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Abstract: Automatic modulation classification (AMC) is a promising technology to identify the
modulation mode of the received signal in drone communication systems. Recently, benefiting from
the outstanding classification performance of deep learning (DL), various deep neural networks
(DNNs) have been introduced into AMC methods. Most current AMC methods are based on a local
framework (LocalAMC) where there is only one device, or a centralized framework (CentAMC)
where multiple local devices (LDs) upload their data to only one central server (CS). LocalAMC may
not achieve ideal results due to insufficient data and finite computational power. CentAMC carries a
significant risk of privacy leakage and the final data for training model in CS are quite massive. In this
paper, we propose a practical and light AMC method based on decentralized learning with residual
network (ResNet) in drone communication systems. Simulation results show that the ResNet-based
decentralized AMC (DecentAMC) method achieves similar classification performance to CentAMC
while improving training efficiency and protecting data privacy.

Keywords: drone communications; automatic modulation classification (AMC); deep learning; deep
neural network; decentralized learning; residual network (ResNet)

1. Introduction

Advanced signal processing techniques accelerate the fast development of future wire-
less communications. Among these techniques, automatic modulation classification (AMC)
is considered a promising technique for identifying signals in complicated electromagnetic
environments such as in drone communication systems [1–4]. With the ability to identify
modulation mode of the received or intercepted signal without prior modulation infor-
mation [5], AMC has been widely considered in various scenarios. Originally, AMC has
been located in military fields, such as drone recognition, signal monitoring, interference
recognition, electronic countermeasures [6–8] and so on. With the constant consumption of
spectrum resources, AMC has been introduced into civilian scenarios. In these scenarios,
the signal transmitters do not need to send additional modulation information of signals,
which means saving spectrum resources [9].

Classic AMC methods consist of likelihood-based (LB) methods and feature-based (FB)
methods. The main LB methods can be classified as average likelihood ratio rest (ALRT) [10],
generalized likelihood ratio test (GLRT) [11] and hybrid likelihood ratio test (HLRT) [12].
Other later LB methods are variations of above three AMC methods. According to the
Bayes minimum misclassification cost criterion, LB methods can theoretically guarantee
good classification performance. However, LB methods cannot achieve ideal results in
non-cooperative communication due to the lack of prior knowledge. FB methods consist
of extracting features and constructing classifiers [13–15]. Classic man-made features
consist of parametric statistical features [16], high order statistical features, constellation
features [17], wavelet transform features [18] and cyclic putter features [19,20]. In FB
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AMC, typical machine learning (ML)-based AMC methods were proposed first. These
methods are simple in principle, easy to implement and can achieve excellent classification
performance, but feature extraction requires too much artificial cost.

Compared with ML, deep learning (DL) has the advantage of automatically extract-
ing depth features from the training samples and making use of these depth features
to build a classifier for decision making. Consequently, DL is seen as one of the most
promising algorithms in classification tasks. M. Liu et al. [21] proposed a message pass-
ing algorithm based on DL for efficient resource allocation in cognitive radio networks.
J. Tan et al. [22] proposed a deep reinforcement learning approach for sharing intelli-
gently unlicensed bands in long term evolution (LTE) and wireless fidelity (WiFi) systems.
H. Huang et al. [23] proposed a fast unsupervised DL-based beamforming technology.
There are also proposed AMC methods combined with DL. It was O’shea who introduced
convolutional neural network (CNN) into AMC firstly [24] and proved the superiority of
DL in classification tasks. Y. Lin et al. [25] proposed a neural network pruning technology
for AMC. S. Huang et al. [26] proposed an AMC method utilizing a compressive CNN
structure. Z. Zhang et al. [27] proposed an AMC method using CNN with feature fusion.
Y. Wang et al. [28] proposed an AMC method with compressive sensing, which introduced
a scaling factor for each neuron in CNN. F. Meng et al. [29] proposed a DL-enabled ap-
proach for AMC, whose computation speed is faster than traditional likelihood-based AMC
methods. Z. Cao et al. [30] proposed a light-weight CNN for channel statement information
(CSI) feedback in massive MIMO. P. Qi et al. [31] proposed an AMC method based on
deep residual network with multimodal information. The above AMC methods are all
under the scope of LocalAMC or CentAMC. LocalAMC may not achieve ideal classification
performance because the dataset may be not sufficient and the local device (LD) has limited
computational power. The training efficiency of CentAMC is low because only one central
server (CS) is used to process abundant data which are collected from local devices (LDs).
Transmission of training data consumes a lot of communication overhead. In addition,
CentAMC has the problem of privacy leakage during data transmission.

