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Abstract: Recently, research on unmanned aerial vehicles (UAVs) has increased significantly. UAVs
do not require pilots for operation, and UAVs must possess autonomous flight capabilities to ensure
that they can be controlled without a human pilot on the ground. Previous studies have mainly
focused on rule-based methods, which require specialized personnel to create rules. Reinforcement
learning has been applied to research on UAV autonomous flight; however, it does not include
six-degree-of-freedom (6-DOF) environments and lacks realistic application, resulting in difficulties
in performing complex tasks. This study proposes a method of efficient learning by connecting two
different maneuvering methods using modular learning for autonomous UAV flights. The proposed
method divides complex tasks into simpler tasks, learns them individually, and then connects them in
order to achieve faster learning by transferring information from one module to another. Additionally,
the curriculum learning concept was applied, and the difficulty level of individual tasks was gradually
increased, which strengthened the learning stability. In conclusion, modular learning and curriculum
learning methods were used to demonstrate that UAVs can effectively perform complex tasks in a
realistic, 6-DOF environment.

Keywords: UAV; autonomous flight control; reinforcement learning; modular learning; curriculum
learning; JSBSim

1. Introduction

In recent years, research on unmanned aerial vehicles (UAVs) has increased signifi-
cantly in various fields, such as aviation, smart agriculture, and medical supply transporta-
tion [1,2]. To best utilize the benefits of UAVs, which do not require pilots, it is necessary to
study autonomous UAVs that can maneuver themselves to accomplish a desired mission
by completely replacing the pilot and without ground operators.

Previous autonomous UAV flight studies used rule-based methods, wherein experts
determined the UAV behavior for each situation. However, rule-based autonomous flights
require significant expert involvement for defining the rules, and detailed rules are needed
to define complex tasks. Additionally, there is a limitation that the UAV cannot maneuver
normally in situations beyond the established rules [3–5]. Therefore, recent autonomous
UAV flight research has used reinforcement learning based on artificial neural networks
for robust flights in external environments [6–8]. In the case of autonomous UAV flight
using reinforcement learning, real aerodynamics based on simulated environments can be
implemented, and the UAV can fly based on decision-making processes similar to those
made by a pilot. A pilot controls an aircraft by responding to the environment in real time to
overcome any unexpected events. Reinforcement learning is used to control a UAV in real
time using collected data in a similar method and, hence, the response to environmental
changes is flexible. However, autonomous UAV flights using reinforcement learning are
complex for the following reasons.
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• Six-degrees-of-freedom (6-DOF) environment: For a UAV to perform real-world tasks
learned through reinforcement learning, a 6-DOF environment, including the 3D posi-
tion and orientation, must be considered. However, if the state and action values are
both continuous and high-dimensional features, it makes it difficult for a reinforcement
learning agent in a 6-DOF environment to learn the features of the environment [9].
Thus, existing reinforcement-learning-based autonomous UAV flight research is lim-
ited to conducting experiments after simplifying the action and state spaces in the
simulation environment [10–15].

• Difficulty in setting the reward: It is difficult to develop reward settings that are
suitable for research purposes in the field of reinforcement learning; this difficulty
increases as the agent task and environment become increasingly complex. Many
researchers have explored reward engineering, which is a process of setting a reward
such that the agent can act according to the researcher’s intentions [16]. UAVs need
to perform tasks by using not only absolute location information, such as the target
coordinates and velocity, but also the relative target point location information. This
increases the amount of data that is considered when creating a suitable reward for
the task, and the number and type of the location data that are used in each task differ.
Therefore, setting a suitable autonomous UAV flight reward is challenging.

• Difficulty performing complex tasks: As a UAV task becomes more difficult, the
number of parameters required in the artificial neural network increases. This results
in a greater amount of computational resources becoming necessary. Additionally,
when performing different tasks sequentially, an artificial neural network receives
state and action values with distributions different from those in previous tasks;
consequently, model training becomes unstable or the task performance decreases. For
this reason, previous autonomous UAV flight research has been limited to performing
only a single task [17–22]. Thus, research on connecting tasks is necessary for situations
in which two tasks must be performed continuously or when complex tasks must
be performed.

The contributions of this research are as follows. JSBSim is an open-source 6-DOF
dynamic flight model that implements all aircraft characteristics, such as the flight control
system and aerodynamics [23]. JSBSim is used as the reinforcement learning environment,
where the agent learns flight forms similar to those of an actual aircraft. Additionally,
a modular learning method, wherein the UAV can efficiently perform complex tasks, is
proposed. Modular learning comprises individual networks for each characteristic task
type. Curriculum learning, in which the difficulty of tasks is gradually increased depending
on the corresponding method, is applied to successfully connect different maneuvering
tasks. Compared to using a single network, this method supports stable and complex
maneuvering and learning. Moreover, the experimental results show that the modular
learning method is efficient for successfully conducting two continuous tasks, with a small
number of learning episodes.

The remainder of this paper is arranged as follows. In Section 2, the soft actor-critic
(SAC) algorithm used in this research and reinforcement learning are discussed, and an
autonomous UAV flight literature review is provided. In Section 3, the techniques used
to connect the modules and the modular learning method proposed in this research are
presented. In Section 4, the two task scenarios that are connected in modular learning are
explored, and the experimental results are presented. Finally, Section 5 summarizes the
conclusions, and future research directions are discussed.

