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Abstract: Deep reinforcement learning technology applied to three-dimensional Unmanned Aerial
Vehicle (UAV) air game maneuver decision-making often results in low utilization efficiency of
training data and algorithm convergence difficulties. To address these issues, this study proposes an
expert experience storage mechanism that improves the algorithm’s performance with less experience
replay time. Based on this mechanism, a maneuver decision algorithm using the Dueling Double
Deep Q Network is introduced. Simulation experiments demonstrate that the proposed mechanism
significantly enhances the algorithm’s performance by reducing the experience by 81.3% compared to
the prioritized experience replay mechanism, enabling the UAV agent to achieve a higher maximum
average reward value. The experimental results suggest that the proposed expert experience storage
mechanism improves the algorithm’s performance with less experience replay time. Additionally,
the proposed maneuver decision algorithm identifies the optimal policy for attacking target UAVs
using different fixed strategies.

Keywords: UAV; maneuver decision-making; deep reinforcement learning; air game

1. Introduction

The advancement of Unmanned Aerial Vehicle (UAV) technology has led to its emer-
gence as a novel weapon system in air games. In comparison to manned aircraft, UAVs
offer benefits such as no risk of human casualties, extended flight duration, and low cost [1].
Nevertheless, UAVs do not possess the same degree of flexibility and adaptability as
manned aircraft and suffer from limited autonomous gaming capabilities. Consequently,
enhancing the autonomous decision-making capacity of UAVs is a primary area of inter-
est in contemporary UAV air game research. UAV air game maneuver decision-making
algorithms utilize sensor data as input to generate the optimal strategy for successfully
executing target UAV strike missions. Broadly, maneuver decision algorithms employed by
UAVs can be classified into three categories: game theory methods, optimization methods
and artificial intelligence methods [2].

Game theory is a discipline that studies mathematical models of conflict and coop-
eration between intelligent decision makers [3]. Given the inherent game-like nature of
interactions between two UAVs in air game scenarios, employing game theory to address
air game challenges has emerged as a principal research focus. Currently, prominent ap-
proaches to maneuver decision algorithms grounded in game theory encompass those
based on influence diagrams and differential games.

Influence diagrams are graphical models that represent uncertain variables and de-
cision problems [4]. The maneuver decision approach based on influence diagrams in-
tegrates prior knowledge of pilot’s habits and preferences for behavioral reasoning [5].
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Virtanen et al. [6] introduced a multi-stage influence diagram game to simulate a pilot’s ma-
neuver decision-making in one-on-one air games, graphically illustrating aircraft dynamics
and pilot preferences under uncertain conditions. A moving-horizon control method was
employed to solve the influence diagram game. To solve multi-level influence diagrams,
Zhong et al. [7] transformed the multi-stage influence diagrams into a two-level optimiza-
tion problem based on multi-stage influence-diagram decision-process modeling. A study
by Pan et al. [8] utilized influence diagrams in the context of multi-aircraft air games and
suggested a maneuver model based on state prediction influence diagrams. This model
incorporated a state acquisition model using an unscented Kalman filter based on belief
states. To resolve the state prediction influence diagrams, the moving horizon approach
was applied, and the model was substantiated through a simulation of a two-on-two
cooperative air game. Xie et al. [9] adopted a Bayesian theorem for real-time situation
assessment, transforming the multi-aircraft air game model into a one-on-one air game
model, and they employed influence diagrams to represent the multi-aircraft air game
process. A maneuver decision algorithm based on influence diagrams integrates pilots’
prior knowledge and offers strong simulation outcomes and interpretability. However,
a notable drawback of this approach is its high computational complexity, which poses
challenges when applying it to intricate air game environments.

Differential game theory [10] is commonly employed to address maneuver decision-
making challenges in three-dimensional air games. Mukai et al. [11] devised a sequential
linear quadratic method to identify local Nash solutions of general differential games and
applied this technique to air game simulations. Simulation experiments demonstrated that
solution estimation could converge to the local Nash (saddle) solution of the original game.
Fu et al. [12] established a fixed-duration difference game model with speed, elevation angle,
and yaw angle as control variables. In this model, the integral of the deviation angle and
the departure angle was utilized as the cost function, while a penalty function was used to
deal with constraints. Park et al.’s [13] maneuver decision algorithm features a hierarchical
decision structure and leverages a differential game theory to compute the scoring function
matrix, which reflects the degree of UAV air superiority. Başpınar et al. [14] employed the
flatness property of the dynamical system to generate control and state sequences using
a B-spline curve for the flat output. Then, by employing the security policy approach
in game theory, the air game problem was transformed into an optimization problem
of parameterized curves. He et al. [15] established a target–defender–attacker model
and designed a nonlinear guiding rule based on differential game theory, verifying the
algorithm’s effectiveness through simulation experiments. Although the application of
a differential games model to solve air game problems has yielded numerous theoretical
results, the expansion of decision spaces can lead to a dimension explosion issue, resulting
in reduced solution efficiency.

Optimization methods treat air game problems as multi-objective optimization prob-
lems subject to aerodynamic constraints. Smith et al. [16] developed a genetics-based
machine learning system that employs digital simulation models of one-on-one air games
and genetic algorithms to generate maneuvers. Experimental results demonstrated that the
proposed system enabled the X-31 to successfully counter traditional fighter opponents.
Sprinkle et al. [17] framed the control problem as a cost-minimization problem and pro-
posed a non-linear model predictive tracking controller algorithm for evasive maneuvers
in fixed-wing UAVs. McGrew et al. [18] utilized approximate dynamic programming
(ADP) for UAVs to learn the optimal strategies for air games, facilitating rapid response to
quickly changing tactical situations with long planning horizons and good performance.
Duan et al. [19] introduced a predator-based particle swarm optimization method that
effectively addresses the dynamic task assignment of UCAVs as validated by air game
simulations. To enhance the efficiency and accuracy of air game confrontation evolution,
Ji et al. [20] applied biological immunity to air game decision-making and developed an
improved Tactical Immune Maneuver System (TIMS) model that combines sequential-
association data mining with the TIMS model. Han et al. [21], considering the impact of
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uncertainty factors and decision-making lag in UAV air games, proposed a robust maneu-
ver decision-making method based on target-accessibility domain-state prediction. This
method designed a robust multi-objective optimization function grounded in state function
and statistical principles and utilized the grey wolf optimizer to solve real-time optimization
issues. Tan et al. [22] introduced the Model Predictive Control (MPC) theory and introduced
the LSHADE-TSO-MPC air game maneuver decision-making method, which predicted
target UAV trajectories and accelerated air game victories. Ruan et al. [23] combined the
bionic intelligent optimization algorithm with air game decision-making problems and
designed a transfer-learning pigeon-inspired optimization model that demonstrated good
convergence, high precision, and reasonable maneuver decisions in one-on-one dogfights.
Machmudah et al. [24] solved the optimization problem of flight trajectories by using
the bank-turn mechanism of fixed-wing UAVs at a constant altitude. The experimental
results showed that the particle swarm optimization algorithm had good performance in
path planning and flight trajectory planning. Despite the numerous methods for solving
optimization problems, air game decision-making that employs optimization theory faces
challenges such as difficulty in convergence and poor real-time performance due to the
complexity of the air game state space.

