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Abstract: In emergency situations, such as earthquakes, landslides and other natural disasters, the
terrestrial communications infrastructure is severely disrupted and unable to provide services to
terrestrial IoT devices. However, tasks in emergency scenarios often require high levels of computing
power and energy supply that cannot be processed quickly enough by devices locally and require
computational offloading. In addition, offloading tasks to server-equipped edge base stations may not
always be feasible due to the lack of infrastructure or distance. Since Low Orbit Satellites (LEO) have
abundant computing resources, and Unmanned Aerial Vehicles (UAVs) have flexible deployment,
offloading tasks to LEO satellite edge servers via UAVs becomes straightforward, which provides
computing services to ground-based devices. Therefore, this paper investigates the computational
tasks and resource allocation in a UAV-assisted multi-layer LEO satellite network, taking into account
satellite computing resources and device task volumes. In order to minimise the weighted sum of
energy consumption and delay in the system, the problem is formulated as a constrained optimisation
problem, which is then transformed into a Markov Decision Problem (MDP). We propose a UAV-
assisted airspace integration network architecture, and a Deep Deterministic Policy Gradient and
Long short-term memory (DDPG-LSTM)-based task offloading and resource allocation algorithm
to solve the problem. Simulation results demonstrate that the solution outperforms the baseline
approach and that our framework and algorithm have the potential to provide reliable communication
services in emergency situations.

Keywords: deep reinforcement learning; edge computing; task offloading

1. Introduction

As 5G networks and IoT develop rapidly, countless promising applications and ser-
vices are emerging, including a High Definition (HD) livestream, autonomous driving,
industrial automation and virtual reality, which will take advantage of the benefits that
5G networks will offer, including extremely high data rates, reduced latency, enhanced
reliability and large-scale connectivity [1]. The number of IoT connection types is expected
to reach 25 billion by 2025. However, the computational power of some IoT devices struggle
to handle the large number of tasks due to their limited resources. The emergence of mobile
edge computing provides strong support for task offloading and execution.

In traditional edge computing, servers are usually deployed on terrestrial infrastruc-
ture communication facilities, which are susceptible to severe damage and loss of service
capacity by natural disasters, such as earthquakes and landslides. In emergency scenarios,
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where finding safe routes and field rescue is critical, these tasks are often highly latency
sensitive and computationally intensive [2], requiring offloading to resource-rich locations
for processing. Limited by transmission distance, bandwidth and energy, as well as the
possibility of the surrounding infrastructure often being damaged in a disaster, offloading
tasks to surrounding areas for execution is not always feasible. Therefore, for the reduction
of energy consumption and delay, tasks are offloaded to edge servers, which have more
computing power [3]. The solutions to these problems have been made possible by the fast
growth of the LEO satellite network.

In the last few years, great progress has been made in the study of task offloading for
LEO satellite networks. K. Jaiswal et al. investigated a task offloading scheme for LEO
satellites to minimise task processing time by jointly optimising offloading decisions for
IoT devices [4–6]. For the task offloading problem in SAGIN-based edge cloud computing
systems, M. D. Nguyen et al. consumed energy while adhering to the task’s maximum
latency constraint [7]. However, in emergency situations, none of the existing satellite
task offloading efforts consider the inability of IoT devices to communicate directly with
satellites for task offloading due to the disruption of the ground network infrastructure,
which is limited by power.

In this paper, we wish to address these issues. First, UAVs, with their high mobility
and flexible deployment, can act as aerial base stations [8–10]. We propose a satellite–
UAV–IoT device network architecture where multiple LEO satellites collaborate to offload
computational tasks. The UAV acts as a connecting device between LEO satellites and IoT
devices, observing satellite resource information and device task information to unload
ground tasks to LEO satellites. Next, the problem is modelled as a constrained optimisation
non-deterministic Polynomial (NP)—hard problem considering the task offloading of IoT
devices and resource allocation of LEO satellites. Then, this optimisation issue is described
as a Markov decision process (MDP), and a Deep Deterministic Policy Gradient and Long
short-term memory (DDPG-LSTM)-based task offloading and resource allocation algorithm
is designed to tackle the issue. Finally, an experimental environment for the simulation of
the algorithm was created, and the findings demonstrate that the suggested approach saves
the Weighting summation of the energy and latency by an average of 64.5% compared to
the benchmark algorithm. The key contributions are the following.

• A UAV-assisted air-space integrated task offload architecture is proposed in emergency
scenarios, which jointly considers resource allocation and offloading schemes under
the lack of ground resources of computing;

• A multi-satellite joint task offload scheme is proposed, which takes full advantage of
satellite computing resources to complete the task with low delay and energy consumed;

• A Deep Reinforcement Learning (DRL) algorithm is proposed, and simulation exper-
iments prove the functionality of the algorithm, reducing the weighted sum of the
energy consumed and delay by an average of 64.5%.

