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Abstract

:

Drone detection is a significant research topic due to the potential security threats posed by the misuse of drones in both civilian and military domains. However, traditional drone detection methods are challenged by the drastic scale changes and complex ambiguity during drone flight, and it is difficult to detect small target drones quickly and efficiently. We propose an information-enhanced model based on improved YOLOv5 (TGC-YOLOv5) for fast and accurate detection of small target drones in complex environments. The main contributions of this paper are as follows: First, the Transformer encoder module is incorporated into YOLOv5 to augment attention toward the regions of interest. Second, the Global Attention Mechanism (GAM) is embraced to mitigate information diffusion among distinct layers and amplify the global cross-dimensional interaction features. Finally, the Coordinate Attention Mechanism (CA) is incorporated into the bottleneck part of C3, enhancing the extraction capability of local information for small targets. To enhance and verify the robustness and generalization of the model, a small target drone dataset (SUAV-DATA) is constructed in all-weather, multi-scenario, and complex environments. The experimental results show that based on the SUAV-DATA dataset, the AP value of TGC-YOLOv5 reaches 0.848, which is 2.5% higher than the original YOLOv5, and the Recall value of TGC-YOLOv5 reaches 0.823, which is a 3.8% improvement over the original YOLOv5. The robustness of our proposed model is also verified on the Real-World open-source image dataset, achieving the best accuracy in light, fog, stain, and saturation pollution images. The findings and methods of this paper have important significance and value for improving the efficiency and precision of drone detection.
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1. Introduction


In recent years, there has been rapid development in drone technology, with continuous improvement in their performance and functionality. The application scenarios of drones span numerous industries, including logistics, agriculture, transportation, and tourism, providing significant convenience for daily production and life. Drones can be divided into civilian consumer, civilian industrial, and military grades according to their application scenarios. Civilian consumer drones can meet people’s entertainment needs, such as aerial photography and navigation. Civilian Industrial drones are mainly used in agriculture, forestry, logistics, and disaster prevention. Although drones have brought convenience to our lives, their misuse can also cause safety problems and bring negative impacts on our lives. In terms of safety and privacy protection, identifying and detecting unauthorized drones can help monitor and prevent potential drone threats. For example, illegal invasion, reconnaissance, malicious attacks, and illegal filming by drones may threaten the safety of important areas, facilities, and personnel. Therefore, it is very important to identify and detect drones in the air.



Currently, the main difficulty of drone detection technology is to detect and identify small drones in complex environments. Small target detection needs to overcome multiple challenges, such as target-background confusion, target occlusion, target deformation, and lighting changes. In recent years, scholars have proposed various techniques for small target detection, broadly categorized into methods based on traditional image processing and methods based on deep learning.



1.1. Methods Based on Traditional Image Processing


This type of method mainly uses techniques of image processing, such as filtering, threshold segmentation, morphological operations, etc., to enhance the contrast and separability of small targets, and then uses classic target detection algorithms, such as HOG, SIFT, SURF, etc., to extract the features of and locate small targets [1,2,3,4]. For example, Srivastava et al. [5] proposed an improved hybrid morphological filter for detecting small targets. This filter provides a high gain in terms of signal-to-noise ratio plus clutter ratio (SCNR), which can effectively enhance small object detection performance. Wu et al. [6] used median filtering, lateral suppression algorithm, and a morphology-based shape matching method to detect the microelectronic components under the optical microscope, effectively improving the edge definition of the microelectronic components under the optical microscope and image quality, and achieving accurate recognition. Dheeman et al. [7] used Histogram of Oriented Gradients (HoG) to locate and label all weed and carrot leaf regions to extract information from regions of interest (ROI). During the decision-making process, plant areas were successfully classified with a success rate of 92%. Kang et al. [8] proposed a self-selective correlation filtering method based on frame regression (BRCF), which can effectively deal with the problem of ship size change and background interference and the success rate and accuracy on the maritime traffic data set More than 8 percentage points higher than Discriminative Scale Space Tracking (DSST). Tang et al. [9] applied the gradient-weighted histogram of the directional gradient algorithm to the global texture feature to extract the vector, and obtained the improved HOG feature. Finally, the average accuracy of the feature extraction classifier can reach 93.7%. Nebili et al. [10] evaluated a method based on bag of features framework, SIFT, and SVM. The object recognition ability of this method on two types of FLIR data sets is superior to the existing level, and the classification accuracy is increased by 3%. The advantage of this type of method is that it is simple and easy to implement, but the disadvantage is that it is sensitive to the selection of parameters, and it is difficult to adapt to complex and changeable scenarios.