2. Background
2.1. Reinforcement Learning

Reinforcement learning is an method used to train a desired policy (π) using a reward
that the agent receives after taking an action in a certain state in a given environment. Rein-
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forcement learning aims to maximize the sum of accumulated rewards. For example, the
Q-learning algorithm learns the Q-value of action a at a certain state s, which is defined as:

Q(s, a) = r(s, a) + γmax
a′

Q(s′, a′). (1)

In Equation (1), r(s, a) represents the reward obtained from taking action a in state s,
s′ represents the next state, a′ represents all possible actions in the next state, and γ is a
discount factor related to the importance of future rewards relative to immediate rewards.
Thus, the Q-value is the sum of the reward obtained from the current state and action and
the maximum Q-value in the next state. This value is updated through learning to find
the optimal Q-value. After the update is completed, the agent selects the action that helps
yield the maximum Q-value. The basic concept of reinforcement learning is learning to
maximize the reward through interaction with the environment, as shown in Figure 1 [24].

Figure 1. Basic concept of reinforcement learning.

2.2. Actor-Critic Method

A reinforcement learning algorithm that selects an action through values, such as
Q-learning, is referred to as a value-based reinforcement learning method. An action that
maximizes the value after completing learning is selected from the beginning to the end
of an episode; therefore, no policy is needed. Consequently, it is difficult to determine the
value of an action for high-dimensional and continuous tasks. In contrast, an algorithm
that selects an action according to probability and then conducts policy training is referred
to as a policy-based reinforcement learning method. Because learning is sound even for
continuous and high-dimensional tasks, this method is suitable for the environment and
agent used in this study.

An actor-critic algorithm is a widely used policy-based algorithm that comprises a
critic network that approximates the state value and an actor network that estimates the
policy. As shown in Figure 2, the actor network learns policies for the agent to take actions
and outputs them accordingly. The critic network evaluates the value of the current state
and uses this value to train the actor network [25].

Figure 2. (a) Actor-critic network output. Five timestep states are merged into one observation and
used as the input of the networks. (b) Well-trained networks predict high values when the agent
approaches the target.
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2.3. Soft Actor-Critic Algorithm

An SAC algorithm encourages exploration through an entropy regularization term,
and it can reuse previously collected experiences through off-policy learning [26]. Nu-
merous existing algorithms that use actor-critic networks cannot reuse the training data
and have the disadvantage of reduced learning efficiency; therefore, an SAC algorithm
samples the learning data, which are reused in learning [26]. In addition, approximating
and presenting the actor and critic networks through functions leads to effective learning
for UAVs in continuous action space reinforcement learning problems. The optimal policy
π∗ in an SAC algorithm is defined as shown in Equation (2). Equation (2) adds an entropy
term to the traditional reinforcement learning algorithm, which learns to maximizing the
sum of the expected rewards of the subsequent policy π and the entropy of the action
probabilities for the current policy. A high value of action probability entropy indicates
that the action is randomized, so high entropy encourages exploration. α is the weight of
the entropy term, and increasing α further encourages exploration.

π∗ = argmax
π

∑
t

E(st , at)∼π
γ[r(st, at) + αH(π(·|st)]. (2)

An SAC algorithm is a reinforcement learning algorithm that performs well in a
continuous action space, reuses training data for efficient learning, and adds an entropy
term to encourage exploration, making it suitable for UAV reinforcement learning, which
requires learning in a high-dimensional state space.

2.4. Autonomous UAV Maneuvering

Research on autonomous UAV maneuvering has been conducted for years, with
varying studies applying rule-based methods for performing the designated maneuvering
of an aircraft according to previously given conditions and others applying reinforcement
learning methods using artificial neural networks. Among them, example studies using
reinforcement learning are as follows.

Yang et al. [10] resolved the problem of selecting 15 basic maneuvers, such as straight
deceleration, straight acceleration, turning left, and turning right, in a close combat prob-
lem using a deep Q-network. Wang et al. [11] proposed a learning method in which
the aircraft could react to various enemy maneuvers in a 2D simulation environment in
which the aircraft velocity was limited. Lee and Kim [12] proposed a method that could
avoid a dangerous object approaching the UAV in a 2D grid simulation environment.
Yan et al. [13] proposed continuous actor-critic learning automation in an environment
where the action space was limited by the velocity and roll and succeeded in training an
aircraft following another aircraft. Bohn et al. [14] used a proximal policy optimization algo-
rithm to show that the position of a fixed-wing UAV could approximate a similar existing
proportional–integral–derivative controller method, even under severe turbulence condi-
tions. Tang and Lai [15] used a deep deterministic policy gradient algorithm to support
UAV landing along a consistent route; however, the experiment was conducted in an
abstract simulation scenario different from the actual environment. Notably, most reinforce-
ment learning-based research has been performed in simplified simulation environments,
and action space maneuvering (e.g., left turn, right turn, etc.) was simplified or involved
the selection of optimal maneuvering in downscaled environments [18–20,22].

However, there has been a lack of research on autonomous UAV flight based on
reinforcement learning methods that support complex maneuvering in high-dimensional
states and action spaces in realistic simulation environments.

