219 22.5212

6
Mean 5175.5243 5485.5239 5151.0978 5502.0515 5162.8812 4819.0099

Std 345.6251 153.7492 96.4103 243.9819 142.2644 190.2085

7
Mean 5174.1465 6212.7581 5865.8656 6998.7652 5594.5271 4810.2036

Std 259.8192 346.7010 487.8530 796.8889 517.6610 242.0675

8
Mean 5975.5209 5676.5187 5434.8588 5984.5025 5365.7577 5286.7446

Std 548.0074 147.9724 45.9815 339.5598 80.4427 71.1403

s9
Mean 5067.5038 5669.9134 4859.8604 5315.2407 4844.2313 4712.3908

Std 325.5093 226.2500 91.8429 393.3128 165.9566 135.5750
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From the fitness values of the algorithms and the convergence curves for the nine
scenarios, it can be concluded that SGGTSO is far better than the competing algorithms in
optimizing the 3D UAV path planning problem.

The analysis of the mean and standard deviation of the data obtained from the
15 repeated experiments shows that SGGTSO has the smallest fitness function value in all
9 scenarios. In scenarios 4 to 9, where the complexity is higher, the difference between the
fitness function values of SGGTSO and those of classical and newly proposed metaheuris-
tics such as PSO is more pronounced. The gap between SGGTSO’s fitness values and other
algorithms is most pronounced in scenarios 4, 6 and 7. In scenario 4, SGGTSO’s fitness
value is approximately 204 smaller than the sub-optimal performing algorithm; in scenario
6, SGGTSO’s fitness value is approximately 332 smaller than the sub-optimal performing
algorithm, and in scenario 7, SGGTSO’s fitness value is approximately 364 smaller than the
sub-optimal performing algorithm.

Based on the convergence curves of each algorithm in different scenarios, it can
be analyzed that the convergence speed and global exploitation capability of SGGTSO
are significantly better than that of the original TSO algorithm, which indicates that the
improved operator proposed in this paper makes up for the shortcomings of the TSO
algorithm very well. From the nine convergence curves, SGGTSO was able to find the
optimal path in about thirty iterations in the other eight scenarios except in scenario 4.
SGGTSO’s convergence speed is the fastest among the six metaheuristic algorithms. In
scenarios 2 to 9, the competitors such as WOA and BWO fall into different degrees of local
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optimality compared to SGGTSO, which leads to the conclusion that SGGTSO has the best
global exploitation capability among the six metaheuristic algorithms.

Since the flight paths planned by multiple metaheuristic algorithms drawn in the same
diagram would affect the readability, only the flight paths of the 3D view of SGGTSO are
exhibited in this paper, as shown in Figure 8.
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The 3D view of the paths planned by SGGTSO shows that the flight paths of the UAVs
are smooth and efficient in nine different scenarios. The distance between the UAV and the
obstacle is well maintained in complex terrain. This further demonstrates that SGGTSO
can help the UAV to plan a path that is both short and safe at the same time.

To more thoroughly verify whether the performance of SGGTSO in 3D UAV path
planning experiments is significantly different from other algorithms, this paper uses the
Wilcoxon rank sum test and the Friedman test to statistically analyze the data of each
algorithm in the path planning experiments. The results of the analysis of the Wilcoxon
rank sum test are shown in Table 8.

Assuming that the significance level α in the Wilcoxon test is 0.05, in the Wilcoxon
test results, if the p-value of the comparative results of the two algorithms is less than 0.05,
then it means that there is a significant difference between the experimental results of the
two algorithms, and if the p-value is greater than 0.05, then it means that the difference
between the two algorithms is not significant in the statistical analysis. From the results in
Table 8, it can be seen that only in scenario 2 is the comparison between SGGTSO and TSO
is greater than 0.05, and in all other experimental data, the p-values are less than 0.05. This
indicates that the optimization performance of SGGTSO in UAV path planning experiments
is significantly better than that of other competing algorithms.

The results of the Friedman test for each algorithm are shown in Table 9.
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Table 8. Wilcoxon test results for path planning experiments.

Scenario
SGGTSO

Vs.
PSO

SGGTSO
Vs.

ARO

SGGTSO
Vs.

BWO

SGGTSO
Vs.

WOA

SGGTSO
Vs.

TSO

1 3.38 × 10−06 3.38 × 10−06 3.34 × 10−06 2.61 × 10−04 6.84 × 10−07

2 5.45 × 10−03 3.39 × 10−06 1.40 × 10−03 3.39 × 10−06 1.15 × 10−01

4 4.14 × 10−06 3.39 × 10−06 1.33 × 10−05 3.39 × 10−06 4.79 × 10−03

5 1.87 × 10−03 3.39 × 10−06 4.02 × 10−05 3.39 × 10−06 5.74 × 10−05

6 2.62 × 10−04 3.39 × 10−06 4.81 × 10−05 7.48 × 10−06 4.81 × 10−05

7 1.89 × 10−04 4.14 × 10−06 1.10 × 10−05 3.39 × 10−06 2.80 × 10−05

8 1.22 × 10−03 3.39 × 10−06 1.94 × 10−05 3.39 × 10−06 1.14 × 10−02

9 2.80 × 10−05 4.14 × 10−06 5.74 × 10−05 1.94 × 10−05 4.02 × 10−05

Table 9. Friedman test results.