1.2. Methods Based on Deep Learning


These methods primarily utilize deep neural networks such as CNN, R-CNN, Faster R-CNN, YOLO, etc., to automatically learn the feature representations and detection models of small targets. For instance, Zhou et al. [11] proposed a deep learning fusion method based on visual perception and image processing, combining classical image processing techniques with YOLOv7. The average positional deviation between the detection results of the two approaches was 5.2 pixels. Khalid et al. [12] employed models such as YOLOv6 and YOLOv8 for pest detection, achieving the highest mAP of 84.7% with YOLOv8. Chu et al. [13] proposed a CNN-based online MOT framework that leverages the advantages of single-object trackers to adapt appearance models and search for targets in the next frame. This algorithm achieved 34.3% and 46.0% on the challenging MOT15 and MOT16 benchmark datasets, respectively. Xu et al. [14] applied YOLO and JPDA algorithms to perform real-time multi-object detection and tracking on small drones, with average accuracies of 0.8 and 0.7 on public datasets and aerial videos captured by drones. Li et al. [15] introduced a novel Perceptual GAN model for detecting small objects by reducing the discrepancy in representations between large and small objects. In challenging benchmark tests such as Tsinghua-Tencent 100 K and Caltech, Perceptual GAN outperformed existing techniques in detecting small objects, including traffic signs and pedestrians. Cao et al. [16] proposed a multi-level feature fusion method that incorporates contextual information into SSD to improve the accuracy of small object detection. The fusion module achieved an mAP improvement of 1.6 and 1.7 points compared to the baseline SSD on PASCAL VOC2007. Liang et al. [17] combined RetinaNet with a bi-directional feature pyramid network, achieving a 1.8% mAP improvement over the original RetinaNet. Luo et al. [18] added 3-D deformable convolutions to the EfficientDet model as pre-detection to restrict detection within smaller regions, resulting in an 8.25% increase in mAP. Currently, in industrial automation, computer vision enables automated inspection and quality control, reducing labor costs and production time while improving product quality. For instance, Nath et al. [19] developed a vision-based surface defect classification framework by utilizing histogram equalization and adversarial training through neural structure learning (NSL), achieving an ultimate recognition accuracy of 92.4%. In the field of visual measurement applications, Tang et al. [20] proposed a novel visual crack width measurement method based on backbone dual-scale features, which achieves more accurate measurement results. Que et al. [21] introduced a digital image data augmentation approach using Generative Adversarial Networks (GAN) and an improved deep learning network (VGG) for crack classification. As a result, the improved VGG model showed a 5.9% increase in crack prediction accuracy. The advantages of these methods lie in their ability to effectively extract high-level semantic information, exhibiting strong generalization ability and robustness. However, they require a large amount of annotated data and computational resources, and the detection accuracy for small targets still needs improvement [22,23,24,25,26,27,28,29,30,31,32,33,34,35].



Due to the limited accuracy of current deep learning networks in detecting small objects, researchers have attempted to improve detection performance by improving the backbone network. For example, Andrew et al. [36] tried to replace the backbone feature extraction network with a lighter MobileNet network to achieve a lightweight network model and balance speed and accuracy. Wang et al. [37] reparametrized the ResNeXt model structure as the backbone of the model, resulting in a detection speed 14 frames faster than the original YOLOv5. Dai et al. [38] replaced the Conv in the C3 module with CrossConv, addressing the issue of feature similarity loss in the fusion process and enhancing feature representation, leading to a 7.5% increase in mAP. Wang et al. [39] replaced the traditional convolution with deformable convolution networks, resulting in a 2.3% improvement in detection accuracy compared to the original network model. Gao et al. [40] introduced a novel CNN building block called Res2Net, which outperformed the state-of-the-art baseline methods at the time by constructing hierarchical connection blocks similar to residual connections within a single residual. Wang et al. [41] incorporated transformers in the last convolutional module of the backbone network, effectively enhancing the feature extraction capability of the backbone network. Although these improvements have enhanced the feature representation capability, the overall performance improvement remains limited.



The performance issues in current backbone network improvements have prompted scholars to adopt various attention mechanisms to enhance the response and saliency of small targets in feature maps, thereby further improving small target detection. For instance, Yang et al. [42] integrated the scSE (spatial and channel compression and excitation) attention module into their algorithm, which allowed the backbone network to pay greater attention to the feature information of small targets, resulting in a 5.3% increase in mAP compared to the original network model. Hong et al. [43] incorporated the coordinate attention (CA) mechanism into the backbone feature extraction network, focusing more on the growth characteristics of asparagus. The improved YOLOv5 model achieved a 4.22% increase in mAP@0.5 compared to the YOLOv5 prototype network. Gong et al. [44] replaced the original convolutional prediction head with the Swin Transformer prediction head (SPHs). SPHs, an advanced self-attention mechanism, reduces computational complexity to linear through its sliding window design. Additionally, they integrated the normalization-based attention modules (NAMs) into YOLOv5 to improve attention performance in a standardized manner. This approach resulted in a 0.071% increase in average precision mAP on the DOTA dataset. Xiao et al. [45] introduced the coordinate attention module (CA) into the YOLOv5 algorithm, improving the detection accuracy of damaged camellia seeds in stacked camellia seeds by 6.1%. Ren et al. [46] inserted the Efficient Channel Attention (ECA) module into the Ghost module to facilitate information interaction among channels and suppress redundant features, resulting in a 2.8% increase in AP. Qi et al. [47] incorporated the Squeeze-and-Excitation (SE) module into the YOLOv5 model, drawing inspiration from human visual attention mechanisms to extract crucial features. This method achieved a 1.78% improvement in average precision mAP@0.5 compared to YOLOv5. Zhu et al. [48] improved the feature extraction capability of the Backbone module by integrating the Convolutional Block Attention Module (CBAM) attention mechanism. Although this improvement increased the recognition time, the model’s success rate in locating pickup points improved by 5.84% to 11.53%. Li et al. [49] introduced the Triplet Attention Mechanism into the YOLOV5 model to enhance feature extraction capability, resulting in an average mAP increase of 11.6%. Dai et al. [50] employed Faster R-CNN for object detection and utilized a multi-head attention structure composed of spatial attention and self-attention to improve the model’s ability to learn and utilize internal grammatical features of natural sentences. This model achieved improved accuracy in standard automatic evaluation metrics for captions. These improvements have achieved varying degrees of enhancement over the original models but have also resulted in higher model complexity and increased memory requirements.