The remainder of this paper is organized as listed below. Section 2 showcases related
work, including LEO satellite task offloading and UAV-assisted task offloading. Section 3
presents the model, problem description, and optimization objective. The satellite selec-
tion and the DDPG-LSTM algorithm are presented in Section 4. Section 5 analyses the
experimental findings. Section 6 summarises the thesis.

2. Related Work

Task offloading supported by LEO satellite edge computing is a promising method
in dealing with energy and computationally resource-constrained IoT devices effectively.
In prior works on task offloading, to reduce the consumption of energy or latency of
ground-based devices, Wang et al. studied the offloading problem in multiple IoT device
scenarios and proposed a strategy for the allocation of resources and offloading, which
significantly reduced the average system cost [11,12]. Tan et al. introduces a multi-stage
offloading scheme to obtain the most appropriate offloading strategy and reduce the
average request response latency and request cost [13]. Wang et al. propose a strategy
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considering the differences in terminal tasks and computing capabilities, energy and
latency minimisation [14,15]. In studying hybrid task offload, [16,17] proposed hybrid
cloud and edge computing LEO satellite networks with a three-tier computing architecture,
jointly considering cooperation between mobile users, LEO satellites and cloud servers.
Wei et al. considered cooperative offloading between LEO satellite networks, jointly
optimising offloading and resource allocation strategies aiming to minimise the weighted
sum of user latency and energy consumption.Tang et al. considered the LEO coverage
time and computing power to minimize the energy consumption of users by optimizing
offloading decisions. [18] investigated cooperative offloading strategies for satellite edge
computing systems and terrestrial base stations, considering satellite orbit characteristics
and optimising offloading strategies to reduce energy consumption and latency. To make
full use of the computing power of cloud servers, Tang et al. proposed an LEO-assisted
terrestrial satellite network architecture for collaborative computing offloading at the cloud
edge to minimise system energy consumption within the constraints of latency and other
Quality of Service (QoS) requirements [19].

The focus of some work has been on UAV-assisted task offloading, where mobile
and flexible UAVs can enhance task offloading efficiency. To maximise computational
efficiency and task queue stability, Ding et al. propose a DRL-based scheme to optimise
offloading and resource allocation [20,21]. Considering the limited computational resources
of UAVs, Chen et al. propose a strategy for offloading to ground-based base station servers
to optimise transmit power and base station selection under the practical constraints of
task completion latency and power consumption [22]. In a UAV-enabled mobile edge
computing system based on device-to-device communication, the overall energy efficiency
is maximised by optimising UAV and node transmit power and scheduling strategies in
order to improve the balance between different types of nodes [23]. For channel uncertainty
during offloading, [24] minimises the energy consumption under constraints such as the
user quality of service by optimising the CPU frequency and user transmit power, etc.
To effectively support the communication and computation of unmanned surface vehi-
cles, [25] jointly considered the UAV flight speed and offloading decision to minimise the
energy consumption of the UAV swarm under the condition of ensuring the time delay
constraint. Wang et al. considered the energy limitation problem of UAVs and proposed
the strategy of offloading the mission to the ground base station by optimising the com-
munication scheduling and resource allocation, etc., considering the location relationship
of the ground base station and energy efficiency, and aimed to minimise the total energy
consumption [26].

Several efforts focused on joint UAV and LEO satellite processing task offloads.
Chai et al. consider allocating computing and communication resources to build a re-
source allocation and task scheduling system. UAVs are responsible for collection tasks,
and satellites provide edge computing services. A scheme for joint multitask offloading and
resource allocation in satellite is proposed, significantly reducing the offloading cost [27].
Due to the uncertainty of the air environment, Liu et al. presents an integrated network
architecture between the air and ground and designs an adaptive joint deep reinforcement
learning offloading scheme to select the most suitable LEO or task offload UAVs based
on energy and computational capability, which improves the energy and computational
efficiency. Under the condition of satisfying energy dynamics and considering the UAV
on-board computing resources and energy constraints, it is proposed in [28] that IoT could
locally handle and transfer it to servers, improving the success rate of the task.

From the above analysis, few past works have focused on UAV-assisted LEO edge
computing for task offloading in emergency scenarios, where tasks from ground-based IoT
devices are offloaded to LEO satellites for processing with the assistance of UAVs. In ad-
dition, tasks in emergency scenarios are computationally intensive and latency sensitive.
Therefore, multiple satellites are considered for collaborative task processing to reduce
energy consumption and task processing delays by optimising resource allocation and
offloading strategies.
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3. System Model and Problem Description
3.1. Network Scenario

Consider the emergency scenarios for 6G, where natural disasters such as earthquakes
cause severe damage to ground infrastructure and prevent the provision of computing
services to IoT devices. Due to the easy deployment characteristics of UAVs, we consider
providing computing offload services for ground devices with the help of UAVs to meet
the execution needs of computationally intensive and latency-sensitive tasks.

