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Abstract: Unmanned aerial vehicles (UAVs) are increasingly being integrated into the domain of
precision agriculture, revolutionizing the agricultural landscape. Specifically, UAVs are being used in
conjunction with machine learning techniques to solve a variety of complex agricultural problems.
This paper provides a careful survey of more than 70 studies that have applied machine learning
techniques utilizing UAV imagery to solve agricultural problems. The survey examines the models
employed, their applications, and their performance, spanning a wide range of agricultural tasks,
including crop classification, crop and weed detection, cropland mapping, and field segmentation.
Comparisons are made among supervised, semi-supervised, and unsupervised machine learning
approaches, including traditional machine learning classifiers, convolutional neural networks (CNNs),
single-stage detectors, two-stage detectors, and transformers. Lastly, future advancements and
prospects for UAV utilization in precision agriculture are highlighted and discussed. The general
findings of the paper demonstrate that, for simple classification problems, traditional machine
learning techniques, CNNs, and transformers can be used, with CNNs being the optimal choice. For
segmentation tasks, UNETs are by far the preferred approach. For detection tasks, two-stage detectors
delivered the best performance. On the other hand, for dataset augmentation and enhancement,
generative adversarial networks (GANs) were the most popular choice.

Keywords: precision farming; UAVs; agriculture; machine learning; deep learning; CNN;
transformers; GANs

1. Introduction

The rapid growth of the world’s population is putting growing demands on food
production. A large percentage of the world’s population is facing food insecurity today [1].
According to the Food and Agriculture Organization of the United Nations (FAO), the
demand for food production will continue to rise, reaching a staggering 70% increase by
the year 2050 [2]. Such high demand cannot be sustained using conventional farming
practices today. The problem is exacerbated by the continuously diminishing natural
resources used as inputs for farming. The use of traditional farming practices has also
played a significant role in environmental degradation, including the spread of water
and atmospheric pollutants [3], the degradation and erosion of soil [4], the evolution of
pesticide-resistant pests, and the endangerment of human health due to excessive use
of pesticides and agricultural chemicals [5]. Hence, new sustainable food production
methods that maximize yield and minimize environmental impact must be developed.
Using technology to support agricultural processes can potentially help reach this goal [6].

Precision agriculture, as defined by the International Society of Precision Agriculture
(ISPA), is an agricultural management strategy that relies on the use of technology and agri-
cultural data to improve the quality, sustainability, and yield of agricultural production [7].
Precision agriculture uses a wide array of sensors and monitoring devices to measure
farming parameters such as vegetation greenness, water content, nutrient status, and soil
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health [8]. These metrics help farmers make better decisions on how to manage their
fields, reduce resource waste, and increase yield and production [9]. The use of precision
agriculture also conserves farmers’ time and reduces manual labor. For example, precision
agriculture can replace farmers manually surveying and assessing vegetation in their fields,
which is a tiresome, time-consuming, and error-prone task [10]. Unmanned ground vehicles
(UGVs) provide a less expensive alternative to UAVs. Nonetheless, UGVs are limited in
terms of applications as they are slower than UAVs and capture a smaller area in each
frame. Hence, UAVs provide a good alternative for satellites and UGVs, with comparatively
low cost.

The use of unmanned aerial vehicles (UAVs) in precision agriculture has grown rapidly
in the last few years. This growth is a result of their ability to gather large amounts of
information quickly, which can then be used to guide and enhance agronomic decision
making. In the early days of precision agriculture, most image data from fields were
collected using ground cameras either mounted on unmanned ground vehicles (UGVs)
or fixed next to vegetation patches. Later, satellites were used for image capturing. More
recently, UAVs have been used in precision agriculture because of their ability to capture
images at lower altitudes, allowing them to be used in problems that require higher-
resolution images such as pest/disease detection and fertilization, at different angles,
allowing them to capture better images of otherwise occluded objects, with a higher speed
than satellites, making them fit for real-time use [11]. Recently, agricultural datasets have
become available; hence, it is now possible to build a variety of machine learning models
using these datasets [12].