1.3. This Work


Although the effectiveness of the aforementioned methods in improving object detection performance has been demonstrated, they still suffer from certain limitations, such as poor detection performance for small targets, high model complexity, and large memory footprint. Moreover, existing models lack sufficient feature information extraction for small target objects due to false detection issues caused by environmental factors and the occlusion conditions of small targets. When the image background is complex, blurry, and contaminated simultaneously, a significant amount of information loss occurs, making the detection of these objects challenging. Additionally, a single scale is unable to address the problem of low detection accuracy for small targets of different scales in complex backgrounds under all weather conditions. Models trained on a single scale also exhibit inadequate generalization capability for small target detection. To tackle the information loss problem in small target detection, we propose a framework called TGC-YOLOv5 for enhancing information in small target drone detection. From the perspective of improving the backbone network and optimizing attention mechanisms, we focus more effectively on regions of interest (ROI) in the images, reducing information loss in the detection of targets and improving the detection accuracy of small targets in complex backgrounds and occlusion conditions. Importantly, the model’s complexity is not significantly increased. The main contributions of this paper are as follows:




	(1)

	
We provide a small target dataset, SUAV-DATA, consisting of 10,000 images capturing small drones from different angles and under complex background conditions. Some targets in these images are occluded, and annotations are provided for all drones.




	(2)

	
We introduce a Transformer encoder module into YOLOv5, enhancing the capability to detect local information.




	(3)

	
We incorporate a global attention mechanism (GAM) to reduce message diffusion between different layers and amplify globally interactive features across dimensions. Additionally, we integrate a coordinate attention mechanism (CA) into the bottleneck part of C3, further enhancing the extraction capability of feature information for small targets.











2. Dataset


The current drone datasets primarily focus on a single drone in a ground-to-air scenario. Publicly available drone datasets can be classified into two main categories. The first category consists of drone videos captured frame by frame, allowing for customization of the number of targets of varying sizes. While the image quality is high, this type of dataset suffers from overfitting due to the limited diversity of drone types. The second category includes images of drones of different models captured in various scenes. Although this category offers a wide range of drone types, it still predominantly features medium and large-sized drones, with a limited representation of small-target drones. Currently, the publicly available image datasets suitable for drone detection include the Real World dataset [51], the Det-Fly dataset [52], the MIDGARD dataset [53], and the USC-Drone dataset [54]. The Real World dataset provides various types of drones captured in different shooting environments, albeit at a lower image resolution. The Det-Fly dataset encompasses images of drones captured in different attitudes, but it is limited to a single drone type. The MIDGARD and USC-Drone datasets both focus on a single drone type but offer a more diverse set of environments. However, the existing publicly available datasets suffer from limitations, such as the dominance of medium and large-sized drones, limited variety in shooting angles, lack of diverse backgrounds, and minimal occlusion and blur interference. Therefore, to address these limitations, we have created our dataset (SUAV-DATA) using image processing and enhancement techniques. This dataset includes numerous small target drones of different models captured in complex all-weather environments. Figure 1 illustrates some typical images from the dataset. Additionally, we emphasize the importance of ensuring the quality of the dataset, ensuring that the images are clear, accurate, and unambiguous, in order to enhance the precision and robustness of drone detection algorithms.



The SUAV-DATA dataset contains 10,000 drone images captured from various angles and complex backgrounds, some of which are partially obscured. All drone images have corresponding annotation files. The dataset includes various weather conditions, such as sunny, rainy, foggy, snowy, and sandy. The image background templates are mainly characterized by a variety of scenes such as cities, farmland, landscapes, war zones, skies, oceans, and streets, providing ample diversity. The drone templates have various characteristics of samples, angles, and types after image processing [23], which are shown in Figure 2. The dataset covers various specifications of drones, with small and medium-sized drones accounting for over 78% of the dataset. Shooting angles include the overhead view, horizontal view, and bird’s-eye view, with the overhead view accounting for 70%, the horizontal view accounting for 20%, and the bird’s-eye view accounting for 10%. The drone types are mainly composed of multi-rotor drones, including quadcopters, hexa-copters, and octocopters. The SUAV-DATA dataset effectively overcomes common problems in existing open datasets, such as a single drone type and shooting angle, limited background diversity, bias towards large and medium-sized drones, a lack of small drone samples, and limited obstacles and blurriness of drone targets in images.



There are currently two main definitions for multi-scale targets: one is based on the relative scale [24], which defines the intervals based on the ratio of bounding box size to image area; the other is based on the absolute scale [55], which divides pixel sizes into three levels: small targets (pixel size below 322), medium targets (pixel size between 322 and 962), and large targets (pixel size above 962). The dataset includes three types of drones: quadcopters, hexa-copters, and fixed-wing drones. The statistical data of the quantities of the three scales of drones, i.e., large, medium, and small, in the dataset, are shown in Figure 3. It can be observed that the quantities of small and large drones are relatively balanced. Such a setup facilitates the model in capturing more feature information of small targets [56], thereby further enhancing the final recognition accuracy.




3. Framework


3.1. Overview of YOLOv5


YOLOv5 [57] consists of three parts: the Backbone, Neck, and YOLO Head. CSPDarknet is used as the backbone feature extraction network, which generates three effective feature layers from the input image. PANet is used for enhanced feature extraction, which fuses the three effective feature layers from the backbone and extracts features from them. It performs both up-sampling and down-sampling on features to achieve feature fusion. The YOLO Head serves as the classifier and regressor of YOLOv5, determining the corresponding objects for feature points. YOLOv5 has five derived models, namely YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, all with the same model architecture but different widths and depths. Smaller models have faster speeds, usually designed for mobile deployment, while larger models have better performance but higher computational complexity. To achieve faster detection speed, this paper chose the smallest model, YOLOv5s, and made corresponding improvements based on it.