The advancement of UAV technology and artificial intelligence has spurred research
of maneuver decision algorithms. These algorithms can be categorized into reinforcement
learning methods and other machine learning methods. In the latter category, machine
learning algorithm are combined with autonomous maneuver decision-making to address
the problem of UAV autonomous decisions in air games. Some researchers have employed
neural networks to store air game rules, enabling the replication of air game behavior [25–27].
This data-driven approach does not necessitate a detailed aircraft dynamics model. However,
the trained agent’s decision-making ability is influenced by the training data. Machine
learning algorithms, including Bayesian networks and fuzzy theory, have also been utilized in
generating air game strategies. Considering the uncertainty and real-time nature of the UAV
air game decision-making process, Geng et al. [28] proposed a hybrid tactical decision-making
method based on rule sets and fuzzy Bayesian networks (FBN), preserving the advantages of
expert systems. Similarly, Wu et al. [29] developed a situation assessment model utilizing a
fuzzy reasoning machine, enabling the UAVs to conduct thorough assessment of air game
benefits. Çintaş et al. [30] used deep learning to automatically detect and track another moving
UAV in the air. The experimental results showed that the proposed method provided the
highest accuracy rate of 82.7% and a mean fps speed of 29.6.

However, approaches relying on training data or expert systems are constrained by
the training data of human experts or pilots. Reinforcement-learning-based algorithms
simulate the air game environment as a Markov Decision Process (MDP) and derive optimal
strategies through continuous trial and error in the simulation environment, making them
suitable for various complex environments without depending on pilot training data.
Recently, reinforcement learning technology has rapidly advanced, and its integration with
air games has become a prominent research area.

Acknowledging sensor errors in air game environments, Kong et al. [1] represented
air games as a state-adversarial Markov Decision Process (SA-MDP) and introduced
an autonomous maneuver strategy generation algorithm for aircraft based on the state-
adversarial deep deterministic policy gradient algorithm (SA-DDPG). The shaping reward
obtained by the inverse reinforcement learning algorithm for addressing reward sparsity
effectively enhances air game strategy learning speed. To solve reinforcement learning
algorithm convergence speed issues, Li et al. [31] improved the deep deterministic policy
gradient algorithm [32] (DDPG) convergence speed by proportionally returning the final
reward value to other reward values in the same air game process. Targeting the DDPG
exploration strategy’s insufficient exploration and low data utilization, Wan et al. [33]
incorporated a heuristic exploration strategy to enhance the algorithm’s exploration ca-
pacity. Yang et al. [34] applied the proximal policy optimization algorithm [35] (PPO) to
UAV air games and verified the algorithm’s effectiveness through air game confrontation
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simulations. Zhang et al. [36] integrated the concept of final reward with proximal strategy
optimization, proposing an FRE-PPO-based air game agent training framework to improve
air game agents’ maneuver decision-making ability through self-play training methods.
Fan et al. [37] proposed an autonomous maneuver decision-making model based on the
Asynchronous Advantage Actor–Critic (A3C) algorithm, establishing a two-layer reward
mechanism combining internal rewards and sparse rewards to promote faster convergence.
By combining deep reinforcement learning with stochastic game theory, Cao et al. [38]
designed a MinimaxDDQN network to effectively enhance the UCAV’s autonomous game
capability. Aiming at the problem of the generalization performance of the SAC algorithm,
Li et al. [39] proposed a PSP-SAC algorithm, which can realize sample sharing and strategy
sharing in various game environments, and it significantly improves the generalization
performance compared with independent training. In order to solve the diversity of air
game samples, Li et al. [40] also proposed a SAC algorithm based on expert actors, us-
ing a small amount of expert experience to increase the diversity of samples, which can
greatly improve the exploration and utilization efficiency of deep reinforcement learning.
In general, reinforcement-learning-based methods are applicable to various complex con-
frontation scenarios and can achieve online real-time decision-making. However, these
methods exhibit low training data utilization efficiency, and the reinforcement learning
algorithms employed are challenging to converge.

Traditional methods for UAV maneuver decision-making suffer from high compu-
tational complexity and exploding dimensions. However, for air games, reinforcement-
learning-based maneuver decision-making can leverage the benefits of this learning ap-
proach in complex environments, thereby improving the dynamic adaptability of UAVs.
Therefore, reinforcement learning is used for UAV maneuver decision-making in this paper.
Despite the advantages of this approach, there are challenges related to the low utilization
efficiency of training data and difficulties with algorithm convergence when applying
reinforcement learning to air game decision-making. In real-world environment, the flying
experience of air game experts is more effective than the strategies explored by novice
pilots, which means incorporating expert experience into the training of UAV agents may
provide a more effective strategy. Based on this idea, this paper proposes a maneuver
decision algorithm based on a Dueling Double Deep Q Network (D3QN) with an expert
experience storage mechanism (EESM). Firstly, the air game problem is modeled based on
the MDP framework, encompassing the aircraft dynamics model, attack determination area,
state space, action space, and reward function. To prevent the waste of expert experience in
the replay buffer during reinforcement learning algorithm training, an expert experience
storage mechanism is introduced, which aims to enhance experience storage efficiency and
algorithm convergence speed. Subsequently, D3QN is incorporated into UAV air game
maneuver decision-making, leading to the design of a D3QN maneuver decision algorithm
based on the expert experience storage mechanism. Lastly, simulation experiments are
conducted, with results indicating that the proposed mechanism accelerates the algorithm’s
convergence, and the suggested maneuver decision algorithm can effectively strike target
UAVs by adopting various fixed strategies.