From the perspective of training efficiency and data security, decentralized or dis-
tributed learning algorithms [32,33], are applied in AMC research. Decentralized AMC
(DecentAMC) enables learning a global model while datasets are distributed across LDs in-
stead of gathered into only one CS, and LD only needs to transfer the local model to the CS.
Wang et al. [34] proposed a DecentAMC method based on the CNN structure and proved
that the training efficiency of DecentAMC is higher than that of CentAMC. Fu et al. [35]
proposed a DecentAMC method using lightweight network and model aggregation which
can be considered in the application of drone communications. Most current DecentAMC
methods are based on the CNN structure. However, with the deepening of convolution
layers, there will be gradient explosion and gradient disappearance problems. In order to
solve the above problems, He et al. [36] proposed residual network (ResNet). Considering
the advantages of decentralized learning and ResNet, we propose a decentralized learning
method for AMC in the drons communication systems based on ResNet, which is termed
ResNet-based DecentAMC. Our main contributions of this paper are highlighted below.

• We propose an AMC method using decentralized learning and residual network
(ResNet) towards drone communication systems. This novel framework can achieve
good classification performance and improve training efficiency while protecting
data privacy.

• We compare the classification accuracy of support vector machine (SVM)-based Cen-
tAMC method and deep neural network (DNN)-based CentAMC method using
dataset RadioML 2016.10a, and improve that DL-based AMC performs better than
ML-based AMC.

• We compare classification accuracy of different DNN-based AMC methods using
dataset RadioML 2018.01a. The proposed ResNet-based DecentAMC method performs
better than current DNN-based DecentAMC method.
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The remainder of this paper is structured as follows. We introduce the system frame-
work of AMC and signal model in Section 2. The traditional AMC method based on
artificial features is introduced in Section 3 to compare with DL-based AMC methods. The
proposed DL-based AMC framework is introduced in Section 4. Section 5 presents and
analyses the simulation results, and the conclusion is presented in Section 6.

2. AMC Description and Signal Model
2.1. AMC Description

AMC is used to classify the modulated mode of intercepted or received signals in mili-
tary scenarios or civilian scenarios such as in drone communication systems. Specifically,
the transmitter sends modulated signals. Through the wireless channel, the modulated
signals are received and pre-processed for modulation recognition in the receiver. Then, the
modulation recognition results are used to assist the demodulation of signals. The system
framework of AMC is shown in Figure 1.

Figure 1. A basic system framework of AMC.

2.2. Signal Model

The band signal considered in this paper can be expressed as

r(k) = hej(2π f0k+φ0)sm(k) + w(k), k = 0, 1, · · · , K− 1. (1)

Please notice that the specific definition of the model is shown in Table 1.

Table 1. Specific definition of the signal model.

Parameter Definition

r(k) The received band signal
h Channel coefficient
f0 Frequency offset
φ0 Carrier phase offset

sm(k) k-th symbol generated
m of sm(k) m-th modulation scheme

w(k) Additive Gaussian noise
K The number of signal symbols

3. ML-Based AMC and DL-Based AMC
3.1. Classic AMC Method Based on Artificial Features and ML

The classic FB methods include pre-processing, extracting features, constructing the
classifier and so on. Here, we consider high order statistical features, which can be expressed
as [37]

Ĉ20 = M20, (2)

Ĉ21 = M21, (3)

Ĉ40 = M40 − 3M20
2, (4)

Ĉ42 = M42 − |M20|2 − 2M2
21, (5)
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Ĉ60 = M60 − 15|M40||M20|+ 30M3
20, (6)

Ĉ63 = M63 − 6M41M20 − 9M42M21 + 18M2
20M21 + 12M3

21, (7)

where number of the sampling points of the received signal r = {r(k)}K
k=1 is limited

in the real-world scenarios, thus we apply the estimation value of i-th order moments
M̂ij = 1/K ∑K

k=1[r
i−j(k)r∗j(k)] to replace its theoretical value Mij. As shown in Table 2,

|Ĉ21| of 8PSK, BPSK, QAM16, QAM64, and QPSK are equal. If |Ĉ40|, |Ĉ42| and |Ĉ63| are
used as features, 8PSK, BPSK, QAM16, QAM64 and QPSK can be theoretically classified.