3.2. TGC-YOLOv5


The TGC-YOLOv5 model proposed by us is based on the smallest model Yolov5s in the original Yolov5 series, and the original images are uniformly adjusted to a size of 640 × 640 when inputted. Firstly, the Transformer encoder model [58] is introduced in YOLOv5 to enhance the local information of object detection ability; then, the Global Attention Mechanism (GAM) is introduced to reduce the message diffusion between different layers and amplify the global cross-dimensional interactive features; finally, the Coordinated Attention Mechanism (CA) is added to the bottleneck part of CSPDarknet, which further improves the feature extraction ability for small target information. This section will introduce the improved Yolov5 network model in three parts, and the model framework is shown in Figure 4.




3.3. Transformer Encoder Block


Figure 5c shows the performance of YOLOv5s + Transformer in feature enhancement. Inspired by the Vision Transformer, we replaced the bottleneck corresponding to CSPDarknet53 in the eighth layer of the original Yolov5s version with a Transformer encoder block, as shown in Figure 6. Compared to the original CSP bottleneck, the Transformer encoder block utilizes multi-head attention mechanisms to obtain more abundant semantic features and employs encoder-decoder and attention mechanisms to achieve efficient parallelization and improve speed.



The Encoder part consists of N identical layers, each of which contains two sub-layers: a multi-head self-attention mechanism and a fully connected feed-forward network.



Each sub-layer is augmented with a residual connection and normalization, that is, a residual connection is used between the two sub-layers, followed by layer normalization. Therefore, the output of the sub-layer can be represented as:


   sub _ layer _ output = LayerNorm   (   x +   (  subLayer  ( x )   )   )   



(1)







The Transformer utilizes an attention mechanism to reduce the distance between any two positions in a sequence to a constant. The attention layer can capture global connections in one step because it directly compares each element in the sequence with every other element (the cost becomes O(n2), but because it is a pure matrix operation, the computational burden is not too severe). In contrast, RNNs need to recursively capture connections, while CNNs need to stack layers to expand the receptive field, making the attention layer distinctly advantageous.




3.4. Global Attention Mechanism


The Global Attention Mechanism [59] is an attention mechanism that can amplify global feature interactions while reducing message diffusion. It adopts a sequential channel-spatial attention mechanism and modifies the processing method of the CAM(Channel Attention Mechanism) and SAM(Spatial Attention Mechanism) in the CBAM [60] (Convolutional Block Attention Module) submodule. The entire process is shown in Figure 7, and the input feature mapping    F 1  ∈  R  C × H × W    , the intermediate state    F 2   , and the output    F 3    is given in Formulas (1) and (2).


   F 2  =  M c   (   F 1   )  ⊗  F 1   



(2)






   F 3  =  M S   (   F 2   )  ⊗  F 2   



(3)







In contrast to CBAM, Global Attention Mechanism first performs dimensionality transformation on the input feature map for CAM, which is then fed into an MLP and transformed back to its original dimensionality. After undergoing Sigmoid processing, the output is generated. The process is illustrated in Figure 8.



For SAM, Global Attention Mechanism mainly uses convolution processing, which is somewhat similar to the SE attention mechanism, reducing the number of channels first and then increasing it. Firstly, the channel number is reduced by convolution with a kernel size of 7 to reduce the computational cost. Then, a convolution operation with a kernel size of 7 is performed to increase the channel number, keeping the channel number consistent. Finally, after Sigmoid processing, the output is obtained. The process is shown in Figure 9. Figure 5d shows the performance of YOLOv5s + Transformer + GAM in feature enhancement.




3.5. Coordinate Attention Mechanism


The Coordinate Attention mechanism [61] encodes channel relationships and long-term dependencies with precise positional information. Figure 10 shows the flow chart, which consists of two steps: Coordinate Information Embedding and Coordinate Attention generation.



3.5.1. Coordinate Information Embedding


Global pooling methods are commonly used to encode spatial information for channel attention, but they compress global spatial information into channel descriptors, making it difficult to preserve positional information. To enable attention modules to capture remote spatial interactions with precise positional information, this paper decomposes global pooling into a pair of one-dimensional feature encoding operations according to the following formula:


   z c  =  1  H × W     ∑  i = 1  H     ∑  j = 1  W    x c   (  i , j  )      .  



(4)







Specifically, given an input X, the channel is encoded along the horizontal and vertical coordinates using a pooling kernel of size (H, 1) or (1, W), respectively. Therefore, the output of channel c at height h can be represented as:


   z c h   ( h )  =  1 W    ∑  0 ≤ i ≤ W     x c   (  h , j  )    .  



(5)







Similarly, the output of the c-th channel with width w can be written as:


   z c w   ( w )  =  1 H    ∑  0 ≤ j ≤ H     x c   (  j , w  )    .  



(6)







The two transformations mentioned above aggregate features along two spatial directions to obtain a pair of direction-aware feature maps. This is very different from the SE Block that produces a single feature vector in channel attention methods. These two transformations also allow the attention module to capture long-term dependency relationships along one spatial direction and preserve precise position information along the other spatial direction, which helps the network more accurately locate the target of interest.




3.5.2. Coordinate Attention Generation


After the transformations in the information embedding stage, this section concatenates the above transformations and then applies the 1  ×  1 convolutional transformation function F1 to it:


  f = δ  (   F 1   (   [   z h  ,  z w   ]   )   )  ,  



(7)







The expression [▪, ▪] represents the concatenate operation along the spatial dimension, δ denotes the non-linear activation function, and f is the intermediate feature map encoding the spatial information in the horizontal and vertical directions. Then, f is decomposed into two separate tensors    f h  ∈  R  C / r × H     and    f w  ∈  R  C / r × W     along the spatial dimension. Using two additional 1  ×  1 convolutional transforms    F h    and    F w   ,    f h    and    f w    are transformed into tensors with the same number of channels as the input X along the spatial dimension, resulting in:


   g h  = σ  (   F h   (   f h   )   )  ,  



(8)






   g w  = σ  (   F w   (   f w   )   )  .  