The UAVs collect tasks from ground-based IoT devices and communicate with multiple
low-orbiting satellites simultaneously. In order to minimise execution latency, multiple
LEOs with a relatively good channel state are selected to share the computational load.
Selecting too few LEOs may result in an inability to carry the entire task load, leading to
high computational latency and energy consumption. Conversely, selecting too many LEOs
can take up satellite resources and other IoT devices are allocated fewer satellite resources,
reducing overall system performance.

The ground-based IoT devices {1, · · · , N} are denoted as i, UAVs {1, · · · , M} are
denoted as m and low-orbiting guard {1, · · · , V} is denoted as j. The locations of IoT
devices, drones and satellites are represented using 3D coordinates. The access bandwidth
of the satellite is divided into K sub-channels, each with bandwidth B, and the satellite
storage capacity is Cj. Where Si denotes the size of the device computational task, we used
Sij to denote the task allocation of the IoT devices and the size of the allocation; β denotes
necessary computing cycles to complete a bit of the computational task.

3.2. Architecture

Current terrestrial communication networks are prone to interruptions in the event
of serious natural disasters. Instead, low earth orbiting satellites can provide communi-
cation guarantees for the emergency response to natural disasters or post-disaster relief.
As communication networks continue to evolve, the integration of satellite and terrestrial
networks, making full utilisation of the benefits of satellite networks to provide network
support for emergency scenarios, is becoming one of the important topics.

In an emergency scenario, a multi-layered LEO satellite–UAV–ground network-integrated
air–space–sky architecture is proposed in this paper, in which the ground-based communi-
cation facilities are damaged and unable to provide network services. IoT devices (search
and rescue tools, rescue vehicles, etc.) are evenly distributed on the ground and UAVs are
hovering over the affected area. It is assumed that the UAV has no on-board processing ca-
pability, providing relay services to ground equipment to assist in task offload. The ground
equipment communicates with the UAV via a wireless channel and then offloads the task to
the UAV. The ultra-dense multi-layer LEO topology ensures that seamless service coverage
can be provided by multiple satellites for ground devices. The UAV selects service satellites
based on satellite resources and computational tasks, forwards the tasks to be processed by
the LEO satellites, and provides computational services to ground devices. The proposed
task offload architecture fully exploits the resources, combines the advantages of UAVs and
LEO satellites to meet the needs of ground emergency response, and provides a new solu-
tion for the ground computing task offload in emergency scenarios. The specific scenario is
shown in Figure 1.
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Figure 1. An illustration of task offloading scenario.

3.3. Channel Model
3.3.1. IoT Device–UAV Channel

The coordinates of the UAVs are denoted as (Xm, Ym, Hm), and the coordinates of the
IoT device are represented as (Xi, Yi, 0); then, the horizontal distance is indicated as

dim =

√
(Xm − Xi)

2 + (Ym −Yi)
2 (1)

It is assumed that each small affected area is covered by a drone and is within the
service area of just one drone. If the IoT device i sends a task to the drone m, the IoT device
has to be inside the drone’s coverage [5].

dim ≤ dmax, ∀i ∈ N , m ∈ M (2)

where dmax dictates the maximum coverage radius of the UAV.
The transmission from the IoT device to the drone is assumed to take place over a wire-

less channel [29]; to prevent significant co-channel interference, IoT devices offload their
computing tasks to drones in the form of frequency division multiple access (FDMA) [30].
When an IoT device and a drone communicate, the drone flies at a low altitude, the
channel is considered line-of-sight (LoS) [31] and the small fading effect of the channel is
negligible [32]. The uplink data rate r can be expressed as

rim = ωu log2

(
1 +

pigim
σ2

)
(3)

where ωu denotes the channel bandwidth of the IoT device to the UAV, gi,m is the channel
gain of the uplink, σ2 is the additive white Gaussian noise (AWGN) power and pi is the
transmission power of the channel [33].

gim =
go

d2
im + H2

m
(4)

where go denotes the reference channel gain and d2
i,m + H2

m denotes the Squared Euclidean
Distance from the IoT device to the UAV.

3.3.2. UAV-LEO Channel

The geometric distance from the UAV to the LEO satellite, neglecting other factors,
is such that the satellite enters the communication window, and data can be transmitted



Drones 2023, 7, 383 6 of 20

only when α ≥ 20. The coordinates of the UAVs are denoted as (Xj, Yj, Hj). The geocentric
angle θmj between ground-based IoT devices and satellites can be expressed as [16]

θmj = arccos

(
R + Hm

R + Hj
cosαj

)
− αj (5)

where R denotes the Earth’s radius, Hm represents the UAV’s height, Hj denotes the satellite
altitude, and αj indicates the horizontal angle between the UAV and the satellite. The max-
imum value of the communication window θ is obtained when α = 20. The distance is
given by

Hmj =
√
(R + Hm)

2 +
(

R + Hj
)2 − 2R

(
R + Hj

)
cosθmj (6)