This paper provides a survey of current research on applying machine learning to
UAV image data for precision agriculture. While precision agriculture can use a vari-
ety of sensors [13], this paper limits itself to those studies that primarily used UAV im-
age data. There are many previous survey papers related to this topic. For example,
Kamilais et al. [14] covered various topics, including disease detection, land-cover clas-
sification, crop type classification, plant recognition, and fruit counting. The solutions
discussed included various types of convolutional neural network (CNN) backbones such
as AlexNet and variations of VGG16. Since this paper appeared in 2018, many new deep
learning models and architectures introduced after 2018 are not covered in this review.
Ren et al. [15] contained comparable material but also discussed newer models and back-
bones such as YOLO detectors and fine-tuned AlexNet models. This paper classified
models on the basis of the backbone being used but did not cover a wider variety of
problems requiring newer architectures. Meshram et al. [16] only focused on problems
regarding disease and pest detection. Similarly, Shin et al. [17] exclusively discussed papers
that dealt with the problems of disease and stress detection in vegetation, where stress
detection includes detection of water stress, nutrient deficiency, and pest stress, and disease
detection includes detection of diseases on leaves and diseases on fruits and vegetables.
Radoglou-Grammatikis et al. [18] provided a broad, nontechnical overview of UAVs for
precision agriculture with an emphasis on applications. Lastly, Aslan et al.’s [19] recent
survey paper covered the use of UAVs in both indoor and outdoor spaces but did so
primarily in a nontechnical manner.

The contributions of this paper are as follows:

• The paper discusses a wide variety of precision agriculture problems that can be
addressed using image data acquired from UAVs.

• The paper provides a technical discussion of the most recent papers using image data
from UAVs to address agricultural problems.

• The paper evaluates the effectiveness of the various machine learning and deep
learning techniques used that use UAV image data to address agricultural problems.

• The paper points out some fruitful future research directions based on the work
conducted to date.

The remainder of the paper is organized as follows: firstly, the key challenges tackled
by precision agriculture are discussed; next, the types of images collected using UAVs
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and evaluation techniques for models built using these images are presented; then, survey
design is described, followed by a detailed presentation of the survey results; lastly, the
paper ends with a discussion and a conclusion.

2. Challenges in Agriculture

Farmers face a variety of challenges, many of which may be addressed using preci-
sion agriculture. This section briefly describes some agricultural challenges that can be
addressed using precision agriculture techniques with image data from UAVs.

2.1. Plant Disease Detection and Diagnosis

The spread of plant diseases and the resulting loss in crop yield is a key problem for
many farmers. According to the Food and Agriculture Organization of the United Nations
(FAO), plant diseases have been the cause of around 220 billion USD of annual loss to the
global economy [20]. To control the spread of diseases and, hence, the yield loss, farmers
must detect plant diseases at an early stage and then take appropriate remedial measures.
To detect diseases, farmers survey their fields to find obvious signs of infection. Once
found, samples are taken from the infected plants to be observed under a microscope or
similar instruments in a laboratory for a more reliable diagnosis [21]. Various laboratory
assessments can also be performed for disease identification, including polymerase chain
reaction (PCR) and fluorescence in situ hybridization (FISH). Using such methods is labori-
ous and time-consuming, which requires access to experts in plant pathology. In addition,
since these methods require plant sampling, they are damaging in nature [22].

2.2. Pest Detection and Control

Pests such as insects and weeds can result in significant crop yield loss. Insects cause
yield loss by feeding on plants or by spreading plant diseases [23]. Weeds cause yield loss
by consuming crop-growth resources, including water and nutrients [24]. Detecting and
curbing the spread of pests by applying pest control mechanisms is essential for ensuring
a good yield. Like plant disease detection, traditional pest detection is a manual time-
consuming expert-reliant process. Once detected, a control mechanism must be applied
to halt the spread of pests. One popular method of pest control is spraying a field with
agrochemicals, where herbicides are sprayed to eradicate weeds, and insecticides are
sprayed to control insects. Traditionally, agrochemicals are not sprayed on the affected
areas of the fields only. Rather, chemicals are applied across a field because detecting
specific areas requiring agrochemicals is time-consuming [25]. As a result, current pest
control methods are wasteful and unnecessarily expensive. Moreover, research has shown
the dangers of agrochemical use on the environment and human health. For example,
pesticides have been found to pollute water and air and cause significant changes to
soil ecosystems by causing harm to soil microorganisms. In addition, pesticide use has
been found to cause adverse health effects, including weakening immunity and causing
cancer [26]. Excessive use of pesticides also results in the cultivation of pesticide-resistant
populations of pests. Currently, more than 500 species of insects are resistant to insecticides,
and around 270 species of weeds are resistant to herbicides [27]. The use of pesticides
will become an ineffective pest control mechanism if farmers continue to use traditional
pesticide application methods. Excessive use, however, is not the only problem that
makes traditional methods of pesticide use inefficient and ineffective. For pesticides to
be most effective, correct identification of pests must be done to select the right type of
pesticides. Subsequently, an accurate estimation of pests’ vulnerability phase timings must
be made to apply pesticides. Accuracy in time estimation is also required because early
or late application of pesticides has little to no effect on the mitigation of pest spread. In
order to choose the correct pesticides to use and determine the timing of application, an
entomologist must survey the field, identify the pest types in the field, and predict the
timing of their vulnerability phase [28]. Hence, for traditional pesticide-reliant pest control
mechanisms to work, farmers also require expert help. Taking everything into account,
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traditional pest detection and control methods are not sustainable, especially with the
growing demand for crop production.