Therefore, we use F1 = |Ĉ40|
|Ĉ21|

2 , F2 = |Ĉ42|
|Ĉ21|

2 and F3
|Ĉ63|
|Ĉ21|

3 as features and SVM as the classifier

for machine-learning-based AMC.

Table 2. Theoretical Values of High-order Cumulant for Each Modulation Signal.

|Ĉ20| |Ĉ21| |Ĉ40| |Ĉ41| |Ĉ42| |Ĉ60| |Ĉ63|

BPSK E E 2E2 2E2 2E2 16E2 16E3

QPSK 0 E E2 0 E2 0 4E3

8PSK 0 E 0 0 E2 0 4E3

16QAM 0 E 0.68E2 0 0.68E2 0 2.08E3

64QAM 0 E 0.62E2 0 0.62E2 0 1.80E3

3.2. Modern AMC Method Based on Deep Features and DL

DL has the advantage of automatically extracting features from samples. In order
to verify the universality that DL-based AMC methods perform better than ML-based
AMC methods in classification performance, we consider comparing the classification
performance of SVM and three DNNs which include CNN, modulation classification
network (MCNet) [38] and ResNet. The structures of the above three DNNs are shown in
Figures 2–4, respectively.

Figure 2. Structure of CNN, where the values of N and M are 1 and 5 for RadioML 2016.10a
respectively, and 6 and 24 for RadioML 2018.01a, respectively.
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Figure 3. Structure of MCNet.

Figure 4. Structure of ResNet.

4. Our Proposed AMC Method
4.1. System Model of DecentAMC

DecentAMC consists of four steps: broadcasting the initial comprehensive model;
training, updating and uploading the local model; local model aggregation and global
model downloading. The specific system model of DecentAMC is shown in Figure 5.
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Figure 5. System model of the proposed DecentAMC method.

4.1.1. Broadcasting Initial Comprehensive Model

The CS sets initial parameters and builds initial comprehensive model, and then the
CS broadcasts this initial model to all LDs.

4.1.2. Training, Updating and Uploading Local Model

After receiving model and weight, each LD performs local computing and uploads
the new model and weight to CS.

4.1.3. Local Models Aggregation

After receiving all local models, CS aggregates these models to obtain a new compre-
hensive model. The method of aggregation is the key step of DecentAMC. In this paper, we
adopt the model averaging (MA) [39], which can be expressed as

θ
g
t =

1
N

N

∑
n=1

θn
t , (8)

where t represents t-th epoch, N is the number of LDs and θ
g
t denotes aggregated global

model weight.

4.1.4. Global Model Downloading

After local model weights are aggregated by CS, CS sends the new global model to all
LDs. LDs replace their original model with this new global model, and then repeat step (2),
step (3) and step (4) until loss convergence. The algorithm of the proposed ResNet-based
DecentAMC is shown in Algorithm 1.
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Algorithm 1 Algorithm statement of the proposed ResNet-based DecentAMC method.
Input: IQ samples and corresponding labels.
Output: θ

g
T−1.

CS sets initial parameters and builds initial global model (i.e., ResNet) and then send this model to
all local devices.

• N: the number of LDs.
• B: the number of batches in each epoch.
• T: the total number of communications, i.e., 100.
• θn

t : the single model weight of n-th LS at t-th epoch.
• θ

g
t : the global model weight aggregated by CS at t-th epoch.

for t = 0, 1, 2, · · · , T − 1 do:
All LDs download the latest global model weight θn

t,b.
for b = 0, 1, 2, · · · , B− 1 do:

All LDs train and update local model weight.
end for
All LDs upload local model parameter {θn

t,B}N
n=1 to CS.