3. Proposed Method
3.1. Modular Learning

Modular learning is used to divide a complex task into several simple modules for
learning. This approach is effective because learning a complex task from scratch can be
difficult, but learning simple modules does not require as many resources because high per-
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formance can be achieved with relative ease [27]. This study proposes a modular learning
method that enables complex maneuvering for autonomous UAV flight in continuous and
high-dimensional states and action spaces in realistic simulation environments. Further-
more, the experimental environment is based on physical laws, eliminating the need for
new learning by leveraging transfer learning to transfer information from already trained
modules to others [27]. Using this method, other modules can be trained with limited
resources, and better performance can be achieved compared to learning from scratch [28].
For new UAV types with varying operational methods, previous training information can
be transferred to facilitate learning. In conclusion, the modular learning method provides
numerous advantages to autonomous UAV flight, including improved learning efficiency,
high performance, and the easy accomplishment of complex tasks. Moreover, by break-
ing down complex tasks into smaller and simpler modules, an autonomous UAV flight
algorithm that is both more effective and powerful can be developed. Figure 3 shows
a training scenario for identifying and tracking an unidentified UAV after arriving at a
point that needs to be explored for Type 1 and Type 2 UAVs; this task is divided into two
parts: Mission 1, an approach maneuver to reach the target point, and Mission 2, a tracking
maneuver to follow the target. After each module is trained using an individual network,
if the Module #1 agent satisfies the completion condition of arriving at the target location,
Module #2 will take over the task and track the target.

Figure 3. Concept of modular learning.

The modular learning method proposed in this paper has the advantage of enabling
efficient learning with limited resources. If a single network is used to train the UAV, the
entire network must be retrained each time a new mission is performed. For example, let
us consider a new compound task by adding a new maneuver, namely, Mission 3, which
needs to be performed after Missions 1 and 2. To learn the composite task with a single
network, the entire network, which has already learned the basic features of Missions 1 and
2, must be retrained to perform all missions. However, in this case, the existing network
may not be able to fully learn the characteristics of the new mission and may fail to perform
the complex mission or require a larger network size.

In conclusion, learning with a single network requires constructing and retraining a
new network each time a new task must be performed. However, modular learning can
utilize network knowledge learned in existing missions through transfer learning and learn
the required tasks through fine-tuning for new tasks. By connecting the network to the
existing learned modules, learning can effectively occur without wasting computational
resources or discarding existing knowledge. In this paper, we demonstrate through exper-
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iments that, compared to single networks, a network based on modular learning can be
successfully applied to perform complex missions. Additionally, the performance of this
approach is good in cases with single missions and complex missions decomposed into
modules.

3.2. Smooth Module Connection

In modular learning, different modules individually learn and are subsequently con-
nected. If the task of Module #1 is accomplished and completed, the completed condition
is transferred to Module #2 as the starting condition. Module #1 must reach its destination
regardless of the starting point, and each module must learn from various starting points to
perform robust autonomous flight. Therefore, noise was added to the starting condition of
each module to enable robust learning. If significant noise is present initially, the learning
process may not be efficient; therefore, only a small amount of noise was added initially
and increased during each round of learning until a task was successfully completed. This
approach is illustrated in the pseudocode in Algorithm 1. Consequently, we allowed the
target tracking maneuver regardless of the starting condition when Module #2 took over
the task from Module #1.

Algorithm 1: Soft Actor-Critic and Noise

1 : Set : Rs, I, G � Set success criteria (Rs), initial condition (I) and final goal (G)
2 : Initialize θ1, θ2, φ � Initial parameters of actor & critic networks
3 : θ1 ← θ1, θ2 ← θ2 � Initialize critic networks (target Q and Q) weights
4 : BR ← ∅ � Initialize replay buffer (BR)
5 : R, N ← 0 � Initialize episode reward (R) and success counter (N)
6 : For each episode Do
7 : BE ← ∅ � Initialize an empty episode buffer
8 : I ← I + noise× N � Add noise to the initial condition
9 : while not Done
10 : at ∼ πφ(at|st) � Sample an action from the policy
11 : st+1 ∼ p(st+1|st, at) � Sample a transition from the environment
12 : rt ∼ (st, at) � Reward from environment
13 : Done ∼ (st, at) � Done from environment
14 : BR ← BR ∪ {(st, at, rt, st+1)} � Store the transition in the replay buffer
15 : BE ← BE ∪ {(st, at, rt, st+1)} � Store the transition in the episode buffer
16 : R← R + rt � Calculate the value
17 : End while
18 : IF R ≥ Rs Then
19 : N ← N + 1 � Add success counter
20 : End IF
21 : For each gradient step Do
22 : θ1 ← θ1 − λQ ∇̂θ1 JQ(θ1) � Update Q− network parameters
23 : φ← φ− λπ ∇̂φ Jπ(φ) � Update policy weights
24 : θ2 ← τθ1 + (1− τ)θ2 � Update target Q− network weights
25 : End For
26 : End For
27 : Output : θ1, θ2, φ � Optimized parameters

3.3. Curriculum Learning

Curriculum learning begins with easy tasks and gradually progresses to difficult
tasks [29,30]. By applying this approach to a reinforcement learning agent, it is possible
to acquire knowledge by starting with relatively low-difficulty but similar-purpose tasks
at the beginning of the learning process and gradually increasing the difficulty until the
agent finally performs the desired task. In this study, curriculum learning was applied
for the robust training of each module. The reinforcement learning agent must update its
policy using only the reward as a scalar value; therefore, a significant amount of learning
data is necessary to achieve the desired goal, which can sometimes be very difficult if the
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task is complex. Curriculum learning can be used to acquire task knowledge and achieve
goals through performing easier tasks. In this research, the success condition of the task
was initially broadly set, as shown in Figure 4. Then, as the agent successfully reached the
target point, the target point was gradually narrowed until the agent was able to reach the
final point. This process is shown in Algorithm 2. The hyperparameters for Algorithm 2
are described in Section 4.