2.3. Urban Vegetation Classification

Urban vegetation plays a vital role in facing global climate change challenges. The
dominance of a single type of tree results in rapid temporal changes in ecosystem functions
such as carbon storage [29]. Machine learning can be used to classify different tree species
within heterogeneous urban environments. UAV imagery with spectral information allows
more accurate classification results that can be used later to create a better distribution
of plants on the landscape. Furthermore, improving the mapping capacities in spatial,
spectral, and geometric domains in agriculture enables better analysis of urban landscapes
and efficient resolutions to encounter the increasing thermal changes [30].

2.4. Crop Yield Estimation

Accurate crop yield estimation helps create realistic plans for labor employment and
agricultural produce storage [31]. Yield estimation is also important for making changes to
crop management practices to improve the final crop yield [32]. Traditionally, crop yield
is estimated by finding the yield in a small sample area of a field and then generalizing
the results to the entire field’s area [33]. While seeming simple enough, in addition to
being inaccurate, this method requires time-consuming manual work [34]. Manual crop
counting is also an inefficient method of crop yield estimation with larger fields and more
varied crop types. In addition, an obvious drawback of this method is that the estimation
inaccuracies can lead to suboptimal plans for crop yield, labor, and storage.

2.5. Over- and Under-Irrigation

The postharvest quality of crops depends on preharvest practices [35]. Appropriate
irrigation is one of these preharvest practices that play a crucial role in determining crop
quality. Several crops are not drought-resistant; therefore, yields decrease considerably
after short periods of water deficiency during production. For example, a study conducted
by Mitchell et al. [36] found that deficit irrigation reduced fruit water accumulation and
fresh fruit yield. In addition, Atay et al. [37] hypothesized that over-irrigation could have a
negative impact on total yield and fruit quality. Lastly, with water being a scarce resource
in most production areas, an efficient water management scheme that maintains crop yield
but has a moderate and controlled level of moisture stress on their crops is required [29].
Multispectral images acquired from a UAV for water irrigation level recognition can
potentially be used to help address over- and under-irrigation [38]. This can be achieved by
capturing the canopy temperature of the crops using infrared thermometers to estimate the
irrigation levels and the required irrigation scheduling methods.

2.6. Seed Quality and Germination

Seed germination is the most critical stage of crop growth and development, which
includes complex physiological, cellular, and metabolic events that can influence crop
yield and quality [39]. Typically, these events are divided into three phases, during which
cell membrane transformation and cell structure reorganization, metabolic reorganization
and regulation, and cell and root elongation take place [40]. Selecting seeds with high
germination rates and quality, and cultivating optimal environmental conditions for rapid
and uniform seed germination can increase crop yield and ensure the growth of high-
quality crops [41]. To achieve that, real-time monitoring of the process of seed germination
becomes imperative for ensuring the growth of healthy, high-quality seedlings, which in
turn would later produce healthy, high-quality crops. Given that the traditional methods
of manual seed and seedling monitoring lack efficiency, these monitoring methods can be
replaced with more efficient and less labor-intensive UAV-based methods [42].
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2.7. Soil Quality and Composition

Soil quality and composition are critical for maximizing a crop’s output and for
increasing yield. The potential root zone in the soil should be well tilled and fertilized with
the needed minerals [35]. Balanced levels of nitrogen, water, and calcium improve crop
quality and reduce post-harvest decay and vice versa. UAVs equipped with multispectral
cameras may detect useful geospatial data such as water stress, nitrogen level, and other
existing supplements [43]. Appropriate soil treatments can then be performed at the right
time through foliar sprays.

2.8. Fertilizer Usage

The use of fertilizers increases the yield of crops by providing plants with the nutrients
necessary to accelerate growth. The type of fertilizer used depends on many factors,
including the crop type, the quality required, the purpose of use, and the diseases prevalent
among the crop type. Underuse of fertilizers usually results in a reduction in the quality of
the crop because it may lower the crop’s sugar content and reduce its firmness. Meanwhile,
over-fertilizing may result in multiple quality traits impairments such as total soluble solids,
glucose, fructose, and pH issues [44]. Hence, a balanced fertilization level is necessary for
crops. UAVs can be used to spray crops’ leaves or root soil with different combinations of
nutrients needed in an effective and controlled manner to enhance the crops’ quality and
resistance to bacterial infections.