Acording to 3GPP Release15, an additional Doppler shift due to satellite motion should
be taken into account according to the following formula:

f j,m = (vsat / c)×
(

R + Hm

R + Hj
cos α

)
× fm,j (7)

where vsat denotes the satellite speed, c denotes the speed of light, and fm,j is the carrier
frequency at the transmitter. The drone antenna transmitting gain and receiving antenna
gain of the satellite are given by the following formula [34]:

gm = φ

(
π fm,jΩm

c

)2

(8)

gj = φ

(
π f j,mΩj

c

)2

(9)

where φ denotes the effectiveness of the antenna, and Ωm and Ωj are the antenna radii
on the reflective surfaces of the UAV and satellite, respectively. c is the speed of light.
According to the work that has been finished [30], the channel coefficient of the UAV-LEO
channel is modelled as

hmj = umjlmj (10)

where umj and lmj represent the path loss factor and the small range fading, respec-

tively. In particular, the path loss factor can be written as umj =
(

4πHm,j
λm,j

)2
, λm,j = c/ fm,j.

The small-scale fading is given by

lmj =

√
Q

Q + 1
l̄mj +

1
Q + 1

l̃mj (11)

where Q is the Rician fading factor, l̄mj denotes the LoS component satisfying |l̄mj|=1, and
l̃mj denotes the non-line-of-sight (NLA) component following l̃mj ∼ CN (0, 1). According
to the Shannon formula, the following equation gives the data rate of the uplink

Rmj = B log

(
1 +

Pmj|lmj|2umj

N0B

)
(12)

where B refers to the bandwidth used to link the UAV and the satellite, Pmj denotes the
UAV uplink transmission power, and N0 denotes the noise power spectral density.

3.3.3. Task Offloading and Computing

The ground device offloads the task to the UAV, then transfers the task block Si via
the UAV to leoj for processing. Use aij = 1 to indicate that the task can be processed by the
satellite leoj and vice versa to indicate that task Si is not offloaded to leoj for processing.
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In the IoT device–UAV channel, the data offloading delay for the IoT device task
Si to offload the task to the UAV includes both transmission delay, propagation delay,
transmission delay Ttran

im and propagation delay Tprop
im , which is given by the following

equation [35].

Ttran
im =

Si
rim

, Tprop
im =

dim
c

(13)

where c represents the light speed. The time delay between the IoT device and the drone
can be given by the following equation.

Tim = Ttran
im + Tprop

im (14)

The energy consumed by the device to transmit to the drone is calculated as

Eim = ωuTim (15)

In the UAV-LEO channel, the delay in offloading task Si from the UAV to leoj includes
a transmission delay Ttran

mj , propagation delay Tprop
mj , and computation delay Tj, which can

be expressed separately as

Ttran
mj =

Sij

Rmj
, Tprop

mj =
Hmj

c
, Tj =

Sijβ

fij
(16)

where Sij is the task volume size transferred from Si to leoj, β represents the process cycles
taken by the CPU to execute one bit of the task volume, and fij indicates the computing
frequency allocated to Sij by leoj. The drone to satellite time delay is

Tmj = Ttran
mj + Tprop

mj + Tj (17)

The energy used consists of the link transmission energy and the energy needed to
calculate in the LEO satellite.The following equation gives the calculation of the transfer
energy consumption [36].

Emj =
PmjSij

Rmj
(18)

where Pmj is the uplink power of the UAV m. According to the following equation, the
satellite calculates the energy consumption as

Ej = kSijβ f 2
ij (19)

where k is the energy factor. The total time delay T and total energy consumption E can be
expressed as

T = Tprop + Ttran + Tj, E = Eim + Emj + Ej (20)

where Tprop is the total propagation time delay, Tprop = Tprop
im + Tprop

mj . Ttran is the total
transmission time delay, Ttran = Ttran

im + Ttran
mj .

3.4. Problem Definition

In terrestrial satellite networks, the management of available computing resources
is crucial. One of the critical aspects of resource management is allocating tasks from
IoT devices to satellite nodes for processing, where different offloading decisions lead to
additional costs, affecting system performance and energy consumption.

Based on the system model and assumptions discussed above, the primary objective
is the minimisation of the balanced totals of system latency and energy consumption by the
collaborative optimisation of offloading decisions and resource allocation. The system satis-
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fies the storage requirements, given the available bandwidth and computational resources
for all tasks simultaneously, and the problem can be expressed mathematically, as follows.

min Z = ζT + ηE (21)

s.t. C1 : ∑
j∈V

ajXj ≥∑ Si(t) (22)

C2 : ∑
i∈N

Sij ≤ Cj (23)

C3 : N ≤ K (24)

C4 : ∑
i∈N

fij ≤ f ∗j (25)

C5 : ∑
j∈V

Sij = Si (26)

C6 : ∑
j∈V

Pmj ≤ P∗m (27)

where Xj denotes the size of the remaining storage resources of leoj , fij is the computing
resources allocated to sij by leoj, f ∗j is the satellite’s highest CPU frequency j, P∗m is the full
uplink transmission power of the UAV, Cj is the total storage space, N is the number of
individual satellite connections, K is the maximum number of channels, and the size of
the task block is allocated by Sij. Where ζ, η ∈ [1, 10], ζ and η are the weights of delay and
energy consumption, respectively.