2. Air Game Environment Modeling
2.1. Markov Decision Process

The goal of reinforcement learning is to facilitate the agent’s ability to learn strategies
that maximize numerical rewards through continuous trial and error. The Markov decision
process serves as a mathematical framework ideally suited for addressing reinforcement
learning problems [41].

Within this framework, the agent selects an action and the environment responds by
presenting a new state based on the chosen action. Concurrently, the environment generates
reward that continuously encourage the agent to learn a strategy that maximizes the total
reward. The interaction between the environment and the agent is illustrated in Figure 1.
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Figure 1. The interaction between the environment and the agent.

As depicted in Figure 1, at each discrete time t, the agent observes the environment’s
state St ∈ S and chooses an action At ∈ A(s) based on the current strategy. In the following
moment, the agent receives the immediate reward Rt+1 ∈ R ⊂ R, which is given by the
environment. Subsequently, the environment transitions to a new state St+1 according to
the action At.

Typically, the function p is employed to define the dynamic characteristics of MDP.
For any s′, s ∈ S , r ∈ R, and At ∈ A(s), the following definitions are given:

p
(
s′, r | s, a

) .
= Pr

{
St = s′, Rt = r | St−1 = s, At−1 = a

}
(1)

The agent aims to maximizes the sum of future rewards, considering discount factors.
The expected return is defined as follows:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

∞

∑
k=0

γkRt+k+1 (2)

To assess the agent’s performance in a particular state, the concepts of action–value
function (Q-function) and value function are introduced as follows:

vπ(s)
.
= Eπ [Gt | St = s] = Eπ

[
∞

∑
k=0

γkRt+k+1 | St = s

]
,

Qπ(s, a) .
= Eπ [Gt | St = s, At = a]

= Eπ

[
∞

∑
k=0

γkRt+k+1 | St = s, At = a

] (3)

The advantage function refers to the advantage of an action a relative to the average
value in a particular state; it can be described by the following formula:

Aπ(s, a) = Qπ(s, a)− vπ(s) (4)

2.2. Aircraft Motion Modeling

Within the air game environment, our UAV and the target UAV engage in an air game
within a three-dimensional space. To accurately depict the reinforcement-learning air game
environment, modeling the motion of the UAV is essential.

The aircraft motion model outlines the updated state of the UAV under specific
actions, signifying the transition from St to St+1. The primary focus of this article is the
maneuver decision-making algorithm, with an emphasis on updating the UAV’s position
and attitude. As a result, this article introduces a particle model and treats the UAV as a
particle. The UAV coordinate system employs local east, north, and up (ENU) coordinates
OXYZ, where the OX-axis represents east, the OY-axis represents north, and the OZ-axis
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points vertically skyward. The following kinematic equations for position information in
the OXYZ coordinate system can be derived as follows:

dx
dt

= v cos θ sin ψ

dy
dt

= v cos θ cos ψ

dz
dt

= v sin θ

(5)

where x, y, and z denote the UAV’s coordinates in the ENU coordinates OXYZ; v denotes
the UAV’S velocity vector; dx/ dt, dy/ dt, and dz/ dt are the projections of v in the ENU
coordinates OXYZ; and θ and ψ symbolize the pitch and yaw angles of the UAV, respectively.

As shown in Figure 2, θ is defined as the angle between the UAV velocity vector v and
the projections of v in the O-XY-plane, and ψ is defined as the angle between the projections
of v in the O-XY-plane and and the OY-axis. In the ENU coordinate system, the kinetic
equations can be derived as below:

dv
dt

= g(nx − sin θ)

dθ

dt
=

g
v
(nz cos φ− cos θ)

dψ

dt
=

gnz sin φ

v cos θ

(6)

where dv/ dt denotes the change rate of velocity with time, dθ/ dt denotes the change
rate of pitch angle with time, dψ/ dt denotes the change rate of yaw with time, and g
refers to the acceleration of gravity. The control variables of the UAV are represented
by [nx, nz, φ], where nx refers to the longitudinal acceleration of the UAV, nz refers to the
normal acceleration of the UAV, and φ refers to the roll angle of the UAV. In summary,
given the current state of the UAV and its control variables, the state of the UAV at the next
moment can be determined through Equations (5) and (6).

Figure 2. The particle model of the aircraft.

2.3. Maneuver Decision Modeling by Deep Reinforcement Learning
2.3.1. Framework of Model

The air game maneuver decision algorithm proposed in this paper is based on rein-
forcement learning, which typically utilizes MDP as a theoretical framework. Thus, it is
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necessary to model the maneuver decision process and clarify the interaction between the
UAV agent and the air game simulation environment. In the air game simulation environ-
ment, the goal of our UAV agent is to complete the task of striking the target, which entails
keeping the target within attack range as much as possible while ensuring the UAV’s safety.
Figure 3 illustrates the framework of the UAV agent interacting with the environment.

Figure 3. The framework of the UAV agent interacting with the environment.

As depicted in Figure 3, the UAV agent receives state information from the environ-
ment and selects action using the maneuver decision algorithm. The air game environment
then employs the aircraft motion equation described in Section 2.2 to calculate the next
state of the UAV, taking the current state and maneuvering action of both UAVs as input
while simultaneously calculating the current reward value using the reward function. After
the calculation, the air game environment provides feedback to the UAV agent in terms of
state and reward value. The UAV agent updates the decision-making algorithm based on
the reward value and state information and employs the updated algorithm to complete
the maneuver decision for the next moment.

2.3.2. Attack Determination Model

The attack decision model outlines the ultimate goal of the UAV agent and provides a
detailed definition of the conditions required for the UAV agent to complete the air game
cycle. The objective of the UAV agent is to acquire a higher reward value and successfully
strike the target UAV.