2.9. Quality of the Crop Output

Farmers aspire to produce crops with the highest possible quality by designing quality-
ensuring preharvest, harvest, and postharvest plans tailored to the crop. In the preharvest
stage, farmers are concerned with designing irrigation, fertilization, pesticide mitigation,
and crop drainage plans that produce crops with the required quality traits [45]. With these
plans, crops are watered with a proper irrigation schedule, fertilized with the correct type
of fertilizer and with the correct amount, and sprayed with the right kind and amount of
pesticides [44,45]. The harvesting stage also plays a role in the quality of the crop output.
Farmers must harvest their crops during the correct time window to ensure that they
adhere to their expected color, size, taste, and maturity characteristics. Traditionally, this is
achieved using a variety of tests, including color, size, firmness, and acidity measurement.
Lastly, in the postharvest stage, farmers must design storage plans that ensure the quality of
their harvest. Such plans must regard such important crop-specific factors as the harvested
crops’ storage time and temperature and humidity requirements. Two examples of quality-
ensuring storage plans include dynamic controlled atmosphere (DCA) storage and heat
treatments [35]. Since crop preharvest, harvesting, and postharvest plans require attention
to crop types and careful assessment of their needs, farmers can leverage computer vision
technology to perform these assessments and produce optimal plans, thereby reducing the
need for manual labor and increasing the quality of the yield.

Table 1 shows a summary of the challenges in agriculture that potentially lend them-
selves to being addressed using image data from UAVs. As the table shows, UAVs can be
potentially used to address all stages of the agriculture cycle.

Table 1. Summary of challenges in agriculture.

Stage Challenges

Preharvest Disease detection and diagnosis, seed quality, fertilizer application, field segmentation, and urban
vegetation classification

Harvesting Crops detection and classification, pest detection and control, crop yield estimation, tree counting,
maturity level, and cropland extent

Postharvest Fruit grading, quality-retaining processes, storage environmental conditions,
and chemical usage detection
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3. Survey Design

Journal articles and conference papers were collected using IEEE Xplore, arXiv, MDPI,
ResearchGate, and ScienceDirect. “Deep learning”, “precision farming”, and “agriculture”
were the primary search terms utilized. The keywords “crops” and “segmentation” were
added to other searches. From the search results, only articles published between 2017
and 2023 were included, and, when applicable, the results were sorted by relevance and
citation count. Figure 1 shows the distribution of resulting publications. The exclusion and
inclusion of research articles were decided firstly by a preliminary abstract analysis, and
then by a full review of the article. The research papers which did not utilize UAV/aerial
image datasets were excluded. In addition, the primary inclusion criteria for our research
were as follows:

• The study must include a clear report on the performance of the models.
• The study must present an in-depth description of the model architecture.
• The study carries out detection/classification/segmentation tasks or a combination of

these using UAV image datasets.

Figure 1. Sources distribution of the surveyed papers.

The exclusion criteria of our research were as follows:

• The study is not indexed in a reputable database.
• The study does not propose any significant addition or change to previously existing

deep learning or machine learning solutions in its domain.
• The study presents vague descriptions of the experimentation and classification results.
• The study proposes irrelevant or unsatisfactory results.

On the basis of these criteria, 70 papers were chosen for the survey. The papers were
studied carefully to address the following major research questions:

• What data sources and image datasets were used in the paper?
• What type of preprocessing, data cleaning, and augmentation methods were utilized?
• What type of machine learning or deep learning architectures were used?
• What overall performance was achieved, and which metrics were used to report

the performance?
• Which architectures and techniques performed best for a class of agricultural problems?
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4. Background
4.1. Image Data from UAVs

Raw images from a UAV are typically first corrected for displacements and distortions
caused by terrain relief, camera tilt, etc., to create orthophoto images. The resulting images
can be normal RGB images that define red, green, and blue color components for each
individual pixel in an image. The RGB images are acquired using the standard visible light-
sensitive cameras that usually only give surface-level information about the target data [46].
In addition to traditional imaging, UAVs for agricultural applications use multispectral
images that capture different wavelength ranges across the electromagnetic spectrum.
Multispectral data can be used to assess variations in plant/crop health that may be
useful information for early treatment. Deep learning models using multispectral imaging
have been developed [47]. The near-infrared (NIR) spectral band images are acquired at
750–900 nm wavelength bands and are primarily used for vegetation applications. NIR
imaging provides additional, beyond-surface-level information about the target data [48].
In such images, the red edge refers to the region in the NIR range where a rapid change in
the reflectance of vegetation is observed [49]. Similarly, color-infrared (CIR) imagery also
uses a portion of the NIR range. The invisible NIR light of CIR can be seen by the human
eye by shifting it and the primary colors over. On CIR imagery, vegetation appears red,
water generally appears black, and urban structures such as buildings and roads appear in
a light-blue/green tint [50].