CS updates global model parameter by model aggregation

θ
g
t =

1
N

N
∑

n=1
θn

t,B.

end for
return θ

g
T−1

5. Simulation Results and Discussions
5.1. Dataset Description
5.1.1. RadioML 2016.10a

In order to prove the superiority of DL-based AMC methods over ML-based AMC
methods and the universality of DL, we choose five modulated signals {8PSK, BPSK,
QAM16, QAM64 and QPSK} from RadioML 2016.10a [40] to analyze the classification per-
formance of SVM-based CentAMC method and DNN-based CentAMC methods, where the
DNNs are mentioned in Section 3.2. As for DNNs, under each SNR, each modulated signal
generates 1000 pieces of data, of which 60% are used for training set and the remaining 40%
as the test set, and 30% of training set are used for validation set. It must be stressed that
SVM and DNNs are all based on centralized method in this simulation. This guarantees
the classification performance will not be affected due to the insufficient dataset.

5.1.2. RadioML 2018.01a

We choose a richer dataset, RadioML 2018.01a [41], to analyze the classification perfor-
mance of the LocalAMC, CentAMC and DecentAMC using different DNNs (CNN, MCNet
and ResNet). This dataset includes 24 different modulated signals {16APSK, 32APSK,
64APSK, 128APSK, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-SC, AM-DSB-
WC, AM-DSB-SC, FM, GMSK, OQPSK, 4ASK, 8ASK, OOK, BPSK, QPSK, 8PSK, 16PSK
and 32PSK}, and is generated by GNU Radio. Under each SNR, each modulated signal
generates 4096 pieces of data, 75% of the dataset is used for the training set and the rest is
used as the test set, and 30% of training set is used as the validation set. In this simulation,
we assume that there are 12 LDs and 1 CS. Detailed parameters are shown in Table 3.

5.2. Comparative AMC Methods
5.2.1. AMC Method Based on Local Framework

LocalAMC trains model in LD. This method will achieve the worst classification per-
formance of all deep-learning-based AMC methods because training data are not sufficient
and the computational power of a single LD is extremely limited.

5.2.2. AMC Method Based on Centralized Framework

CentAMC trains model in CS based on sufficient dataset collected from all LDs. This
method can achieve the best classification performance of all deep-learning-based AMC
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methods, however the CS will be under great computational pressure in processing a huge
amount of data.

Table 3. Simulation parameters for the DNN-based AMC methods.

Parameter Value

Device GeForce GTX 2080Ti
Dataset DeepSig RadioML (version 2018.01A)

Batch size of training 50
Batch size of testing 20

Epoch 100
Learning rate η 0.001
Environment Keras 2.2.4

Optimizer Adam

5.3. Classification Performance: ML vs. DL

For AMC based on machine learning, the suitability of artificial feature design will
directly affect identification performance. Therefore, we first analyze the designed artificial
features on the RadioML 2016.10a dataset. As shown in Figure 6, the selected features can
effectively distinguish the five types of digital modulation signals. It also can be seen that,
when the signal-to-noise ratio is greater than 5 dB, the separation of five signals is stable
and no longer increases with increasing SNR.

(a) F1 (b) F2

(c) F3

Figure 6. The analysis of means of three features of five digital modulation signals under different SNR.
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The classification accuracy with varying SNR is considered to represent the classifica-
tion performance of SVM-based CentAMC and DNN (CNN, MCNet and ResNet)-based
CentAMC, which can be expressed as

Pi
Acc =

Ni
correct
Ni

test
× 100%, (9)

where Pi
Acc represents the classification accuracy at SNR = i dB and i range from −10 dB to

18 dB. Ni
correct denotes the number of the correctly identified samples at SNR = i dB and

Ni
test denotes the number of test samples at SNR = i dB. The curves of Pi

Acc of SVM-based
CentAMC method and DNN-based CentAMC method are shown in Figure 7. It can be
observe that three DNNs perform better than SVM. At the same SNR, the accuracy of
DNN-based CentAMC method is 3.49%∼9.45% higher than that of SVM-based CentAMC
method. The performance of the machine-learning-based AMC and the deep learning-
based AMC stabilizes when the SNR is greater than 5 dB, because the separation of five
signals is stable and no longer increases with increasing SNR.

Figure 7. Classification accuracy of Pi
Acc SVM-based CentAMC method and DNN (CNN, MCNet

and ResNet)-based CentAMC method.