C1 is that the free storage capacity of the LEO satellite to which the device is connected
is not less than the device’s task size, C2 is that the storage space already used by the
satellite is not more significant than the total storage space, C3 is that the number of
individual satellite connections does not exceed the maximum number of channels, and
C4 is a constraint on satellite computing resources to ensure that the CPU resources being
allocated to IoT device tasks do not overwhelm the total CPU computing resources. C5 is
the sum of the tasks given to different satellites by Si and the whole task size, and C6 is the
UAV to uplink the transmission power that is not more significant than the maximum UAV
power.

The complexity of the problem is increased by the coupling relation among the op-
timizing variables. In addition, the proposed optimisation problem is a mixed integer
nonlinear problem, though the function and constraints have binary variables. As IoT
devices continue to rise, the complexity grows exponentially. To reduce the problem’s
complexity, decomposing the original problem into sub-problems provides a new solution.
It decouples the optimising problem and turns it into two sub-problems: satellite selection,
task volume and computational resource allocation.

Transformation, according to the optimization objective, yields

min Z = ζT + ηE = ζTprop +
[
ζ
(
Ttran + Tj

)
+ ηE

]
(28)

The satellite selection needs to satisfy the constraints C1, C2 and C3, and the objective
of optimisation is phrased as

min Z1 = ζTprop (29)

The task and computational resource allocation policy must satisfy constraints C4, C5
and C6 with the following optimization objectives.

min Z2 = ζ
(
TTran + Tj

)
+ ηE (30)
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4. Algorithm Design

In this section, the above sub-problems are analyzed. Two algorithms are proposed to
solve problems based on task separability and resource separability, respectively. To better
understand our proposed solutions, we will briefly introduce the algorithmic process,
explaining the concepts related to Monte Carlo methods, Markov decision processes,
reinforcement learning, and the mathematical definitions of value and reward functions.

4.1. Satellite Selection

The satellite selection problem is a mixed integer programming problem, as observed
from the objective function and constraints; thus, a Monte Carlo random sampling method
is considered for the solution. A Monte Carlo method-based satellite selection algorithm is
proposed for satellite and task matching, where satellites move continuously according to
a predetermined orbit. IoT devices generate computational tasks and obtain the optimal
satellite combination for IoT device task offloading.

Monte Carlo-Based Satellite Selection Algorithm

Monte Carlo methods are also known as random sampling or statistical test methods.
The Monte Carlo method is a computational method but is different from the general
numerical computational methods. It is a method based on probabilistic statistical theory.
It solves problems that are difficult to solve by numerical methods, which is why it is
increasingly used in many applications.

The UAV collects the current satellite storage resource information (C1, · · · , Cj) and
the IoT device task (S1, · · · , Si). According to the managed satellite resource and task infor-
mation, the satellite storage resource information is randomly sampled by the Monte Carlo
method to approximate the task size Si and obtain the approximate satellite subsequence
Xt = (a1, · · · , aj).

|∑ Random
(
C1, · · · , Cj

)
−∑ Si| ≥ 0 (31)

Select the satellite subsequence Ai = (X1, · · · , Xt) that satisfies the task amount ∑ Si.

∑ Random
(
C1, · · · , Cj

)
≥∑ Si (32)

UAV m to Satellite propagation time delay

Tm,j =
(

Dm1, · · · , Dmj
)

(33)

Maximum propagation time delay is

Tmax = max
(
Tmj × Xi

)
= max

(
Dm1 × a1, · · · , Dmj × aj

)
(34)

The optimal combination of offloading satellites is obtained by minimizing the maxi-
mum propagation delay of IoT devices. As shown in Algorithm 1.

The algorithm inputs the task size processed and the satellite resources. Minimizing
the propagation delay obtains the optimal offloading decision for the IoT device tasks,
which are transmitted via a link between the UAV and the LEO satellite.
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Algorithm 1 Satellite selection algorithm

Input: Task S = {S1, S2, · · · , Si}, Storage Resource C = {C1, C2, · · · , Cj};
Output: Selection Vector a;

1: Initialize cost = 0;
2: Monte Carlo random sampling of a satellite combination X = {a1, · · · , at}, according

to (31);
3: for n = 1, j do
4: Compute distance between Satellite and UAV Hm,n, according to (6);
5: Compute Propagation Delay between Satellite and UAV D = {Dm,1, · · · , Dm,j},

according to Dm,n = Hm,n
c ;

6: end for
7: for u = 1, t do
8: if auCT ≥ ∑ S then
9: Compute Propagation Delay Tu, according to Tu = max(au × D);

10: if cost > Tu then
11: cost = Tu;
12: a = au;
13: end if
14: end if
15: end for

4.2. Task and Computing Resource Allocation Strategy

Due to the presence of correlations in several restrictions, to reduce the problem’s
difficulty, several deterministic factors have to be taken into account when offloading
satellite edge tasks. These include the satellite edge server’s state and the environment
of the communication. Therefore, the optimizing problem is converted to an offloading
scheme based on DRL-making methods and solving it by Markov decision. The DRL
architecture consists of interactions through the agent to solve the above problem by
training the best policy to maximise the cumulative reward [37].