Algorithm 2: Soft Actor-Critic and Noise and Curriculum Learning

1 : Set : Rs, T, G
�Set success criteria (Rs), initial condition (I), Target Zone(T), and final goal (G)

2 : Initialize θ1, θ2, φ � Initial parameters of actor & critic networks
3 : θ1 ← θ1, θ2 ← θ2 � Initialize critic networks (target Q and Q) weights
4 : BR ← ∅ � Initialize replay buffer (BR)
5 : R, N ← 0 � Initialize episode reward (R) and success counter (N)
6 : For each episode Do
7 : BE ← ∅ � Initialize an empty episode buffer
8 : IF T > G Then
9 : I ← I + noise× N � Add noise to initial condition
10 : T ← T − δ× N � Narrow the target zone T(curriculum learning)
11 : END IF
12 : while not Done
13 : at ∼ πφ(at|st) � Sample an action from the policy
14 : st+1 ∼ p(st+1|st, at) � Sample a transition from the environment
15 : rt ∼ (st, at) � Reward from environment
16 : Done ∼ (st, at) � Done from environment
17 : BR ← BR ∪ {(st, at, rt, st+1)} � Store the transition in the replay buffer
18 : BE ← BE ∪ {(st, at, rt, st+1)} � Store the transition in the episode buffer
19 : R← R + rt � Calculate the value
20 : End while
21 : IF R ≥ Rs Then
22 : N ← N + 1 � Add success counter
23 : End IF
24 : For each gradient step Do
25 : θ1 ← θ1 − λQ ∇̂θ1 JQ(θ1) � Update Q− network parameters
26 : φ← φ− λπ ∇̂φ Jπ(φ) � Update policy weights
27 : θ2 ← τθ1 + (1− τ)θ2 � Update target Q− network weights
28 : End For
29 : End For
30 : Output : θ1, θ2, φ � Optimized parameters

Figure 4. Concept of curriculum learning.
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4. Experiments
4.1. Simulation Environment Definition

Reinforcement learning involves learning through the repetitive performance of suit-
able action mapping tasks to maximize the reward at given states [31]. However, in reality,
there are temporal and spatial restrictions that affect this repetitive performance. Therefore,
many studies of reinforcement learning have been conducted in simulated environments.
In this section, we define the environment, states, actions, and rewards for learning in
simulated environments.

4.1.1. Environment

In this research, the open-source aerodynamics model JSBSim was used for learning.
JSBSim uses a 6-DOF aerodynamics model created with C++, commonly used in engineer-
ing simulations and design for various aircraft, spacecraft, and rockets. It was previously
used in the air combat evolution program of the Defense Advanced Research Projects
Agency of the United States [32,33]. Rennie [34] developed Gym-JSBSim for the application
of JSBSim, which was developed with C++ in a Python environment and revised to fit the
learning objectives of this research, as shown in Figure 5.

Figure 5. Conceptual diagram of the simulation environment.

4.1.2. States

The state is represented in a finite set S =
{

s1, . . . , sN} of size N (N = 20), all states
must be acquired from the environment, and each must include the necessary information
for the agent to perform the learning [35]. All states S in this research were distinguished
and included in Sbasic and Srelative as follows:

S = {Sbasic, Srelative}, (3)

Sbasic = {x, y, z, ψ, θ, ϕ, u, v, w, p, q, r},

Srelative =
{

dx, dy, da, pt, ht, D, AA, HCA
}

.

As shown in Figure 6, Sbasic represents the state information of the agent that can be
directly acquired from JSBSim, and it comprises the location data of the agent {x, y, z},
3-axis velocity {u, v, w}, angle of each axis {ϕ, θ, ψ}, and acceleration along each axis
{p, q, r}. The definition of each state is shown in Table 1.
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Figure 6. Basic UAV agent states.

Table 1. Basic state definitions.

State Definition State Definition

x x-axis position y y-axis position
z z-axis position u x-axis velocity
v y-axis velocity w z-axis velocity
ϕ x-axis rotation angle (roll) θ y-axis rotation angle (pitch)
ψ z-axis rotation angle (yaw) p x-axis rotation rate (roll rate)
q y-axis rotation rate (pitch rate) r z-axis rotation rate (yaw rate)

Through Sbasic, the information associated with the corresponding agent and target
in 3D space can be obtained; however, the relative target information cannot be acquired
from JSBSim and, hence, the relative target location and geometric information is expressed
through Srelative, as shown in Table 2.

Table 2. Relative state definitions.

State Definition State Definition

dx x-axis distance between the UAV and target dy y-axis distance between the UAV and target
dz z-axis distance between the UAV and target pt Pitch angle to target
ht Heading angle to target D Distance to target

AA Aspect angle HCA Heading cross-angle

As shown in Figure 5, {dx, dy, da} expresses the distance between the agent and the
target in the x, y, and z planes, whereas the distance (D) represents the Euclidian distance
between the agent and the target in 3D space. The pitch angle (pt) and heading angle (ht)
to the target indicate the up and down and left and right angles, respectively, which allow
the agent to gaze at the target. The aspect angle (AA) and heading cross-angle (HCA)
comprehensively express the location information for the agent and the target. AA refers to
the angle from the tail of the target to the agent, which varies from 0◦ to 180◦ depending
on whether the agent is located directly behind or in front of the target, respectively. HCA
refers to the heading difference between the agent and the target, which varies from 0◦

to 180◦, depending on whether they face the same or opposite directions, respectively.
When the AA and HCA states between two aircraft are given, the 2D location data can be
ascertained, as shown in Figures 7 and 8.
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Figure 7. States for the relative position of the agent and target.