(9)







Here, σ is the sigmoid activation function. To reduce the complexity and computational cost of the model, an appropriate reduction ratio is usually used to reduce the number of channels in f. Then,    g h    and    g w    are expanded and used as attention weights. Finally, the output Y of the Coordinate Attention Block can be written as:


   y c   (  i , j  )  =  x c   (  i , j  )  ×  g c h   ( i )  ×  g c w   ( j )  .  



(10)







The performance of TGC-YOLOv5s in feature enhancement is shown in Figure 5e. It can be seen from Figure 5 that with the addition of Transformer, GAM, and CA based on YOLOv5s, each model pays more attention to the regions of interest and performs better than the previous one, highlighting the areas of small and medium-sized objects and making the definition of drones clearer.






4. Results and Discussion


To validate whether the improved model can enhance the performance of small object detection, we conducted ablation and parallel experiments. In the experiments, we used Windows 11 Professional 64-bit operating system and NVIDIA GeForce RTX 3090 GPU for model training and testing and set the evaluation metric IoU to 0.5.



In our experiments, we used Precision, Recall, and mAP (mean Average Precision) to represent the detection results of each model, and used mAP to represent the average precision of the model as a whole. The Recall indicates the ratio of detected objects TP to all objects that should be detected TP + FN, while Precision represents the ratio of detected objects TP to all detected objects TP + FP. The formulas for these three-evaluation metrics are listed below.


  precision =   TP   TP + FP    



(11)






  Recall =   TP   TP + FN    



(12)






  AP =    ∫ 0 1   P ( R )    d ( R )  



(13)






  mAP =  1 N    ∑  i = 1  N     AP  i     



(14)




where N in formula 14 represents the total number of categories. Among them, the TP (true positive) refers to instances that are correctly predicted as positive, where the true value of the data is positive and the predicted value is also positive. The TN (true negative) refers to instances that are correctly predicted as negative, where the true value of the data is negative and the predicted value is also negative. The FP (false positive) denotes instances that are incorrectly predicted as positive, where the true value of the data is negative, but they are mistakenly predicted as positive. The FN (false negative) represents instances that are incorrectly predicted as negative, where the true value of the data is positive, but they are mistakenly predicted as negative.



4.1. Determination of The TGC Method’s Position


We augmented the network’s capabilities by incorporating a Transformer Encoder module, Coordinate Attention, and GAM (Global Attention Module) after C3-3. To validate our selection, we introduced a Transformer Encoder module after C3-1 and a GAM after C3-2, respectively. The enhanced models were trained using the SUAV-DATA dataset, and the experimental results are presented in Table 1. The results indicate that the TGC method, integrated into the model after C3-3, achieves the highest precision, recall, and mAP scores. Therefore, the experimental results have confirmed the feasibility of our improved location selection.




4.2. Ablation and Parallel Experiments Results


The experimental results are shown in Table 2. In the ablation experiments, the combination of Yolov5s and Transformer achieved a 1% improvement in MAP over the original Yolov5s. This suggests that adding the Transformer model, which uses a multi-head attention mechanism, can obtain richer semantic features and improve detection performance. We then attempted to add different attention mechanisms on top of the Yolov5s-Transformer base. The attempted attention mechanisms were CBAM, SE, NAM, CA, and GAM. Among them, the addition of the GAM module resulted in a MAP of 0.837, which was a 0.4% improvement over the combination without GAM. These results suggest that the GAM module can reduce information diffusion and amplify global interaction features, thereby improving the detection accuracy of small target objects. Finally, by modifying the bottleneck part of C3 and introducing the Coordinate Attention (CA) module to form C3CA, the MAP of the model was improved by 1.1% compared to Yolov5s-Transformer-GAM. These results indicate that the introduction of the Coordinate Attention module further enhances the ability to extract feature information of small target objects in the network, greatly improving the detection accuracy of small target objects. Compared with the original Yolov5s model, the TGC-YOLOv5 module greatly improved the AP of small target drones. In the parallel experiments, the TGC-YOLOv5 model provided higher AP than other models. The experiments showed that TGC-YOLOv5 can effectively overcome the complex background and blurred conditions of small targets under all weather conditions, thereby improving detection accuracy. The experimental results indicate that, by improving the backbone module and utilizing the multi-head attention mechanism of the Transformer model, we can obtain richer semantic features, minimize the information loss caused by down-sampling every two steps, and introduce a global attention mechanism to further reduce information diffusion and amplify the global interaction features. On the other hand, introducing the CA module in the bottleneck part of C3 enhances the ability to extract feature information of small target objects in the network, effectively reducing information loss between layers and thereby improving the detection accuracy of the model. Figure 11a shows the results of the ablation experiment, and (b) shows the radar chart of the parallel experiment results.



The floating-point operation (FLOP) is a widely used metric in resource-efficient modules. In this study, the number of FLOPs refers to the number of multiply-add operations, which is used to measure the complexity of the algorithm or model. Params refer to the total number of trainable parameters in the network model [62]. As shown in Figure 12, TGC-YOLOv5 achieves the highest accuracy without causing excessive increases in FLOPs and Params. The results show that TGC-YOLOv5 achieves a high detection accuracy for small drones without increasing FLOPs and Params, achieving a good balance between memory and accuracy.