Figure 4 defines the attack range of the UAV, where θattack denotes the attack angle
and Dattack denotes the attack distance. When the target UAV enters the attack zone of
our UAV, this indicates that our UAV has successfully executed the attack. Equation (6)
mathematically represents the decision condition for the success of a UAV attack:{

d < Dattack

qU < θattack
(7)

where qU denotes the angle between the UAV’s speed and the line connecting the UAV
and the target, and d denotes the distance between the UAV and the target. Given UAV
information (xU , yU , zU , θU , ψU , φU) and target information (xT , yT , zT , θT , ψT , φT), qU and
d can be calculated by the following equation:

d =

√
(xU − xT)

2 + (yU − yT)
2 + (zU − zT)

2

qU = arccos{[(xT − xU) cos φU cos θU

+(yT − yU) sin φU cos θU + (zT − zU) sin θU ]/d}

(8)
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Figure 4. The attack determination model of the UAV agent.

2.3.3. State Definition

The UAV state space represents the environment information perceived by the UAV
agent. When designing the state space, it is necessary to filter and extract the environmental
information. This information includes both directly related information about the goal
and indirectly related information. The goal of the UAV agent is to complete a strike on the
target, and the directly related information includes the distance d between the UAV and
the current attack angle qU of the UAV. The indirectly relevant information is the environ-
ment information that is not directly related to the agent’s goal, but the agent can learn the
strategy to achieve the goal through this indirect information. The indirectly related infor-
mation for the UAV agent includes position information (xU , yU , zU , xT , yT , zT), attitude
information (θU , ψU , φU , θT , ψT , φT), velocity information (vU , vT), and attack information
qT . By integrating and normalizing the directly related information and profile-related
information, the designed state space is illustrated in Table 1.

Table 1. The state space of the UAV agent.

State Definition State Definition

s1
xU−xT

d0
s8

qT
π

s2
yU−yT

d0
s9

θU
2π

s3
zU−zT

d0
s10

ψU
2π

s4
d
d0

s11
φU
2π

s5
vU−v0

v1
s12

θT
2π

s6
vT−v0

v1
s13

ψT
2π

s7
qU
π s14

φT
2π

Where d0, v0, v1 are normalized constants. The position information adopts normal-
ized relative coordinate information ( xU−xT

d0
, yU−yT

d0
, zU−zT

d0
), which can make the UAV agent

have good performance in different coordinate systems. The variable qT is the departure
angle of the target, which is obtained by calculating the angle between the target’s speed
and the line connecting the UAV and the target:

qT = arccos{[(xT − xU) cos φT cos θT

+(yT − yU) sin φT cos θT + (zT − zU) sin θT ]/d}
(9)

2.3.4. Action Definition

According to Equation (6), [nx, nz, φ] are selected as the control variables of the UAV:
nx represents the longitudinal overload of the UAV, indicating the acceleration capability
of the UAV along the direction of the flight speed; nz represents the normal overload of
the UAV, which is vertical to the flight speed direction; and φ is the roll angle of the UAV.
Attitude correction can be achieved through the control of φ and nz. Using [nx, nz, φ] as the
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maneuver action implies that the action space of the UAV agent is continuous. Directly
discretizing the continuous action space can lead to the curse of dimensionality, making it
challenging for the algorithm to converge.

In real air games, NASA has defined a library of fundamental flight maneuvers for
aircraft, including straight flight, acceleration, deceleration, left turn, right turn, upward
flight, and downward flight [42]. The combination of different basic maneuvers can create
more advanced stunts (e.g., Immelmann turns, loops, etc.). In this paper, taking into account
air game background knowledge, the action space is defined as a set of seven basic actions,
which avoids the curse of dimensionality caused by directly discretizing the continuous
action space. The basic maneuvering action of the UAV can be expressed by setting the
values of different control variables. Table 2 displays the action space of the UAV in this
study and the corresponding control value settings.

Table 2. The action space and the settings of the corresponding control values.

Action Definition nx nz φ

a1 straight flight 0 1 0
a2 acceleration 2 1 0
a3 deceleration −2 1 0
a4 left turn 0 8 − arccos(1/8)
a5 right turn 0 8 arccos(1/8)
a6 upward flight 0 8 0
a7 downward flight 0 8 π

2.3.5. Reward Function Definition

The reward function’s design should ensure that the agent can accomplish its objective
while maximizing the reward. In this study, the UAV agent’s goal is to complete the task of
striking the target, which entails keeping the target within attack range as much as possible
while ensuring the UAV’s safety. For the UAV agent’s goal, the reward function design can
be separated into objective rewards and sub-objective rewards.

The objective reward pertains to the positive reward R0 given to the UAV agent when
the goal is achieved, which is typically unbiased towards the goal. When the target is
within the UAV’s attack range, a positive reward value Rp is given to the UAV agent; when
the UAV is within the target’s attack range, a negative reward value Rn is given to the UAV
agent. To encourage the UAV agent to complete the strike mission as quickly as possible, a
time penalty Rt is introduced to guide the UAV towards swift mission completion. R0 can
be expressed using the following equation:

R0 =


Rp, if the UAV completes attack mission;

Rn, if the UAV is wrecked;

Rt, else.

(10)

However, relying solely on objective rewards may result in sparse rewards, which
could leave the UAV agent without proper guidance in exploration direction. By incor-
porating additional reward or penalty components based on the objective reward, the
reward function becomes denser, providing adequate guidance to the UAV agent. This
can accelerate the convergence of the deep reinforcement learning algorithm and enhances
performance. Auxiliary reward components are designed by breaking down the objectives
into sub-objectives and assigning different weights according to each sub-objective’s contri-
bution to the overall goal realization. The goal of the UAV strike mission is divided into
three sub-objectives:

1. The distance between the UAV and the target should be within the attack range;
2. The angle between the UAV and the target should be outside the attack angle of

the target;
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3. The angle between the UAV and the target should be within the attack angle of
the UAV.