Figure 8. AA and HCA examples under different conditions.

4.1.3. Action

An action is represented as a finite set A =
{

A1, . . . , AK} with size K (K = 4), and
the state can be controlled through this action. In this research, the agent was set as a
fixed-wing unmanned aircraft, and the action was designed to be identical to that of a
general fixed-wing aircraft. The fixed-wing aircraft was controlled in 3D space with a stick
and rudder combination that moved the control surfaces of the main and tail wings, as well
as a throttle for engine thrust. Therefore, the agent action was constructed as a combination
of stick, rudder, and throttle adjustment, and the stick action was distinguished as

{
sx, sy

}
to express the stick movement in 2D space. Therefore, including the stick, rudder, and
throttle adjustments, the action was defined as shown in Equation (4). The definition and
range of each action are shown in Table 3.

A =
{

sx, sy, τ, ρ
}

. (4)

Table 3. Action definitions.

Action Definition Action Definition

sx X-axis stick position (−1 to 1) τ Throttle angle (0 to 1)
sy Y-axis stick position (−1 to 1) ρ Rudder pedal angle (−1 to 1)

4.1.4. Reward

The reward defines the aim of reinforcement learning. The agent receives an assess-
ment of the action performed in the corresponding state as a reward and learns in the
direction that maximizes the total sum of the rewards. Therefore, defining a proper reward
is important for successful learning [35]. In this research, rewards were divided into episode



Drones 2023, 7, 418 11 of 22

and timestep rewards. The episode reward was received when the episode was terminated
following task failure or success, whereas the timestep reward was received according to
the agent state for each simulation step.

The reward must be appropriately set so that each task can be successfully completed.
Therefore, the reward for each mission was set as described in Section 3 and explained in
detail in the Experimental Design section.

4.2. Experimental Design

In this section, we define the reward function and the start and end conditions for
each mission in the modular learning experiment. Furthermore, we describe the transfer
learning process for each module and the connection experiment for the trained modules.

4.2.1. Mission 1 (Approach Maneuver) Definition

The objective of Mission 1 is to learn the approach maneuver for a target that flies
straight and steady at a distance. As shown in Figure 9, the task is completed starting at a
distance of 70 km from the target and reaches a distance of 8 km from the rear of the target.

Figure 9. Overview of Mission 1 (approach maneuver): (a) initial condition and (b) final goal.

The reward in this study was defined as a mission-ending condition based on episode
and timestep rewards given once for each episode and timestep, respectively. Mission 1
comprises four episode rewards and two timestep rewards.

Success reward: This reward is given when the designated target is achieved. The
task is completed after receiving the reward when the desired location is reached from the
target rear. Here, the target objective comprises a combination of four conditions, as shown
in Equation (5).

IF (D < 8.0km) and (dz < 400m) and
(∣∣ht − ψ

∣∣ < 20◦
)

and (|θ| < 5◦)
THEN done and reward = 5

(5)

Crash reward: The task is completed and a penalty is received if the agent does not
reach the target and collides with the ground surface.

IF (z < 100m) THEN done and reward = −10 (6)
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Overtake reward: If the agent overtakes the target’s wing line, a penalty is received
and the task ends.

IF (AA > 90◦) THEN done and reward = −10 (7)

Timeout reward: If the task is not successfully performed after 10,000 steps based on
the simulation time, a penalty is received and the task ends.

IF (timesteps > 10, 000) THEN done and reward = −10 (8)

Line of sight (LOS) score: A reward is given when the difference between the altitude
and heading between the agent and the target is small for each timestep and the agent
approaching from the rear is oriented in the same direction as the target trajectory.

LOS score =

(
0.666× exp(−0.5×

(
dz

500m

)2
)

)
+ exp

(
−0.5×

(
ht − ψ

30◦

)2
)

(9)

Close score: This reward refers to the value of the distance from the target at point t
subtracted from the distance at point t− 1, indicating the distance between the agent and
target.

Close score = Dt−1 − Dt (10)

4.2.2. Mission 2 (Tracking Maneuver) Definition

The objective of Mission 2 is to learn the approach maneuver for a target that turns
around. This task begins from a location that is 8 km from the target, as shown in Figure 10,
and the task is complete when the agent reaches a distance of 2.4 km from the target rear.

Figure 10. Overview of Mission 2 (tracking maneuver): (a) initial condition and (b) final goal.

The reward for Mission 2 was transformed from the reward of Mission 1 to fit the
relevant objective, and the desired zone score for inducing the approach to the desired
point was added, and four episode rewards and three timestep rewards were created.

Success reward: This is a reward given when the desired location at the rear of the
target is reached and the mission is completed. The aim of the task includes the aspect angle,
which was not considered in Mission 1, and dz and θ are removed to create a combination
of three conditions.

IF (D < 2.4km) and (AA < 50◦) and
(∣∣ht − ψ

∣∣ < 5◦
)

THEN done and reward = 5 (11)
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Crash reward: The task is completed and a penalty is received if the agent does not
reach the target and collides with the ground surface.

IF (z < 100m) THEN done and reward = −10 (12)

Overtake reward: If the agent overtakes the target wing line, a penalty is given, and
the characteristics are slightly adjusted in this case, compared to those in Mission 1, to
allow for a slight overtake.