Algorithm Rank Mean

SGGTSO 1.00
TSO 2.56
BWO 3.11
PSO 3.67
ARO 5.11
WOA 5.56

In the 3D UAV path planning experiments, a smaller value of the total cost function for
each path proves that the path is better. Therefore, in the Friedman test results, the smaller
the rank mean value, the better the performance of the algorithm. It is clear from Table 9 that
SGGTSO has the smallest rank mean value and TSO ranks second, which further proves that
the performance of SGGTSO in finding the optimal path in the UAV path planning problem
is significantly better than other comparative algorithms.6.3. Effectiveness Analysis of
Improved Operators.

In order to evaluate the effectiveness of the three improved operators proposed in this
paper on the 3D UAV path planning problem and the impact of the three operators on the
UAV path, three algorithms, the TSO algorithm that was improved using only the sigmoid
nonlinear weight operator (STSO), the TSO algorithm that was improved using only the
multi-subgroup Gaussian mutation strategy and the TSO algorithm that was improved
using only the elite individual genetic algorithm (GATSO), are compared in scenarios 1 to
9. The experiments were repeated 15 times for each algorithm in each terrain scenario, and
the mean and standard deviation data are recorded in Table 10.

Table 10. Experimental data of three algorithms in nine terrain scenarios.

Scenario Performance STSO GTSO GATSO

1
Mean 4620.8825 4620.8548 4620.8592

Std 0 0.0015 0.0098

2
Mean 4686.0970 4682.9206 4696.2323

Std 4.5982 1.7642 14.3759

3
Mean 4740.9113 4735.7062 4760.4279

Std 10.5602 6.2401 20.3521

4
Mean 5280.2424 5031.8022 5321.5388

Std 63.2109 136.6834 78.7448

5
Mean 5018.4269 4706.0178 4842.7981

Std 332.3896 8.9056 82.1410

6
Mean 5153.3339 5020.0487 5012.6240

Std 92.9241 177.1283 214.6043
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Table 10. Cont.

Scenario Performance STSO GTSO GATSO

7
Mean 5398.8291 5019.7883 4992.0453

Std 471.1005 364.8271 334.5125

8
Mean 5376.6540 5258.5874 5411.3050

Std 64.9558 64.6204 36.0006

9
Mean 4966.3454 4713.3572 4790.3192

Std 281.7301 22.2578 166.7033

The top view of the flight paths planned by the three improved TSO algorithms is
shown in Figure 9.
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From the experimental results of the three improved TSO algorithms in Table 5, it can
be seen that in scenarios 2, 5 and 8, the mean value of the cost function of the GTSO planning
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path is smaller than that of SGGTSO, but the difference between them is very small, and in
complex terrain scenarios 4, 6 and 7, the mean value of GTSO is larger than that of SGGTSO.
The cost overhead of the paths planned by GTSO in all test scenarios is smaller than that of
the paths planned by TSO. The path cost overhead planned by STSO in scenarios 4, 5, 8
and 9 is greater than that of TSO. The path cost overhead planned by GATSO in scenarios
2, 3, 4 and 8 is greater than that of TSO. Through the above comparative analysis, the
impact and effectiveness of the three different operators proposed in this paper on 3D
UAV path planning can be clearly seen. In complex scenario 7, the mean value of GTSO is
approximately 575 smaller than TSO, which indicates that the multi-subgroup Gaussian
mutation operator greatly enriches the population diversity of the SGGTSO algorithm, thus
improving the global exploration capability of the SGGTSO algorithm, and thus, GTSO
is able to plan a flight path closer to the global optimum. The sigmoid nonlinear weight
parameter can help the SGGTSO algorithm to balance the ability of global exploitation
and local exploration more effectively. As can be seen from Figure 9, although GTSO can
plan paths closer to the global optimum in complex scenarios 4, 6, 7 and 8, the mean value
of GTSO is larger than SGGTSO, which indicates that GTSO only improves the ability of
global exploitation without maintaining a good balance between global exploitation and
local exploration, and thus, GTSO does not perform a good search for the surrounding
intervals of high-quality candidate solutions. The principle of the elite individual genetic
strategy is to use high-quality candidate solutions to guide ordinary candidate solutions
for updating. The experimental data of GATSO shows that the average value of GATSO in
four scenarios is greater than that of TSO, which indicates that although GATSO can use
high-quality candidate solutions to guide ordinary candidate solutions, GATSO still lacks
certain global exploration abilities, which makes it difficult for the GATSO algorithm to
find better candidate solutions.