According to the sub-goals of the UAV agent, R1, R2, R3 are introduced. R1 is the
distance reward function, which increases as the UAV gets closer to the target. The distance
reward function R1 can guide the UAV agent to reduce the distance to the target and to
rapidly enter the UAV’s attack range. The distance reward function R1 is defined as follows:

R1 = 1− (
d

Dr
)0.4 (11)

where Dr is the distance reward constant. R2 is the angle reward function, considering both
the UAV’s attack angle and the target’s departure angle. The angle reward function R2
can direct the UAV agent to maintain an offensive position and approach the target while
ensuring its own safety. The angle reward function R2 is defined as follows:

R2 =
π − (qU + qT)

π
(12)

R3 is the attack reward function, which increases as the target approaches the attack
angle. The attack reward function R3 encourages the UAV agent to actively attack and is
defined using the following equation:

R3 = 1− (
qU
π

)0.4 (13)

Based on the contributions of R1, R2, and R3 in the process of achieving the goal,
c1, c2, and c3 are introduced as the weights of each sub-objective reward function. The
reward function Rt of the UAV agent is composed of the objective reward function and the
sub-objective reward functions as follows:

Rt = R0 + c1 ∗ R1 + c2 ∗ R2 + c3 ∗ R3 (14)

3. UAV Maneuver Decision Algorithm
3.1. Expert Experience Storage Mechanism

Traditional reinforcement learning algorithms tend to discard transitions after learning
from them once, leading to inefficient use of experience. Moreover, strong correlation
between adjacent transitions is not conducive to the agent learning. In order to alleviate
the problems of data correlation and experience waste, experience replay technology is
introduced in the DQN algorithm [43]. Experience replay stores the agent’s experience at
each time step in a dataset, accumulating transitions from multiple episodes into a replay
buffer R, and uniformly samples randomly from R when performing an update, where
R = τ1, . . . , τN , τt = (st, at, rt, st+1). The current oldest transition is deleted when a new
transition is stored and the replay buffer is full.

Fedus et al. [44] studied the impact of three factors in the replay buffer, namely replay
capacity, age of the oldest policy, and replay ratio. The experimental results proved that
an increase in replay capacity greatly improves the performance of n-step DQN series
algorithms. However, not all transitions hold equal importance. Based on this idea, Schaul
et al. [45] proposed a prioritized experience replay (PER) mechanism, using TD-error as a
judgment basis. The experimental results showed that DQN with prioritized experience
replay outperformed the original DQN. Continuing with this idea, Karimpanal et al. [46]
optimized the experience storage process by collecting high-reward sequences during
interactions and using prioritized experience replay during the learning process.

However, in aerial combat games, the goal is not to obtain higher reward values but to
successfully attack the target UAV. In a real air game environment, the flying experience
of an air game expert is often more valuable than the strategies independently explored
by novice pilots. Consequently, when training the UAV agent, the replay buffer should
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ideally contain a higher proportion of expert experience. Although obtaining genuine
expert experience can be challenging, the agent may successfully strike the target during its
exploration process. Compared to random exploration experience, instances of successful
target strikes can be considered as the UAV agent’s expert experience.

Based on the above analysis, this paper proposes an expert experience storage mecha-
nism to optimize the experience storage process and uses the expert experience collected
by UAV agents during the exploration process to enhance algorithm performance. When
storing transitions in the replay buffer, the sequence of transitions is also recorded. In addi-
tion to experience replay technology, the proposed mechanism incorporates goal attainment
determination; specifically, it assesses whether the UAV has successfully completed its
strike mission. When the goal is achieved, the recorded sequence τ is regarded as an expert
experience sequence from which the agent can learn. The recorded sequence τ is stored in
both the original replay buffer and the expert replay buffer. Same as for the original replay
buffer, the oldest expert experience sequence will be removed when the expert replay buffer
is full. To balance the UAV agent’s exploration and utilization of expert experience in the
air game environment, two measures are proposed: centralized learning and replay buffer
replacement.

Centralized learning refers to setting multiple learning points in the replay buffer,
and when the amount of stored experience reaches the learning point, the existing expert
experience is learned multiple times. During UAV exploration, updates typically follow
the principle of obtaining higher reward values. However, inaccurately designed reward
functions can lead to situations where the agent achieves high reward values but fails to
accomplish the goal. Learning from the expert replay buffer can rectify the strategy update
direction, shifting the agent from being reward-oriented to goal-oriented.

Nonetheless, during the initial stage of training, learning from an expert experience
sequence may not effectively correct the direction or might even steer it in the wrong
direction. Hence, a centralized learning method is necessary, which entails the agent
learning multiple times from the experience sequence. However, this strategy can cause
the agent to become trapped in a local optimum at the beginning of training.

An intuitive solution is to perform centralized learning on the agent each time a certain
amount of successful experience is gathered. As illustrated in Figure 5, the replay buffer is
evenly divided into h parts, with the capacity line of each part serving as the UAV agent’s
learning point. When the stored experience reaches the learning point, the existing expert
experience is learned k times by the agent.

Figure 5. Centralized learning and replay buffer replacement during the process of EESM.

During the exploration process, the UAV agent employs the expert replay buffer to
conduct gradual update learning. After centralized learning, the agent’s strategy direction
is adjusted. At this point, continuing to use the original replay buffer for exploration is
not suitable; instead, exploration should be based on the expert experience replay buffer.
Consequently, the proposed algorithm replaces the original replay buffer simultaneously
with centralized learning each time, facilitating exploration grounded in expert experience.

See Algorithm 1 for a more formal description of the proposed algorithm.
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Algorithm 1: Expert Experience Storage Mechanism
Input: a reinforcement learning off-policy algorithm A, self-learning time k,

storage constant h, and expert replay buffer size N
Initialize A
Initialize replay buffer R
Initialize expert replay buffer R′

for episode = 1, M do
Initialize transition sequence τ = { }
Initialize state s1
for t = 1, T − 1 do

Select action at using the policy from A
Excute action at and observe reward rt and st+1
Store transition (st, at, rt, st+1) in the replay buffer R
Add transition (st, at, rt, st+1) to the transition sequence τ
Sample a minibatch transition τbatch from the replay buffer R
Update weights through a minibatch transition τbatch and A

end
if goal achieved then

Store transition sequence
τ = {(s1, a1, r1, s2), (s2, a2, r2, s3), ..., (st, at, rt, st+1, ...)} in the expert replay
buffer R′

m = current buffer memory mount
if current buffer memory mountm > N

h ∗ n then
n← n + 1
R← R′

for j = 1, k do
Sample a minibatch transition τbatch from the replay buffer R′

Update weights through a minibatch transition τbatch and A
end

end
end

end

3.2. Dueling Double Deep Q Network Algorithm

DDPG [32] and PPO [35] are algorithms widely used for decision-making in continu-
ous action space games, while DQN series of algorithms are typically used for tasks with
a discrete action space. In this paper, Dueling Double Deep Q Network is selected as the
algorithm for UAV maneuver decision-making. D3QN algorithm integrates the central con-
cepts of both Double DQN [47] and Dueling DQN [48] algorithms, enhancing performance
beyond the original DQN. This section provides an overview of the key components of the
D3QN algorithm.