IF (AA > 110◦) THEN done and reward = −10 (13)

Timeout reward: If the task does not succeed after reaching 3000 timesteps, a penalty
is given, and the task ends.

IF (timesteps > 3000) THEN done and reward = −10 (14)

Line of sight (LOS) score: In precise short-distance maneuvering, the pitch pt toward
the target is used rather than the altitude difference dz between the agent and target, unlike
in Mission 1, to determine the LOS.

LOS score =

(
0.3× exp(−0.5×

(
pt − θ

3◦

)2

)

)
+

(
0.3× exp(−0.5×

(
ht − ψ

3◦
)

)2

)

)
(15)

Close score: The reward is the value of the distance from the target at point t subtracted
from the distance at point t− 1, which is the decrease in the distance between the agent
and target.

Close score = 5× (Dt−1 − Dt) (16)

Desired zone score: The desired zone condition is more relaxed than the task success
condition, and a reward is given when the location is within a set boundary.

IF (|AA| < 30◦) and (|HCA| < 40◦) and (D < 5km) THEN Desired zone score,
Desired zone score = 40−|AA|

30◦
(17)

4.2.3. Hyperparameter Settings

For the experiment, the Algorithm 2 hyperparameters described in Section 3 are shown
in Table 4. Rs is the episode success criterion; if it is greater than the set value of Rs, which
is the cumulative reward sum, the corresponding episode is a success. I refers to the
initial value of the agent in the simulated environment, and it represents the location and
velocity of the agent in 3D space. Additionally, noise is added to the initial value as the
episode proceeds and learning occurs, making it robust to changes in the starting condition
and facilitating the connections between modules in the future. T represents the ending
conditions of each episode, and the level of difficulty is increased by δ each time the episode
narrows the target zone until the final objective G is achieved.

Table 4. Algorithm 2 hyperparameters.

Rs I Noise T δ G

Mission 1
(approach maneuver) 2500 x : 3.5

y : 4.5
z : 25, 000
θ : 0
u : 500
v : 0
w : 0

x : random(±0.0001)
y : random(±0.0002)
z : random(±5)
θ : random(±0.05)
u : random(−0.1,+2)
v : random(±0.2)
w : random(±0.2)

15.0 km 0.02 8.0 km

Mission 2
(tracking maneuver) 500 4.6 km 0.02 2.4 km
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4.2.4. Experiment #1: Learning for Each Module

Experiment #1 was carried out to identify whether a single task could be successfully
performed by the UAV through reinforcement learning. The network weights of the UAV
for each task learned in the experiment were used to proceed with modular learning for
complex task performance.

Experiment #1 involved learning using curriculum learning and the SAC algorithm for
the four modules shown in Figure 3. Each experiment was conducted from scratch without
transfer learning from existing trained models, and identical rewards were established for
the same task performance, even when the UAV type varied. The experiment proceeded as
shown in Table 5 based on UAV Types 1 and 2 in the simulated environment structured
through JSBSim. The first type of UAV was a high-altitude UAV with a single engine.
The second type of UAV was a high-altitude UAV with two engines. These UAVs had
clearly different flight characteristics, making them suitable for verifying the proposed
methodology. Both UAVs were built in JSBSim, and factors such as weight and drag were
defined with the help of experts.

Table 5. Experiment #1.

Description

Expt. 1-1 Train Module #1 (UAV Type 1 & Mission 1) from scratch
Expt. 1-2 Train Module #2 (UAV Type 1 & Mission 2) from scratch
Expt. 1-3 Train Module #3 (UAV Type 2 & Mission 1) from scratch
Expt. 1-4 Train Module #4 (UAV Type 2 & Mission 2) from scratch

4.2.5. Experiment #2: Transfer Learning Based on the Mission and UAV Type

Experiment #2 was performed to identify whether efficient task learning was possible
through transfer learning for all cases when performing different tasks using the same UAV
type and the same task using different UAV types. Therefore, in the case of learning a new
task network from modular learning in this experiment, efficient learning was achieved
through transfer learning. In Experiment 2-1, as shown in Table 6, the weight of Module
#1, which completed learning in Experiment 1-1, was transferred to Module #2, which
performed a task different from that in Module #1. In the case of Module #3, the weight of
Module #1 was transferred to a different UAV type, which performed an identical task to
proceed with learning.

Table 6. Experiment #2.

Description

Expt. 2-1 Transfer learning by applying the weights from Experiment 1-1 to Module #2
Expt. 2-2 Transfer learning by applying the weights from Experiment 1-1 to Module #3

4.2.6. Experiment #3: Module Connection

Experiment #3 was conducted to verify the effect of the modular learning approach
proposed in this research, and it was completed as a single task by connecting Modules #1
and #2 from the previous experiment, as shown in Table 7. Therefore, in this case, modular
learning involved using different networks for each task. For comparison, we concatenated
the two maneuvers into a single mission and trained a single network for learning, as
shown in Figure 11. Modular learning allows efficient learning through transfer learning
for each module. To compare the learning results of a single network with those of modular
learning under identical conditions, the weight of the single Module #1 was transferred
for learning.
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Table 7. Experiment #3.

Description

Expt. 3-1 Connecting the approach maneuver and tracking maneuver learned in each network
Expt. 3-2 Learning the approach maneuver and tracking maneuver with a single network

Figure 11. Concepts of Experiments 3-1 and 3-2: (a) modular learning and (b) single network learning.