4.3. Comparison of Detection Performance for Different Sizes of Drones


To compare the detection performance of TGC-YOLOv5 on large, medium, and small drones within the SUAV-DATA dataset, we divided the SUAV-DATA dataset into three parts: large targets (pixel size above 962), medium targets (pixel size between 322 and 962), and small targets (pixel size below 322). We trained and evaluated TGC-YOLOv5 on these three categorized drone datasets, and the experimental results are shown in Table 3.



From Table 3, it can be observed that both YOLOv5s and TGC-YOLOv5 exhibit similar detection performance for medium and large-sized drones, with mAP values exceeding 95%. However, the detection performance for small-sized drones is relatively poorer. TGC-YOLOv5 outperforms YOLOv5s in all three datasets, especially in the dataset containing small-sized drones, where TGC-YOLOv5 shows a 3.3% improvement in mAP. Based on the above analysis, TGC-YOLOv5 demonstrates good detection performance across three categories of drones: large, medium, and small.




4.4. Experimental Results on Public Drone Datasets


To evaluate the performance of TGC-YOLOv5 on other publicly available drone datasets, we selected the Real-World and Drone-dataset. Both datasets offer a diverse range of drone types and environments, with multiple perspectives. Table 4 presents the comparative experimental results of these two datasets. It can be observed that, in the Real-World dataset, TGC-YOLOv5 achieves a Precision value 0.2% higher than YOLOv5s, a Recall value 1.7% higher than YOLOv5s, and a mAP (mean Average Precision) value 0.9% higher than YOLOv5s. In the Drone-dataset, TGC-YOLOv5 achieves a Precision value 0.5% higher than YOLOv5s, a Recall value 1.1% higher than YOLOv5s, and a mAP value 1.4% higher than YOLOv5s. It can be observed that our TGC-YOLOv5 demonstrates improvements in various metrics compared to the original model, both on the Real-World and Drone-dataset.




4.5. Robustness Analysis


To validate the robustness of the model, we conducted robustness testing on the public remote sensing dataset Real World [51]. The ratio of training to validation sets in the dataset is 5:1. Figure 13 compares the results of the original model and our model. Our model can more accurately detect small target drones in complex environments, while the original model often has problems with false positives and missed detections, unable to detect drones that are small targets in the distance of the image, which are highlighted by the yellow oval box in Figure 13.



To validate the model’s anti-interference ability, we conducted anti-interference experiments. We used the Imgaug method to verify four pollution variables in the same dataset: light, fog, stains, and saturation [63]. Each pollution variable was divided into five different severity levels, as shown in Figure 14. Under the same model settings, a well-trained model of drone images without pollution was used to test 20 drone images with different pollution levels. Our experimental results are shown in Table 5.



The parallel experimental results in Table 5 indicate that TGC-YOLOv5 is superior to other models in terms of anti-interference. Different types of pollution in the environment have a negative impact on detection accuracy, causing some features to be obscured and reducing the model’s perception of features. From the changes in model detection results across different severity levels, we found that the model exhibited the best robustness against fog pollution, with a variation of 4.2% in average precision (AP) from severity level 1 to severity level 5. The robustness against saturation pollution was relatively good, with a variation rate of 4.8%. However, the model showed poorer robustness against light pollution and debris pollution, with variations of 6.3% and 17.9%, respectively. These results indicate that fog and saturation pollution have the least impact on the features of small targets in all-weather environments, but still obscure some location feature information. From the results of the robustness experiment, it is once again verified that TGC-YOLOv5 has high accuracy in detecting small target drones in all-weather environments.




4.6. Comparison of Small Object Detection Algorithms


To compare the performance of TGC-YOLOv5 in small object detection across different domains, we selected the VisDrone2021 dataset. This dataset contains abundant instances of small objects, encompassing a wide range of scenes, and is divided into ten categories, including person, car, van, bus, etc. It is popular and authoritative in the field of small object detection. As shown in Table 6, we summarized the performance of other algorithms in the field of small object detection over the past five years, comparing the metrics of mAP50, mAP, GFLOPs, and parameters. Through this comparison, it is evident that our model exhibits the best overall performance in terms of mAP50 and mAP, while maintaining relatively low levels of GFLOPs and parameters. This implies that our TGC-YOLOv5 model achieves the highest detection accuracy under the condition of a relatively low parameter count.




4.7. Discussion


Based on the previous experiments, it has been demonstrated that TGC-YOLOv5 exhibits the best overall performance on the SUAV-DATA dataset. It performs well in detecting large and medium-sized drones and shows a significant improvement in overall accuracy for small drones compared to the original YOLOv5. It also outperforms the original YOLOv5 on other publicly available drone datasets. In terms of robustness analysis, TGC-YOLOv5 demonstrates the best resistance to interference among all the compared models. Furthermore, TGC-YOLOv5 achieves the best overall performance on the publicly available small object dataset, VisDrone2021.



A portion of the images in the SUAV-DATA dataset is synthetically generated by combining drone imagery with image background templates. Due to the difficulties in obtaining drone images in different backgrounds, especially under various weather conditions such as rain, snow, and fog, the synthesis method can make up for the lack of data in these scenarios to a certain extent. These synthetic images may exhibit some differences compared to real data. To understand the limitations and potential biases introduced by the synthetic generation process, we conducted experiments accordingly. We considered separating the SUAV-DATA dataset into two categories: real images and synthetic images. We then trained the original YOLOv5s model and the TGC-YOLOv5 model on these two datasets separately. The experimental results are presented in Table 7.



According to Table 7, though the recognition performance of real data is a little better than that of synthetic data, the difference in performance is little. Besides, when using the improved model, there is a slight improvement in accuracy with synthetic data, but the overall difference is not significant, indicating that the impact of synthetic data on the results is relatively small. Therefore, we can assume that this kind of data has a small impact on our experiments to some extent.