DDPG-Based Task Offloading and Resource Allocation Algorithm

Through iterative trials, reinforcement learning optimizes the action selection in multi-
ple situations based on a given reward function. The intelligent body perceives the state
and performs actions to change it. During each iteration, the competent body observes the
state as input and selects the action to be completed. The execution of the action produces
a reward, and the intellectual body judges the quality of the action by observing the prize.
The selection of activities by intelligence tends to increase the long-term total compensation
and maximize the reward function.

The DDPG algorithm is one of the most popular methods for dealing with problems
in RL, described as (S, a, rt, γ), where S is the state, a denotes the action, rt is the immediacy
reward of the time slot, and γ ∈ (0, 1). The anticipated long-term discounting compensation
has the following definition:

Rt =
T

∑
t=1

γtr(st, at) (35)

Here, at time t, the state and action are st and at, respectively; r(st, at) is the straight
reward. Taking into account that we have to deal with continuous actions, we decide to
follow a determined policy and write the value function, as follows

Qµ(st, at) = r(st, at) + γQµ(st+1.at+1) (36)

In an effort to achieve maximum expected discounted benefits over the long term, at
each slots, we use the time-series difference method learned from the previous period’s
experience to update the action function.
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The DDPG algorithm makes the approximation Q(s, a|θ). The actor uses the strategy
function µ(s|θ) to decide on an action, the critic uses the value function to judge the policy
functional, and the network of values and strategic network are renewed in accordance
with the critic’s output. The loss function has the form

L
(

θQ
)
=
(

Q
(

θQ
)
− yt

)2
(37)

yt = r(st, at) + γQ
(

st+1, θQ
)

(38)

Refine the critic network by minimising L(θQ), and Q(θQ) is the maximum future
payoff that will be earned by proceeding with the policy µ(st+1|θQ) to the state following
the implementation of action at. The actor network must change the action parameters in
the general direction where the maximum Q is more probable.

Instead of updating all the parameters, the fixed goal Q-network can stabilise the
learning by keeping a part of the parameters updated. Let θµ and θQ be the parameters
before the update, respectively, and θµ′ and θQ′ after the update.

As changes in task offloading are time-continuous and the offloading decision taken
in the previous time slot has an impact on the current observation, we use LSTM to capture
the correlation between the previous observation and the current observation and more
potential information by learning a series of past experiences. The algorithm overcomes the
inability of the Deep Deterministic Policy Gradient (DDPG) to handle partial observability
and history-dependent decisions by adding a recursive mechanism. The DDPG-LSTM is
therefore proposed, and the algorithm architecture is shown in Figure 2.

Figure 2. Architecture for the DDPG-LSTM-based computation offloading scheme.

The organisation of the DDPG-LSTM is mainly built on the actor–critic model. The ac-
tor network of the agent is responsible for generating actions and contains two components:
the actor network µθ and µθ′ , where θ and θ′ are the network parameters. The critic net-
work of agent is responsible for evaluating actions and contains two components: the critic
network Qφ and Qφ′ , where φ and φ′ are the network parameters.

The DDPG-LSTM algorithm has three main elements.

• State

The state consists of the IoT device task information and satellite resource information.

S(t) = {Si, f j} (39)
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where Si denotes the computational task size of the ground-based IoT device and f j denotes
the computational resources of the LEO satellite.

• Action.

The action is composed of the task allocation vector Sij and the computational resource
allocation vector Fij to obtain the action space A of the system.

A(t) = {Si1, Si2, . . . , Siv, f j1, f j2, . . . , f jn} (40)

• Reward.

In this work, a function is introduced to explain the amount of change in the system
cost when action At is taken in system state St. It is expressed as

R(t) = Ut −Ut+1 (41)

Here, Ut and Ut+1 means the latency and energy consumption at time point t and the
next time point. The magnitude of the difference represents the cost reduction achieved by
At; the system benefit of taking action At is Ut.

The MDP is aimed at maximising the Reward Sum expected to be received, and can
therefore be formulated as follows

max Υ =
T−1

∑
t=0

Υt (42)

The process of DDPG-LSTM is shown in the Algorithm 2, where the weight parameters
and the replay buffer are initialised. In each training round, the agent is given a state Zt,
decides on an action at, performs the action and receives a reward Rt. Then, the replay
buffer stores the experience transformation and the chosen batch size of M. Finally, the
networks are refreshed.