In conventional Q-learning, a Q-function is introduced, which is the expected future
reward for performing a specific action in a specific state. The value of each Q-function is
recorded through the Q-table, which determines the agent’s decisions based on an ε-greedy
strategy [43]. The Q-table iteratively updates Q(st, at) utilizing the Bellman equation:

Q(s, a)← Q(s, a) + l
[

r + γ max
a′

Q
(
s′, a′

)
−Q(s, a)

]
(15)

where l denotes the learning rate, a hyperparameter that influences if and when the
objective function converges to a local minimum. Through continuous trial and error, the
agent eventually learns a convergent Q-table, which enables it to select the action that
yields the maximum expected reward.
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The advancement of deep learning has facilitated the integration of reinforcement
learning and deep learning. The DQN algorithm, proposed by the DeepMind team in
2015 [43], employs a neural network in place of the Q-table. The current state serves as
the input to the neural network, which produces Q values as output. The DQN model
comprises two networks: the predict Q network and the target Q network. The predict Q
network is employed to predict the Q value of each action corresponding to the current
state, while the target Q network is used to predict the Q value of each action in the
subsequent state. When calculating the loss function in the network, the target Q network
will not be updated with the model at any time. After a certain number of iterations, the
parameters of the predict Q network are transferred to the target network for correction.
The objective function of network update can be defined as follows:

YDQN
t ≡ Rt+1 + γ max

a
Q
(
St+1, a; θ−t

)
(16)

However, there is an overestimation problem in DQN. After Q network initialization,
the estimation of the Q value is random. Due to the maximization operation used in
updating the Q value, the final Q value is often overestimated. To alleviate this problem,
the Double DQN algorithm separates action selection and evaluation. In the predict Q
network, it finds the action that corresponds to the maximum Q value and then uses this
selected action to calculate the target Q value in the target Q network. Based on this idea,
Double DQN modifies the objective function:

YDoubleDQN
t ≡ Rt+1 + γQ

(
St+1, argmax

a
Q(St+1, a; θt), θ−t

)
(17)

The model structure of Double DQN is identical to that of DQN, encompassing both
the predict Q network and the target Q network. The optimal action selection in DQN is
based on the parameter θ− of the target Q network, while the optimal action selection in
Double DQN is based on the parameter θ of the predict Q network currently being updated.

Double DQN retains the model structure of DQN while enhancing the algorithm’s
performance through the modification of the objective function. Contrasting with Double
DQN, Dueling DQN concentrates on the neural network structure and optimizes the Q
network model. The Dueling DQN algorithm introduces a new neural network structure
known as the dual network.

As shown in Figure 6, the output of the Dueling DQN algorithm comprises two
branches, which are the state value function V and the advantage function value A for each
action. The Q value is represented by the sum of V and A. To enhance the distinguishability
of V and A, Dueling DQN centralizes the advantage function and imposes constraints
using the following equation:

Q(s, a; θ, α, β) = V(s; θ, β) +

(
A(s, a; θ, α)− max

a′∈|A|
A
(
s, a′; θ, α

))
(18)

where β is a local network parameter unique to the value function and α is a local network
parameter unique to the advantage function.

The D3QN algorithm is established upon the foundation of the DQN algorithm,
integrating concepts from both the Double DQN algorithm and the Dueling DQN algorithm
to optimize the DQN model structure and optimize the objective function.

3.3. Maneuver Decision Algorithm Based on Dueling Double Deep Q Network with Expert
Experience Storage Mechanism

Based on D3QN and EESM, a UAV air game maneuver decision algorithm is developed.
The comprehensive algorithm framework is illustrated in Figure 7.
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Figure 6. The structure of the DQN model and Dueling DQN.

Figure 7. The comprehensive framework of the maneuver decision algorithm based on D3QN
with EESM.

The current state and reward values are calculated from the UAV air game environment
through Equations (5) and (6) and the reward function. The predict Q network takes the
current state value as input. After processing through two fully connected layers, the
predict Q network calculates the value function and advantage function separately and
employs Equation (18) to derive a series of Q values. The ε-greedy strategy is used to
complete the action selection and interact with the UAV air game environment.

Throughout the training process, the UAV agent acquires strategy by sampling from
the replay buffer, which comprises both the original replay buffer and an expert replay
buffer. The original replay buffer serves to disrupt the correlation between samples and
update the network parameters at each training step, while the expert replay buffer en-
compasses the experience of the UAV successfully attacking the target aircraft. Centralized
learning is conducted when the mission is accomplished. Upon the accumulation of a
specific amount of expert experience, the contents of the expert replay buffer are duplicated
into the original replay buffer.

During the process of sampling from the replay buffer, the UAV state value is simulta-
neously transmitted to both the target Q network and the predict Q network. The predict
Q network supplies the predict Q value for action selection, while the target Q value is
used for calculating the objective function in the network parameter update. Through the
target Q network and the predict Q network outputs, the parameter update for the predict
Q network can be accomplished based on the objective value in Equation (17). Utilizing
the fixed target network method, the parameters of the predict Q network are copied to
the target Q network at regular intervals. When the UAV successfully strikes the target
during the training phase, expert experience is sampled from the expert replay buffer
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for centralized learning. The learning process is identical to that of ordinary experience
sampled from the replay buffer.

The training process of the proposed algorithm is presented in Algorithm 2.