We applied the TGC method to the latest YOLOv8 model. Table 8 presents the training results of YOLOv8s and TGC-YOLOv8 on the SUAV-DATA dataset. It can be observed that TGC-YOLOv8 achieved a 2.1% improvement in mAP compared to YOLOv8s, and a 1.2% improvement compared to TGC-YOLOv5. Therefore, we have reason to believe that the TGC method can be successfully extended to other object detection algorithms, yielding promising detection performance.





5. Conclusions


The potential security threat arising from the misuse of drones in both civilian and military domains has made drone detection an increasingly important research topic. The primary challenge in current drone detection technology lies in accurately detecting small drones in complex environments. However, mainstream deep learning-based object detection methods face challenges such as severe scale variations and complex environmental ambiguity during drone flights, making it difficult to detect small drones rapidly and accurately. This paper aims to address the issues related to small drone detection in complex environments by proposing an information enhancement model for small drones (TGC-YOLOv5). Firstly, we enhance the attention to regions of interest by integrating the Transformer encoder module into YOLOv5. Secondly, we employ a global attention mechanism to alleviate information diffusion between different layers and amplify global cross-dimensional interaction capabilities. Lastly, we introduce a coordinate attention mechanism into the bottleneck section of C3 to enhance the local information extraction ability for small targets. Additionally, to overcome the current lack of drone datasets with multiple perspectives, small targets, and complex environments, and to enhance the model’s robustness and generalization, we have created the SUAV-DATA dataset, which includes annotations for various-scale drones and annotations with all-weather environmental interference and blurry conditions. Experimental results demonstrate that, based on the SUAV-DATA dataset, TGC-YOLOv5 achieves an AP value of 0.848, which is a 2.5% improvement over the original YOLOv5, and a Recall value of 0.823, a 3.8% improvement over the original YOLOv5. Furthermore, the robustness of our proposed model has been verified on the Real-World Open Images dataset, achieving the best accuracy in terms of lighting, fog, smudge, and saturation-polluted images. The results and methods of this study hold significant importance and value for enhancing the efficiency and accuracy of drone detection. Moreover, this framework can also be applied to other domains involving small object detection, such as remote sensing image analysis, pedestrian and vehicle detection, etc. Future research could explore pruning of the model to facilitate deployment on mobile device platforms, further improving the performance and application scope of object detection.
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Figure 1. SUAV-DATA. 
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Figure 2. Drone templates. 
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Figure 3. (a) Length and width distribution statistics of large, medium, and small drones in the SUAV-DATA dataset; (b) Statistical data of the number of large, medium, and small drones in the SUAV-DATA dataset. 
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Figure 4. Frame diagram of TGC-YOLOv5. 
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Figure 5. Feature enhancement performance graph of the ablation experimental model. NOTE: Figure (a) depicts the original input image, while figures (b–e) represent the heatmaps of head features obtained from models trained with four different algorithms: YOLOv5, YOLOv5 + Transformer, YOLOv5 + Transformer + GAM, and TGC-YOLOv5, respectively, for the same input image. 
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Figure 6. Frame of Transformer Encoder Block. 
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Figure 7. Frame of Global Attention Mechanism. 
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Figure 8. Frame of Channel Attention Mechanism. 
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Figure 9. Frame of Spatial Attention Mechanism. 
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Figure 10. Frame of Coordinate Attention Mechanism. 
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Figure 11. Experimental Results on SUAV-DATA. (a) Ablation experiment results; (b) Parallel experiment results. 
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Figure 12. AP and FLOPs corresponding to different algorithms. NOTE: The size of the circles is directly proportional to the corresponding algorithm’s parameter count. 
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Figure 13. Comparison of the test results of the original YOLOv5 and TGC-YOLOv5 on the SUAV-DATA dataset. 
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Figure 14. The four types of pollution (light, fog, stain, and saturation). NOTE: each column represents five levels of a specific type of pollution, recorded as 1, 2, 3, 4, and 5. 
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Table 1. Comparative experiments with the TGC method added after C3-1, C3-2, and C3-3.
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	Model
	Precision
	Recall
	mAP
	GFLOPs
	Params(M)





	TGC_C3-1
	0.926
	0.811
	0.827
	14.0
	16.3



	TGC_C3-2
	0.934
	0.817
	0.832
	18.5
	17.2



	TGC_C3-3
	0.939
	0.823
	0.848
	13.4
	19.7
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Table 2. Ablation experiments and parallel experiments of different models on SUAV-DATA.






Table 2. Ablation experiments and parallel experiments of different models on SUAV-DATA.





	Model
	Precision
	Recall
	mAP
	FPS
	GFLOPs
	Params (M)





	Faster_rcnn-r50_fpn
	0.801
	0.588
	0.801
	31.5
	210.6
	43.8



	RetinaNet
	0.820
	0.625
	0.820
	55.4
	205.5
	36.2



	SSD 300
	0.767
	0.557
	0.767
	47.5
	384.7
	33.6



	YOLOv5s
	0.938
	0.785
	0.823
	84.3
	15.8
	7.0



	YOLOv5s-

Transformer
	0.940
	0.790
	0.833
	77.1
	16.0
	8.5



	Y-T-CBAM
	0.925
	0.785
	0.831
	83.7
	14.3
	9.1



	Y-T-SE
	0.903
	0.799
	0.830
	75.4
	16.5
	13.3



	Y-T-NAM
	0.922
	0.794
	0.835
	81.2
	15.6
	17.6



	Y-T-CA
	0.934
	0.788
	0.835
	72.9
	17.1
	8.1



	Y-T-GAM
	0.948
	0.790
	0.837
	85
	14
	20



	TGC-YOLOv5(Ours)
	0.939
	0.823
	0.848
	86.5
	13.4
	19.7
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Table 3. Comparative experiments on large, medium, and small target drones in the SUAV-DATA dataset.
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Model