Algorithm 2 DDPG-LSTM-based task and resource allocation algorithm

Input: task Si, computing resource f j
Output: task allocation Sij, computing resource f ji

1: Actor_Critic weight parameters randomised initialisation : ω, θ, ω′, θ′

2: Initialising Replay Buffer M, mini-batch size B, train eposide threshold C;
3: for m = 1, Ep do
4: Initialize environment;
5: Initialize LSTM states in the network;
6: Reception of primary state Zt;
7: for t = 1, T do
8: Choose at by online network, at = H(Zt|w) + no;
9: Implementation at, obtain Rt and switch to the state Zt+1;

10: Store (Zt, at, Rt, Zt+1) in M;
11: if m ≥ C then
12: Sample random mini-batch transitions (Zi, ai, Ri, Zi+1) from R;
13: Using the loss function and policy gradient to refresh online critic and actor

parameters;
14: Refresh parameters of the target network;
15: end if
16: end for
17: end for

5. Performance Evaluation

Within this chapter, we examine the behaviour of the proposed DDPG-based scheme.
First, we present the simulation scenario. Then, many simulation experiments are per-
formed, and the results are compared and analyzed. Lastly, we verify the training efficiency
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under different parameters and find the optimal parameter settings, comparing the perfor-
mance of various task offloading schemes and further demonstrating the method’s effec-
tiveness.

5.1. Simulation Environment and Parameters

A UAV-assisted air-space integration network scenario is considered; we used Python
to simulate and evaluate the proposed algorithm. In our simulations, we consider a
geographical area of 1 km× 1 km, in which IoT devices are then randomly deployed within
the area [38]. With LEO satellites flying at [700, 1000] km and UAVs flying at 100 m [39], the
LEO satellites provide a seamless coverage of the geographical area. We assume that the
efficiency of the satellite, IoT device and UAV antenna are 0.6, 0.55 and 0.6, respectively [34].
The maximum available computing resources of the satellite are evenly distributed in the
[3, 8] GHz interval. The detailed simulation parameters are given in Table 1 [40–42].

Table 1. Simulation parameters.

Parameter Value

Computing resources of LEO satellite, f j [3, 8] GHz
CPU cycles for processing one bit, β 100 cycles/bit

Effective switched capacitance, k 10−27

IoT maximum transmit power, pi 23 dBm
UAV maximum transmit power, pm 40 dBm

Coverage radius of UAV, dmax 1 km
Height of LEO satellite, Hj [700, 1000] km

Number of bandwidth chunks, K 6
Noise spectral density, N0 −174 dBm/Hz
Bandwidth of UAVs, ωm 1 MHz

Bandwidth of LEO , B 10 MHz
UAV altitude, Hm 100 m

Light speed, c 3× 108 m/s
Task size, Si [2.5, 3.5] MB

The DDPG-LSTM algorithm with a LSTM layer and the neural network [43] uses the
Relu, Tanh and sigmoid functions as the activation function, while the end actor network
results use softmax to restrict actions. Some critical parameters are analyzed to explore
the impact of the algorithm parameters. For each parameter studied, we provide some
possible reference values. Energy consumption and the delay weighted sum is used as an
evaluation criterion to explore the effect of parameters. The detailed algorithm parameters
are given in Table 2.

Table 2. Algorithm parameters.

Parameter Value

Buffer capacity, M 1,000,000
Batch size, B 256

Learning rate, δa, δc 0.0001, 0.001
Soft update rate, τ 0.005
Discount factor, γ 0.99
Exploration rate, ε 0.01

Figure 3 represents the performance of the algorithm at different learning rates. The up-
date step’s size affects the convergence speed, and when the learning rate is too low, the
algorithm converges slowly. When the learning rate is too high, the maximum value may
be missed due to the excessive size of the update step. The graph shows that the algorithm
performs optimally if δa = 0.0001 and δc = 0.001. In addition, it can be found that the
network performs better when δc is greater than δa because the actor network needs guid-
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ance from the critic network to learn. When the critic network learns faster than the actor
network, it can better guide the update direction of the actor network.

Figure 3. Training process with different Learning Rate settings.

Figure 4 shows the algorithm’s performance under different soft update rates. Com-
pared to the complex update strategy, the upgrade interval of the objective network is
reduced by the soft update strategy. It ensures that the target mesh is updated in every
iteration, increasing the frequency of updating the target mesh and helping to decrease the
time taken for the algorithm to converge. The smaller the soft update coefficient, the more
stable the algorithm will be and the less the parameters of the target mesh will change,
resulting in a too-slow convergence of the algorithm. If the soft update coefficient is too
large, the algorithm will be unstable. Therefore, an appropriate soft update factor can
make the algorithm stable and fast. The figure illustrates that the best performance of the
algorithm is achieved when the soft update factor is τ = 0.005.

Figure 4. Training process with different Soft Update Rate settings.