4.2.7. Experiment #4: Agent Test

Experiment #4 was designed to verify that the agent trained with modular learning
in Experiment 3-1 could successfully perform the task after training. In other words, the
purpose of this experiment was to test the robustness of the performance of the agent
trained with modular learning. Since a trained agent may experience overfitting and not
be able to perform the task consistently, the experiment was tested with different initial
conditions. The noise used to establish the different conditions was adjusted as described
in Table 4. Experiment 4-1 was performed with an agent that was stable after learning
over 1000 episodes in Experiment 3-1. To assess the modular learning approach under the
same conditions, the single-network agent trained in Experiment 3-2 was tested under the
conditions in Experiment 4-2, as shown in Table 8.

Table 8. Experiment #4.

Description

Expt. 4-1 Testing the agent trained with modular learning in Experiment 3-1
Expt. 4-2 Testing the agent trained with a single network in Experiment 3-2

4.3. Experimental Results
4.3.1. Results of Experiment #1

Experiment 1 involved four modules with varying UAV types and missions. The
success score standard for the approach maneuver in Experiments 1-1 and 1-3 was 2500,
and for the tracking maneuver in Experiments 1-2 and 1-4, it was 500. In the approach
maneuver, a long flight distance was used compared to that for the tracking maneuver,
resulting in a high standard for the success reward. All modules began without initial
transfer learning, and 1500 episodes were explored in the experiment for each module. The
results are shown in Table 9.
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Table 9. Results of experiment #1.

Min Score Max Score Mean Score Cumulative Successes

Expt. 1-1: Module #1
(UAV Type 1 & Mission 1) −2595.25 6383.08 1127.48 684

Expt. 1-2: Module #2
(UAV Type 1 & Mission 2) −583.51 1371.83 233.15 908

Expt. 1-3: Module #3
(UAV Type 2 & Mission 1) −975.43 7364.83 1285.82 304

Expt. 1-4: Module #4
(UAV Type 2 & Mission 2) −1194.26 1349.59 143.26 797

In Experiments 1-1 and 1-2, which were based on UAV Type 1, the cumulative number
of successful episodes was higher than that in Experiments 1-3 and 1-4, which involved
training based on UAV Type 2. Therefore, the learning difficulty for UAV Type 1 was lower.
To efficiently learn with UAV Type 2, we utilized the weights of UAV Type 1 to perform
transfer learning between UAVs. Figure 12 shows the training results for each module
based on the output values. Learning for the approach maneuver in Experiments 1-1 and
1-3 takes a longer time than that for the tracking maneuver.

Figure 12. Results of experiment #1 (score plot): (a) Experiment 1-1, (b) Experiment 1-2, (c) Experi-
ment 1-3 and (d) Experiment 1-4.

The results of Experiment #1 show that a single network can effectively learn for single
tasks that are relatively easy compared to multiple tasks.

4.3.2. Results of Experiment #2

Experiment #2 was conducted to identify the effect of transfer learning on various
UAV types and tasks using the network weights of each trained module from Experiment
#1. Experiment 2-1 aimed to identify the effect of transfer learning when identical UAVs
performed different tasks, and the network weight of UAV Type 1, trained based on the
approach maneuver, was transferred to the network that performed the tracking maneuver.
To identify the effect of transfer learning, we compared the agent learning results of
Experiment 1-2, which involved training from scratch without transfer learning, with those
of the current experiment.
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The experimental results showed that the performance of Experiment 2-1 with transfer
learning was superior to that of Experiment 1-2 without transfer learning, as shown in
Table 10. Additionally, as shown in Figure 13, there was an advantage for the initial
learning results of Experiment 2-1, as indicated by the blue line. Through this experiment,
we identified that transfer learning was effective for tasks with reward functions based
on different maneuvering types. In the case of modular learning, there were networks for
each task and UAV type. Therefore, when performing a new task, the previously trained
module weight could be transferred, increasing the efficiency of learning.

Table 10. Results of experiment 2-1.

Min Score Max Score Mean Score Cumulative Successes

Expt. 2-1 (transfer learning) −283.89 1620.16 452.16 957
Expt. 1-2 (from scratch) −583.51 1371.83 233.15 908

Figure 13. Results of experiment 2-1 (score plot).

Experiment 2-2 was conducted to assess the transfer learning effects for the UAV
types, and weight transfer was conducted for identical Module #3 (UAV Type 2, Mission 1).
For this experiment, the weight from Experiment 1-1 was transferred, and comparisons
with Experiments 2-2 and 2-3, which involved training with and without weight transfer,
respectively, were performed. In Table 11, Experiment 2-2 displays better performance
across all indices, excluding the max value, compared to Experiment 1-3. The graph in
Figure 14 shows the improvement in learning speed.

Through this experiment, the effect of transfer learning was found to be similar to that
in Experiment 2-1. The results of Experiments 2-1 and 2-2 indicate that the modular learning
method can be effectively applied to new UAV types and by utilizing transfer learning.
Additionally, even cases in which complex forms of tasks were not performed could be
divided into modules, and a single task could be performed without additional learning.

4.3.3. Results of Experiment #3

Experiment #3 was conducted to directly assess the effect of modular learning pro-
posed in this study. The results of Experiment 3-1 (modular learning), which connected
Module #1, trained with individual networks, and Module #2 as a single task, and
Experiment 3-2 (single network learning), in which an identical task was learned with a
single network, are shown in Table 12 and Figure 15. The experimental results indicate
that the modular learning method in Experiment 3-1 initially succeeded in completing
the task by connecting the previously trained modules through smooth connections and
noise addition. However, Experiment 3-2, which simultaneously performed approach and
tracking maneuvers with a single network, was not successful after approaching success at
approximately episode 900.
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Figure 14. Results of experiment 2-2 (score plot).