Algorithm 2: UAV Maneuver Decision Algorithm
Input: self-learning time K, storage constant h, expert replay buffer size N,

discount factor γ, batch size B, learning rate l, copy network step C, α, and
β

Initialize predict Q network parameter θ
Initialize target Q network parameter θ−

Initialize replay buffer R
Initialize expert replay buffer R′

for episode = 1, M do
Initialize transition sequence τ = { }
Initialize state s1
for t = 1, T − 1 do

Calculate the Q value through the predict Q network
Select action at using ε-greedy policy
Excute action at and observe reward rt and st+1
Store transition (st, at, rt, st+1) in the replay buffer R
Add transition (st, at, rt, st+1) to the transition sequence τ
Sample a minibatch transition τbatch from the replay buffer R
for j = 1, B do

Compute TD-error

YDoubleDQN
j ≡ Rj+1 + γQ

(
Sj+1, argmax

a
Q
(
Sj+1, a; θj

)
, θ−j

)
Update weights

θj+1 = θj + l
(

YDoubleDQN
j −Q

(
Sj, Aj; θj

))
∇θj Q

(
Sj, Aj; θj

)
end
Every C steps, copy weights into target network θ− ← θ

end
if goal achieved then

Store transition sequence
τ = {(s1, a1, r1, s2), (s2, a2, r2, s3), ..., (st, at, rt, st+1, ...)} in the expert replay
buffer R′

m = current buffer memory mount
if current buffer memory mount m > N

h ∗ n then

end
n← n + 1
R← R′

for k = 1, K do
Sample a minibatch transition τbatch from the replay buffer R′

for j = 1, B do
Compute TD-error

YDoubleDQN
j ≡ Rj+1 + γQ

(
Sj+1, argmax

a
Q
(
Sj+1, a; θj

)
, θ−j

)
Update weights

θj+1 = θj + l
(

YDoubleDQN
j −Q

(
Sj, Aj; θj

))
∇θj Q

(
Sj, Aj; θj

)
end

end
end

end
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4. Simulation Experiment and Analysis
4.1. Simulation Experiment Basic Setup

This study establishes a simulation environment on a Windows 10 operating system
with hardware support from an NVIDIA RTX2060 GPU and an Intel Core i7-9700k proces-
sor. The proposed UAV maneuver decision-making algorithm is implemented using the
Pytorch module.

The basic parameters of the simulation environment are shown in Table 3. The
threshold distance Dthreshold = 5000 m, state space normalization parameter v1 = 20 m/s,
v0 = 80 m/s, UAV velocity v ∈ [60 m/s, 100 m/s], attack distance Dattack = 500 m, attack
angle θattack = 60◦.

Table 3. The basic parameters of the simulation environment.

Parameter Value

Threshold distance Dthreshold 5000 m
State space normalization parameter v1 20 m/s
State space normalization parameter v0 80 m/s

UAV velocity range [60 m/s, 100 m/s]
attack distance Dattack 500 m

learning rate l 0.0003
initial greedy coefficient ε 1

greedy coefficient ε decay rate 3× 10−5

discount factor γ 0.98
reward factor c1 0.7
reward factor c2 0.15
reward factor c3 0.15

replay buffer size 106

batch size 256
storage constant h 10

self-learning time k 10
number of hidden layers 2

number of network cells in each layer 256

The D3QN network and evaluation network in this study both have two hidden layers,
with each layer consisting of 256 network cells. The Adam optimizer is used to train the
D3QN network with a learning rate ł set to 0.0003. The initial greedy coefficient ε is set to 1
and decays to 0.05 with a decay rate of 3× 10−5. The discount factor γ = 0.98, while the
reward factors are c1 = 0.7, c2 = c3 = 0.15, The replay buffer size is set to 106 and the batch
size to 256. The self-learning time k is set to 10.

Two simulation experiment were conducted in order to verify the proposed method
using the basic parameters mentioned above. The ablation experiment was designed
to test the effectiveness of the expert experience storage mechanism, while an air game
simulation experiment was set up in a simulation environment to verify the performance
of the maneuver decision algorithm.

4.2. Expert Experience Storage Mechanism Ablation Experiment

In this paper, an expert experience storage mechanism is proposed to solve exploration
efficiency in the training model. Prioritized experience replay [45] is an experience-replay-
based reinforcement learning technique that adjusts the sampling probability of experience
samples based on their priority. To evaluate the effectiveness of the expert experience
storage mechanism, ablation studies are performed on the basis of two mechanisms, and
four groups of experiment are compared:

1. Training and testing with both PER and the expert experience storage mechanism;
2. Training and testing with only PER and without the expert experience storage mechanism;
3. Training and testing with only the expert experience storage mechanism and without PER;
4. Training and testing without either PER or the expert experience storage mechanism.
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In each experiment, the initial UAV situation of each training step is shown in Table 4.
The target UAV adopts the strategy of uniform speed and direct flight, which mean the
target UAV executes a1 in the action space. Our UAV is initially behind the target UAV, and
the previously stated maneuver decision algorithm training method is used to learn the
decision-making process.

Table 4. The initial UAV situation at each training step.

Initial Position (x, y, z) v (m/s) θ ψ φ

Our UAV (10,300, 20,000, 25,000) 60 0 0 0
Target UAV (11,300, 21,000, 26,000) 60 0 0 0

During the training process, the total reward value and experience replay time ob-
tained are recorded in each episode. The total reward value received in each episode can be
used to reflect the performance of the algorithm under different sampling mechanisms. The
experience replay time refers to the time it takes for the replay buffer to be sampled from
storage, indicating the efficiency of different sampling mechanisms. The effectiveness of
the proposed mechanism is validated by comparing the total reward values and experience
replay times obtained for each experiment.

The training curves for various sampling mechanisms are presented in Figure 8.

Figure 8. Comparison of the learning curves with different experiment setting. The training reward
is calculated as mentioned in Section 2.3.4. The final presented reward is a smoothed average reward
function, which can reflect the overall performance of the UAV agent.

As shown in Figure 8, without the use of EESM and PER mechanisms, the maximum
average reward value obtained by the UAV agent is −13.5. When the original sampling
mechanism was used, the UAV agent received a relatively low reward, indicating that the
agent did not learn the strategy to obtain higher rewards as the training steps increased. On
the other hand, when the PER mechanism was used, the UAV agent obtained a maximum
average reward value of 42.5, which was higher than that obtained by using the original
sampling mechanism. The proposed EESM mechanism allowed the UAV agent to achieve
a maximum average reward value of 102.3 in the air game simulation environment, outper-
forming the PER mechanism and the original sampling mechanism. This suggests that the
EESM mechanism is effective in helping the UAV agent learn better attack strategies. The
maneuver decision-making algorithm that uses both PER and EESM mechanisms achieves
a maximum average reward value of 106.6, which is similar to the reward obtained by
using the EESM alone. However, with PER and EESM, the algorithm’s overall convergence
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speed is faster, suggesting that PER has a certain acceleration effect on the algorithm’s
convergence speed when fully utilizing expert experience.