	
Small Drones

	
Medium Drones

	
Large Drones




	
Precision

	
Recall

	
mAP

	
Precision

	
Recall

	
mAP

	
Precision

	
Recall

	
mAP






	
YOLOv5s

	
0.891

	
0.765

	
0.847

	
0.943

	
0.907

	
0.95

	
0.943

	
0.928

	
0.953




	
TGC-YOLOv5

	
0.902

	
0.817

	
0.88

	
0.976

	
0.915

	
0.965

	
0.935

	
0.947

	
0.962
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Table 4. Comparative experiments on Drone-dataset and Real-World datasets.
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Dataset

	
Model

	
Precision

	
Recall

	
mAP






	
Real-World

	
YOLOv5s

	
0.957

	
0.919

	
0.966




	
TGC-YOLOv5

	
0.959

	
0.936

	
0.975




	
Drone-dataset

	
YOLOv5s

	
0.928

	
0.905

	
0.937




	
TGC-YOLOv5

	
0.933

	
0.916

	
0.951
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Table 5. Test results of different levels of pollution.






Table 5. Test results of different levels of pollution.





	
Model

	
SSD 300

	
Faster_rcnn-r50_fpn

	
RetinaNet

	
YOLOv5s

	
TGC-YOLOv5

(Ours)






	
Light

	
1

	
0.851

	
0.856

	
0.860

	
0.863

	
0.870




	
2

	
0.845

	
0.850

	
0.854

	
0.859

	
0.862




	
3

	
0.828

	
0.830

	
0.834

	
0.837

	
0.841




	
4

	
0.803

	
0.811

	
0.818

	
0.822

	
0.830




	
5

	
0.781

	
0.794

	
0.799

	
0.804

	
0.807




	
Fog

	
1

	
0.843

	
0.847

	
0.852

	
0.861

	
0.865




	
2

	
0.839

	
0.842

	
0.846

	
0.853

	
0.857




	
3

	
0.826

	
0.829

	
0.831

	
0.833

	
0.836




	
4

	
0.814

	
0.817

	
0.820

	
0.824

	
0.832




	
5

	
0.813

	
0.816

	
0.814

	
0.819

	
0.823




	
Stain

	
1

	
0.848

	
0.852

	
0.854

	
0.860

	
0.867




	
2

	
0.842

	
0.847

	
0.852

	
0.863

	
0.865




	
3

	
0.834

	
0.833

	
0.835

	
0.838

	
0.844




	
4

	
0.735

	
0.739

	
0.742

	
0.748

	
0.752




	
5

	
0.678

	
0.674

	
0.681

	
0.686

	
0.688




	
Saturation

	
1

	
0.859

	
0.862

	
0.865

	
0.867

	
0.872




	
2

	
0.846

	
0.853

	
0.856

	
0.862

	
0.868




	
3

	
0.836

	
0.839

	
0.841

	
0.843

	
0.847




	
4

	
0.825

	
0.828

	
0.832

	
0.836

	
0.842




	
5

	
0.805

	
0.811

	
0.817

	
0.820

	
0.824








NOTE: The numbers 1, 2, 3, 4, and 5 in this column of the table represent five levels of four different pollution variables.
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Table 6. Comparison of our method and other small object detection methods on VisDrone2021.






Table 6. Comparison of our method and other small object detection methods on VisDrone2021.





	Model
	mAP50
	mAP
	GFLOPs
	Params (M)





	Faster-RCNN [64]
	0.310
	0.172
	118.8
	41.2



	Cascade ADPN [65]
	0.387
	0.228
	547.2
	90.8



	Cascade-RCNN [66]
	0.388
	0.226
	146.6
	69.0



	mSODANet [67]
	0.559
	0.369
	10.6
	22.0



	AdNet-SS [68]
	0.579
	0.311
	32.8
	77.2



	YOLOv5s
	0.537
	0.317
	16.3
	7.04



	YOLOv5m
	0.586
	0.354
	48.2
	20.9



	RetinaNet [68]
	0.443
	0.227
	35.7
	36.4



	Grid GDF [69]
	0.308
	0.182
	257.6
	72.0



	SABL [68]
	0.412
	0.250
	145.5
	99.6



	YOLOX-s
	0.535
	0.314
	26.8
	9.0



	This work
	0.597
	0.385
	13.4
	19.7
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Table 7. Comparative experiments on Real Data and Synthetic Data.
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Data

	
Model

	
Precision

	
Recall

	
mAP

	
GFLOPs

	
Params(M)






	
Real

Data

	
YOLOv5s

	
0.923

	
0.865

	
0.925

	
15.8

	
7.0




	
TGC-YOLOv5

	
0.938

	
0.886

	
0.936

	
19.5

	
13.5




	
Synthetic Data

	
YOLOv5s

	
0.927

	
0.872

	
0.932

	
15.8

	
7.0




	
TGC-YOLOv5

	
0.946

	
0.877

	
0.945

	
19.5

	
13.5
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Table 8. Comparative experiments of YOLOv8s and TGC-YOLOv8 on the SUAV-DATA dataset.






Table 8. Comparative experiments of YOLOv8s and TGC-YOLOv8 on the SUAV-DATA dataset.





	Model
	Precision
	Recall
	mAP
	GFLOPs
	Params(M)





	YOLOv8s
	0.942
	0.835
	0.839
	28.4
	11.1



	TGC-YOLOv8
	0.957
	0.848
	0.86
	27.7
	21.6
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