Table 11. Results of experiment 2-2.

Min Score Max Score Mean Score Cumulative Successes

Expt. 2-2 (transfer learning) −738.35 5772.40 1622.16 855
Expt. 1-3 (from scratch) −975.43 7364.83 1285.82 304

Table 12. Results of experiment #3.

Min Score Max Score Mean Score Cumulative Successes

Expt. 3-1
(modular learning) 258.95 1788.80 685.07 1357

Expt. 3-2
(single network learning) −37.51 1034.33 18.16 11

Figure 15. Results of experiment #3 (score plot).

These results show that, although learning simple maneuvering with a single network
was successful, learning the maneuvers of different characteristics was inefficient. In
contrast, modular learning based on identical rewards displayed stable success for complex
tasks compared to a single network.

The results of Experiments 3-1 and 3-2, at the 100th and 1000th episodes, are plotted in
3D in Figure 16. Figure 16a,c show the results of modular learning, and the light blue line
represents the approach maneuver, or Module #1. Here, the agent maneuvers through Mod-
ule #1′s network, and if Module #1 is successfully complete, the task switches to Module
#2, the tracking maneuver, indicated in blue. Furthermore, if the task is transformed, the
agent uses the network trained for the tracking maneuver. As shown in the figure, when
modular learning was applied, we can see that the agent tracks the target successfully even



Drones 2023, 7, 418 19 of 22

after the target turned and succeeded the task. Figure 16b,d show the results of Experiment
3-2, which involved learning with a single network. As shown in Figure 16b, at the onset of
learning, the agent did not perform normal flight and collided with the ground, ending the
task. As shown in Figure 16d, the agent performed an approach maneuver in the target
direction but failed to normally track the target after the target turned, and the task ended.

Figure 16. Results of experiment #3 (3D plot): (a) Expt. 3-1 (modular learning) episode 100,
(b) Expt. 3-2 (single network) episode 100, (c) Expt. 3-1 (modular learning) episode 1000 and
(d) Expt. 3-2 (single network) episode 1000.

4.3.4. Results of Experiment #4

Experiment #4 was conducted to evaluate the performance stability of the agent
trained with modular learning in the previous Experiment 3-1 and the agent trained
without modular learning in Experiment 3-2. This experiment was designed to determine
if the trained agent could successfully continue to perform the task after being trained. The
agents trained and stabilized in Experiment 3-1 and Experiment 3-2 were tested with slightly
different starting conditions without additional training, in other words, without changing
the weights. Furthermore, we tested whether both agents could perform well in situations
in which they started with a significant altitude difference. The results demonstrate the
effectiveness of modular learning.

The results of Experiment 4-1 with modular learning are better than those for Experi-
ment 4-2 with a single network, as shown in Table 13. Additionally, as shown in Figure 17,
the agent trained with modular learning reliably performed the task with comparatively
less variability. Additionally, even when the initial conditions were set with an altitude
difference of 4000 ft, as shown in Figure 18, the agent trained with the modular learning
method successfully performs the task, and the agent trained with the single network
failed to perform the task. These experiments confirm that modular learning makes the
agent robust. Therefore, applying modular learning when performing complex tasks has
advantages in terms of robustness and performance.
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Table 13. Results of experiment #4.

Min Score Max Score Mean Score Cumulative Successes

Expt. 4-1
(modular learning) 42.39 1882.44 1514.98 1435

Expt. 4-2
(single network learning) −42.56 1845.80 1130.81 696

Figure 17. Results of experiment #4 (score plot).
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5. Conclusions

In this study, a modular learning method was proposed to improve the efficiency
of complex UAV agent tasks in environments with continuous state and action spaces.
The proposed method involved training individual task networks and connecting them to
perform complex tasks depending on their type and requirements. To evaluate the proposed
method, experiments were conducted using a JSBSim 6-DOF aerodynamic simulation for
moving targets. The experiments consisted of 1500 episodes, and the results showed that
modular learning resulted in high rewards with a relatively small number of learning
episodes, thereby verifying the effectiveness of the proposed method. This was a significant
improvement over using a single network for all tasks, as it allowed for more efficient
learning and better task performance. Moreover, the study indicated that transfer learning
between modules can enable the efficient learning of new tasks and UAV types. This means
that the knowledge gained from training one module can be transferred to other modules,
enabling them to learn faster and with fewer data. This is a key advantage of modular
learning over other approaches. The experiments also showed that agents trained with
modular learning display better stability and robustness than those trained using a single
network and can perform tasks effectively, even when starting at different altitudes. In
summary, by applying reinforcement learning and modular learning methods to study
autonomous flight control for UAVs performing complex tasks, we show that UAVs can
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effectively perform complex tasks in a realistic 6-DOF environment. The implications of
this research are important in the field of UAV technology and reinforcement learning. By
enabling UAVs to autonomously perform complex tasks, the modular learning method
provides new possibilities for use in various applications. The ability to efficiently adapt to
different missions and perform intermission transfers demonstrates the potential for UAVs
to effectively handle dynamic and changing environments.

However, the study was limited in scope, as only two tasks were connected. In the
future, the algorithm will be improved to overcome this limitation, and the number of
connected modules will be increased to perform complex tasks more efficiently in more
challenging environments. Additionally, the generalizability of the learned policies across
different UAV platforms and environments should be explored.
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