Figure 5 shows the algorithm’s performance under a varying batch size. It uses small
batch learning to increase the speed of model training to reduce the cost per iteration.
Small batches converge faster for training compared to extensive data collection. Still, they
can lead to poor performance as the data stored in the buffer is initially over-utilized [44],
reducing the importance of the data at a later stage. Large batches of data cause the network
to update too slowly and may also perform poorly. The behaviour of the algorithm on a
variety of sets is depicted in the graph, from which it is clear that the algorithm achieves
better results when the batch size = 256. In addition, it can be found that when the batch
size is 64 and 128, the system loss is higher, and the curve fluctuates more, making it
difficult for the algorithm to converge quickly and reducing its performance.
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Figure 5. Training process with different batch size settings.

Figure 6 represents the performance of the algorithm under different discount factors.
The actor network will make actions that give the critic network a high rating, and the
rating calculation will use the discount factor. To reflect the continuity of the decision,
the actor-network is expected to consider the reward and the next prize when choosing
action at. Too small a discount factor prevents the critic network from anticipating the
future in time and affects the algorithm’s performance. Conversely, when the discount
factor is too significant, it may reduce the critic network’s prediction accuracy. In the figure,
the method performs better when the discount factor = 0.99.

Figure 6. Training process with different discount factor settings.

5.2. Performance Comparison

In simulation experiments, the DDPG-LSTM algorithm proposed in this paper is
compared with random offloading (RO) [45], Twin Delayed DDPG (TD3) [46–48] and local
computing(Local), using the weighted sum of latency and energy consumption as evalua-
tion criteria [36,49]. Then, the performance of the algorithm is compared under different
computational resources and task volumes, validating the performance advantages of
the algorithm.

Assume that a stack of task orders arrive at the MEC server at each slot, and the device
generates a task at a slot. The task execution cost is used to compare the performance of
different policies. The offload expense is the summation of the time taken by the devices to
fulfil their individual tasks throughout the time slot.

Figure 7 reveals that energy consumption and the delay weighted sum of executing
the task using the DDPG-LSTM method is lower than the other three strategies. The perfor-
mance of the algorithm continues to improve as the training progresses. DDPG-LSTM takes
into account the satellite status information to ensure that resources are fully utilised and
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continuously optimises the resource allocation strategy to ensure that the task is completed
with the lowest possible latency. In addition, the figure shows that the cost of the task
execution is much higher than the other strategies due to the lack of IoT device computing
resources. Compared to the TD3 algorithm, DDPG has a faster convergence speed, and
LSTM is easier to capture temporal information. Therefore, the DDPG-based scheme has a
memory function to store valuable historical data, thus achieving better performance and
validating the effectiveness of LSTM for task offloading strategies.

Figure 7. Comparison of different algorithms.

Figure 8 displays the cumulative expense of different data sizes. As the task data
becomes more significant, the server has to use additional time and energy to handle the
tasks, and the average full system expense for handling tasks is trending up. In contrast, the
DDPG-LSTM algorithm has the smaller rising trend and the better performance compared
to other algorithms. As the volume of the task size becomes larger, the expense of the
locally computed increases faster.

Figure 8. Relationship between cost and Si.

Figure 9 indicates the changing of the cost as the LEO satellite server compute fre-
quency rises between [3, 8] GHz. It is apparent from the figure that the combined expense
of the three strategies tends to be greater as the processing frequency of the server be-
comes higher. As the frequency of LEO satellite server processing rises, the expense of the
DDPG-LSTM suggested in this paper is the lowest.
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Figure 9. Relationship between cost and f j.

Demonstration of the distribution of offload tasks across several LEO satellites; Figure 10
shows four IoT devices, with three of the satellites providing edge computing capability.
The altitude and computing resources of the satellites affect the mission offload, and simi-
larly, the distribution of computing resources is affected by the mission offload. For satellite
communication, transmission costs increase with altitude, and higher altitudes prolong
the latency and energy consumption spent in the space segment during the computed
offload. In satellite edge computing, lower computational resources and larger task offloads
increase the processing latency and energy consumption of the task.

Figure 10. Distributions of offloading task and computing resourse.

6. Conclusions

In this paper, we put forward an integrated air–space–sky network architecture for
UAV-assisted task offloading to provide more available computational resources for ground
devices and to ensure computational requirements in emergency scenarios. To minimise
the delay and energy consumed by offloading tasks, described the problem as MDP. We
further develop an algorithm to solve it. The solution enables the UAV controller to
determine the best unloading decision based on dynamic channel conditions and the
satellite position, including task offloading scenarios and resource allocation strategies.
Finally, a series of trials are conducted to validate the validity and superiority of our
proposed unloading scheme.

In the future, we need to consider more of drones’ auxiliary access LEO mobile Internet
of things in the edge of the network equipment. In some real-world situations, IoT devices
are mobile at high speed; the approach we have proposed may not be appropriate for such
scenarios. In the case of mobile IoT devices, by using satellite switching to overcome this
problem, in this paper, IoT devices can only perform task offloading. When the number
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of IoT devices or tasks increases, this offloading strategy puts a lot of bandwidth pressure
on the satellite network and increases the energy consumption for task transmission.
Therefore, a partial offload strategy can be explored for future work associated with air-
based edge computing.
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