The convergence curve in Figure 7 indicates that SGGTSO has a very fast convergence
rate, which fully illustrates that the elite individual genetic strategy can guide the candidate
solutions in the population towards the high-quality solutions, and thus accelerate the
convergence rate of SGGTSO.

From the top view of the three improved TSO algorithms for planning paths, it can
be seen that there is not much difference between the three algorithms in scenarios 1, 2,
3, 5 and 8. In the complex terrain scenarios 4, 6, 7 and 8, the GTSO algorithm is able to
plan a flight path that is closer to the global optimum. This further illustrates the ability of
the multi-subgroup Gaussian mutation strategy to improve the global exploitation of the
algorithm. The combined experimental results of Section 6.2 and this section demonstrate
that the three improved operators proposed in this paper are effective in the UAV path
planning problem.

7. Discussion

The comparison experiments between CEC2017 and 3D UAV path planning based on
spherical vectors are able to demonstrate a significant improvement in the convergence
speed and global exploitation capability of SGGTSO compared to the original TSO algo-
rithm. These two sets of comparison experiments also confirm that the sigmoid nonlinear
weight parameters well; the multi-subgroup Gaussian mutation operator and the elite
individual genetic strategy proposed in this paper can be well integrated and adapted
with the TSO algorithm. In the UAV path planning problem, SGGTSO can generate paths
that are safe and feasible while meeting a shorter flight distance. The fitness cost function
Equation (10) of UAV path planning designed in this paper is changeable according to
the actual working requirements of the UAV, for example, the UAV fuel consumption cost
function, the UAV weight cost function and the weather factor cost functions can be added
to Equation (10), these can be changed specifically according to different requirements. Due
to the addition of genetic algorithm-related calculations to TSO, SGGTSO has increased
time complexity compared to TSO. In future research, we will further optimize SGGTSO so
that SGGTSO can reduce some of the time complexity without reducing the optimization
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capability. In the elite individual genetic strategy, the probability parameter µ of gene vari-
ation can affect the population diversity of the SGGTSO algorithm, and in future research
work, we will conduct further comparative experiments to determine the most suitable
probability parameter µ of gene mutation for the SGGTSO algorithm.

8. Conclusions

The research of the 3D UAV path planning problem has important significance and
value for smart cities and smart buildings. The application of 3D UAV path planning
algorithms in smart cities and smart buildings can improve logistics efficiency, enhance
emergency response capabilities and provide services such as indoor navigation. Aiming
at the 3D UAV path planning problem, this paper proposes an SGGTSO algorithm that
incorporates sigmoid nonlinear weights, multi-subgroup Gaussian mutation operators
and elite individual genetic strategies. The original TSO algorithm has the disadvantage
of slow convergence and weak global exploitation capability. Using a sigmoid nonlinear
parameter improvement strategy to modify the parameter p in the parabolic foraging
strategy of TSO, the improved SGGTSO algorithm is able to move more smoothly from
global exploitation to local exploration during the iterative process. This paper uses
different Gaussian mutation strategies for different populations, which on the one hand
can improve the global exploitation ability of SGGTSO and on the other hand can improve
the swarm diversity of the SGGTSO algorithm. Finally, the elite individuals in the tuna
population are genetically crossed with common individuals by using the elite individual
genetic strategy, so that the tuna population can produce more high-quality individuals as
the number of iterations increases, thus accelerating the convergence rate of the SGGTSO
algorithm. In the CEC2017 test set, the mean value obtained by the SGGTSO algorithm
calculated in 82.8% of the functions is significantly better than other competing algorithms.
The convergence curves of the CEC2017 experiments further demonstrate that SGGTSO
effectively compensates for the shortcomings of TSO in terms of convergence speed and
global development capability.

We applied SGGTSO and PSO, ARO, BWO, WOA and TSO algorithms to a spherical
vector-based 3D UAV path planning problem. In nine different terrain scenarios, the path
planned by SGGTSO has the smallest value of the fitness function, and in complex scenarios
4, 6 and 7, none of the other algorithms except SGGTSO could find a globally optimal path.
The convergence curves of the algorithms on the problem of UAV path planning indicate
that SGGTSO has a significant advantage in this problem. In eight scenarios other than
scenario 4, SGGTSO is able to converge quickly and plan the optimal flight path within
about thirty iterations, which is another indication that SGGTSO can effectively assist UAVs
in solving path planning problems.

The time complexity of SGGTSO is slightly increased compared to TSO. In future
research, we will further optimize the algorithm structure of SGGTSO in order to have a
smaller time complexity while ensuring that the comprehensive performance of SGGTSO
remains unchanged.
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