Table 5 displays the experience replay times for different sampling mechanisms.
The EESM mechanism has an experience replay time of 178.5 ms, slightly higher than
the experience replay time without the EESM and PER mechanisms, which is 101.0 ms.
The experience replay times for the PER mechanism and the combined PER and EESM
mechanisms are 1149.2 ms and 1577.0 ms, respectively. These replay times indicate that the
proposed EESM mechanism has a slightly slower replay speed compared to the original
mechanism but is much faster than the PER mechanism, which is typically implemented
using a sumtree.

Table 5. The details of each ablation experiment.

PER EESM Experience Replay Time Max Average Reward

Experiment 1 X X 1577.0 ms 106.6
Experiment 2 X 1149.2 ms 42.5
Experiment 3 X 178.5 ms 102.3
Experiment 4 101.0 ms −13.5

The overall algorithm performance should be assessed by considering the training
curve and experience replay time. By comparing the reward curves of the four experimental
groups, it is observed that the EESM and PER mechanisms improve the UAV intelligent
agent’s learning effect, and the maneuver decision algorithm that uses the EESM mechanism
obtains higher reward values. Then, the algorithm that uses both EESM and PER mecha-
nisms achieves approximately the maximum reward value compared to the algorithm that
only uses the EESM mechanism but with a faster convergence rate. In addition, it is found
that the PER mechanism is time-consuming, while the experience replay time using the
EESM mechanism is slightly higher than the original sampling mechanism but reduced by
81.3% compared to the time taken using the PER mechanism. Taking into account both the
maximum reward value and sampling time, the following can be concluded:

1. Without using the EESM and PER mechanisms, although the experience replay time
of the algorithm is less, the UAV intelligent agent has difficulty learning an effective
strategy for attacking the target UAV.

2. The UAV intelligent agent can achieve a certain training effect when only using the
PER mechanism, but the replay experience time is greatly increased. The algorithm’s
performance is further improved after introducing the proposed EESM mechanism.

3. The EESM mechanism proposed in this study can significantly improve the per-
formance of the algorithm with less replay time: it reduces the replay time of the
algorithm by 81.3% compared to the PER mechanism and makes the UAV intelligent
agent obtain a higher maximum average reward value.

4.3. Air Game Simulation Experiment Based on Maneuver Decision Algorithm

In this section, an air game simulation experiment was conducted using the ma-
neuver decision algorithm with the proposed expert experience storage mechanism. In
the simulation experiment, our UAV maneuver decision algorithm adopts the proposed
expert experience storage mechanism. The initial situation of the UAV in each training
step was the same as the parameters presented in Table 3. The target UAV adopts three
different strategies:

1. Uniform speed and direct flight: Target UAV executes a1 in the action space.
2. Uniform speed and hovering: Target UAV executes a4 in the action space.
3. Uniform speed and serpentine maneuver: Target UAV executes a4 and a5 periodically,

with the period being 35 simulation steps.

Figures 9 and 10 show the training curve and typical air game flight trajectory of
our UAV agent when the target UAV adopts the strategy of uniform speed and direct
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flight. As shown in Figure 9, as the number of training steps increases, the proposed
autonomous maneuver decision-making algorithm gradually converges and finally obtains
the maximum reward value of 298.7. As depicted in Figure 10, the initial position of the
target UAV is above our UAV in horizontal flight. Our UAV observes the state information
of the target UAV and uses the proposed autonomous maneuver decision-making algorithm
to select the appropriate maneuvering actions. After flying straight for a brief period, our
UAV initiates a climb and attacks the target UAV positioned from below.

Figure 9. The reward value obtained by the UAV agent during the training episode wherein the
target adopts the strategy of uniform speed and direct flight.

Figure 10. The typical flight trajectory during the training episode wherein the target adopts the
strategy of uniform speed and direct flight.

The results of the air game simulation experiment with the target UAV adopting
the uniform speed and hovering strategy is shown in Figures 11 and 12. As illustrated
in Figure 11, the proposed autonomous maneuver decision-making algorithm gradually
converges with increasing training steps, achieving a maximum reward of 262.3. Figure 12
depicts the target UAV hovering with our UAV’s initial position below. Using the proposed
autonomous maneuver decision-making algorithm, our UAV takes the state information
of the aerial game as inputs and outputs real-time maneuvering actions. Then, our UAV
adjusts its flight direction and performs a climb to occupy the optimal attack position above
the target UAV to complete the attack.
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Figure 11. The reward value obtained by the UAV agent during the training episode wherein the
target adopts the strategy of uniform speed and hovering.

Figure 12. The typical flight trajectory during the training episode wherein the target adopts the
strategy of uniform speed and hovering.

The results of the air game simulation experiment with the target UAV adopting
uniform speed and serpentine maneuver is shown in Figures 13 and 14. As illustrated
in Figure 13, the proposed autonomous maneuver decision-making algorithm gradually
converges, ultimately achieving a maximum reward of 299.6. Figure 14 shows the target
UAV performing a serpentine maneuver while our UAV adopts the proposed algorithm.
As the target UAV performs the serpentine maneuver, our UAV adjusts its direction and
moves straight for a short period. Finally, our UAV climbs and positions itself above the
enemy UAV for an optimal attack.
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Figure 13. The reward value obtained by the UAV agent during the training episode wherein the
target adopts the strategy of uniform speed and serpentine maneuver.

Figure 14. The typical flight trajectory during the training episode wherein the target adopts the
strategy of uniform speed and serpentine maneuver.

5. Conclusions

When utilizing deep reinforcement learning for UAV air game maneuver decision-
making, poor algorithm performance may result from sample exploration and utilization
inefficiency. To address this issue, this paper proposes an expert experience storage mecha-
nism that can effectively enhance algorithm performance with less experience replay time
by utilizing successful expert experience in UAV air games. Based on the Dueling Double
Deep Q Network and expert experience storage mechanism, a UAV air game maneuver
decision-making model is established in this study, and its effectiveness is verified through
simulation experiments. The results demonstrate that the proposed expert experience stor-
age mechanism can improve the algorithm’s performance with less experience replay time.
Furthermore, the proposed maneuver decision-making algorithm is effective in providing
decisions to strike target UAVs employing different fixed strategies.

In future work, an analysis of the algorithm’s computational complexity and inference
speed will be conducted with respect to the limited computational load of UAVs, and the
aircraft will be modeled in detail on a semi-physical simulation platform to simulate the
real flight conditions of the UAV.
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