Different number of neural network layers or number of neurons can have an impact on
the identification performance, and therefore it is necessary to explain the parameter configu-
ration of the used ResNet in detail. Specifically, we discussed the LocalAMC performance
when the number of residual blocks is 1, 2, 3, 4, 7 and 16, respectively. As shown in Figure 8,
ResNet with one residual module has the lowest recognition accuracy and ResNet with three
residual modules has the highest recognition accuracy, reaching around 90%. Under high
SNR conditions, the recognition accuracy of ResNet using 7 residual modules and 16 residual
modules actually decreases. Therefore, we design a ResNet with three residual blocks.

Figure 8. Classification accuracy of LocalAMC based on ResNet with different number of residual
blocks on RadioML 2018.01a.



Drones 2023, 7, 391 10 of 14

5.4. Classification Performance: Different AMC Methods Based on CNN, MCNet and Proposed ResNet
The Correct Classification Probability under Different SNR

The evaluation criteria for classification performance are the same as Equation (9)
mentioned in the Section 5.3. The only significant difference is that the SNR i ranges
from −20 dB to 30 dB. The curves of the correct classification probability of LocalAMC,
CentAMC and DecentAMC using three DNNs (CNN, MCNet and ResNet) are shown in
Figure 9. The classification accuracies Pi

Acc, i ∈ {0, 10, 20, 30} dB of DNN (i.e., CNN, MCNet
and ResNet)-based AMC methods are shown in Table 4.

It can be observed that, whatever the kind of structure of network, CentAMC and De-
centAMC performs significantly better than LocalAMC. As for CNN-based AMC methods
and MCNet-based AMC methods, the DecentAMC method has limited performance loss
when compared with CentAMC method. Specifically, the performance gap is nearly 2% at
high SNR. As for the proposed ResNet-based DecentAMC method in this paper, the error
of DecentAMC method and CentAMC method is less than 0.5% and the curves of them
almost coincide as shown in Figure 9.

(a) (b)

(c)

Figure 9. Classification accuracy Pi
Acc of DNN-based AMC methods. (a) Classification accuracy

Pi
Acc of CNN-based AMC methods; (b) Classification accuracy Pi

Acc of MCNet-based AMC methods;
(c) Classification accuracy Pi

Acc of ResNet-based AMC methods.
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Table 4. Classification accuracy Pi
Acc of DNN-based AMC methods.

(a) Classification Accuracy Pi
Acc of CNN-Based AMC Methods

Method (CNN-Based) P0
Acc P10

Acc P20
Acc P30

Acc

LocalAMC 44.79% 72.26% 73.55% 73.72%
CentAMC 45.91% 89.96% 92.41% 92.49%

DecentAMC 51.36% 89.00% 90.60% 90.47%

(b) Classification Accuracy Pi
Acc MCNet-Based AMC Methods

Method (MCNet-Based) P0
Acc P10

Acc P20
Acc P30

Acc

LocalAMC 47.62% 77.56% 80.31% 80.06%
CentAMC 48.17% 88.45% 91.74% 91.46%

DecentAMC 50.04% 85.82% 89.23% 89.13%

(c) Classification Accuracy Pi
Acc ResNet-Based AMC Methods

Method (ResNet-Based) P0
Acc P10

Acc P20
Acc P30

Acc

LocalAMC 48.65% 86.38% 89.72% 89.45%
CentAMC 53.63% 93.92% 95.54% 95.41%

DecentAMC (proposed) 53.69% 93.80% 95.39% 95.24%

We specially compared the classification accuracy of ResNet-based DecentAMC
method with that of CNN-based DecentAMC method and MCNet-based method. As
shown in Table 5 and Figure 10, the highest accuracy of DecentAMC based on CNN and
MCNet is nearly 90% and the one based on ResNet is over 95%. At high SNR, the accuracy
of ResNet-based DecentAMC method is 4.77%∼7.98% higher than that of CNN-based De-
centAMC method and MCNet-based DecentAMC method. The accuracy at 30 dB is slightly
lower than that at 20dB, no more than 0.2%, which is consistent with the phenomenon in
paper [15]. This seemingly abnormal result can actually be explained by the fact that only a
limited number of simulation experiments were carried out.

Figure 10. Classification accuracy Pi
Acc of DecentAMC method based on CNN, MCNet and ResNet.

Table 5. Classification accuracy Pi
Acc of DecentAMC for CNN, MCNet and ResNet.

DecentAMC P0
Acc P10

Acc P20
Acc P30

Acc

CNN 51.36% 89.00% 90.60% 90.47%
MCNet 50.04% 85.82% 89.23% 89.13%

DecentAMC 53.69% 93.80% 95.39% 95.24%
(proposed) (3.65%↑, 2.09%↑) (7.98%↑, 4.80%↑) (6.16%↑, 4.79%↑) (6.11%↑, 4.77%↑)

Note 1: The red font corresponds to the performance improvement of ResNet over MCNet. Note 2: The blue font
corresponds to the performance improvement of ResNet over CNN.
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5.5. Communication Overhead: ResNet-Based AMC Methods vs. Comparative AMC Methods

One drawback of CentAMC is that each LD needs to upload sub-data to CD, which
consumes significant communication resources. DecentAMC chooses to transmit model
trained by the sub-data rather than sub-data itself to reduce communication overhead. The
model sizes of three DNNs (i.e., CNN, MCNet and ResNet) are shown in Table 6.

Table 6. The model size of three DNNs (i.e., CNN, MCNet and ResNet).

Network Structure Ms

CNN 678 Kb
MCNet 637 Kb
ResNet 649 Kb

In the LocalAMC method, LDs train model in itself. There is no CS which means
communication overhead OLocal = 0. The CentAMC method includes two times commu-
nication. Specifically, one time is each LD uploads its data to the CS, and the other is CS
sends final comprehensive model to all LDs. The communication overhead OCent can be
described as [15]

OCent = N(Ds + Ms), (10)

where the N represents the number of LDs, and the Ds denotes the data size of each LD,
and the Ms means the comprehensive model size. In this simulation, the Ds is 1,431,738 Kb.
In the DecentAMC method, there are multiple times communication between CS and LDs,
because from the point view of LD, there exists frequent uploading of the local model and
frequent downloading of the global model. The communication overhead ODecent can be
written as

ODecent = 2NMsT + NMs, (11)

where the T represents the total communication times.
The communication overhead of LocalAMC, CentAMC and DecentAMC using three

DNNs (CNN, MCNet and ResNet) is shown in Table 7. It can be observed that, no matter
what kind of network, the communication overhead of DecentAMC is much lower than
that of CentAMC, and the exact percentage declines are approximately 90.49%, 91.06% and
90.89% in the case of CNN, MCNet and ResNet, respectively. For the DecentAMC, there is
no significant difference in the communication overhead of the three DNN structures due
to the close size of their network models. To further improve communication efficiency, we
will explore how to combine Elastic averaging SGD [42] with AMC in the future.

Table 7. The communication overhead of LocalAMC, CentAMC and DecentAMC based on three
DNNs (CNN, MCNet and ResNet).

Network Structure OLocal OCent ODecent

CNN 0 Kb 17,188,992 Kb 1,635,336 Kb (90.49%↓)
MCNet 0 Kb 17,188,500 Kb 1,536,444 Kb (91.06%↓)
ResNet 0 Kb 17,188,644 Kb 1,565,388 Kb (90.89%↓)

Note: The red font indicates the percentage of communication overhead reduced by DecentAMC compared
to CentAMC.

6. Conclusions

In this paper, we verified the superiority of DL over ML by utilizing CNN, MCNet,
ResNet and SVM in the drone communication systems. Then, we used these three DNNs to
compare the classification performance of three different training methods: the LocalAMC, the
CentAMC and the DecentAMC. DecentAMC based on CNN and MCNet has similar classifi-
cation performance to CentAMC while protecting data privacy and reducing communication
overhead. The classification performance of ResNet-based DcentAMC is quite close to that of
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ResNet-based CentAMC. Last but not least, we proved that the proposed ResNet-based Decen-
tAMC performs better than the other two DNN (CNN and MCNet)-based DecentAMC in the
drone communication systems. In future work, we shall consider the algorithm deployment
in the real drone communication systems to realize the signal recognition.
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