4.2. Image Features Used in UAV Data

Many machine learning models use derived features from images acquired from a UAV.
Examples of commonly used features include hue–saturation–value (HSV) channels and
vegetation indices (VIs) from RGBs such as excess green index (ExG), excess green minus
red (ExGR), and the color index of vegetation extraction (CIVE). Other VIs are crop-sensitive
and can be derived from NIR and red-edge (RE) spectra, such as NDVI, ratio vegetation
index (RVI), and perpendicular vegetation index (PVI) [51]. Table 2 illustrates some of
the possible vegetation indices that can be derived. Edge detectors can also be useful and
are commonly used, such as Gaussian, Laplacian, and Canny filters [52]; Gabor filters,
gray-level co-occurrence matrix (GLCM) [53], and geometric and statistical features [54]
are among other useful features used in precision farming.

Table 2. Useful vegetation indices that can be derived from UAV images.

Vegetation Index Spectrum Equation

Excess green (ExG) RGB 2G − R − B

Excess red (ExR) RGB 1.3R − G

Color index of vegetation (CIVE) RGB 0.441R – 0.81G + 0.385B + 18.7874

Excess green minus red (ExGR) RGB 3G − 2.4R − B

Normalized difference vegetation index (NDVI) RGB + NIR (NIR − R)/(NIR + R)

Normalized difference red-edge index (NDRE) RGB + NIR (NIR − RE)/(NIR + RE)

Ratio vegetation index (RVI) RGB + NIR NIR/R

Perpendicular vegetation index (PVI) RGB + NIR [(0.335NIR − 0.149R)2 + (0.335R − 0.852NIR)2]

4.3. Vision Tasks Using UAV Data

Precision agriculture applications using UAV image data are based on several com-
puter vision tasks [55]. Image classification is the task of identifying which class the image
of an object belongs to. Identification of weeds, for example, can be treated as an image
classification task (given the image of a weed, identifying the image as a weed or non-
weed). Another example is using image classification to identify different crops [56]. Image
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classification generally does not require isolating a particular object (e.g., a weed) but is
based on observing general features in an image.

Object detection [57] is a related vision task that consists of identifying the location and
labels of objects in an image. This task involves creating bounding boxes around objects
and then labeling them. For example, for weed counting, one can detect all the weeds in an
image and draw bounding boxes around them.

Another vision task is semantic segmentation which tries to identify objects that look
similar or different from each other (e.g., weeds, ground, and crops) at the pixel level [58].
For example, Zhang et al. [59] used segmentation to label pixels corresponding to purple
rapeseeds to detect nitrogen stress using UAV RGB data.

Lastly, the instance segmentation task combines semantics segmentation and object
detection to not only create a bounding box around an object but also to then label each
of the pixels of the object to belong to that specific instance. For example, in addition to
identifying a weed, instance segmentation would also label each of the pixels of the weed
and, hence, would also identify the shape of the weed.

4.4. Evaluation Metrics

Several evaluation metrics have been used to assess and compare the machine learning
methods used for the various vision tasks described earlier. This section provides a brief
explanation of the most frequently used metrics. Any additional metrics used in a paper
are explained in the summary of the respective paper.

1. Accuracy, as shown in Equation (1), is a measure of an algorithm’s ability to make
correct predictions. Accuracy is described as the ratio of the sum of true-positive (TP)
and true-negative (TN) predictions to the algorithm’s total number of predictions
including false predictions (FP + FN).

Accuracy =
TP + TN

TP + TN + FP + FN
. (1)

2. Precision, as shown in Equation (2), is a measure of an algorithm’s ability to make
correct positive predictions. Precision is described as the ratio of true-positive (TP)
predictions to the sum of true-positive (TP) and false-positive (FP) predictions.

Precision =
TP

TP + FP
. (2)

3. Recall, as shown in Equation (3), measures an algorithm’s ability to identify positive
samples. Recall is the ratio of true-positive (TP) predictions made by the algorithm to
the sum of its true-positive (TP) and false-negative (FN) predictions.

Recall =
TP

TP + FN
. (3)

4. F1-score, as shown in Equation (4), is the harmonic mean of precision and recall.
A high algorithm F1-score value indicates high accuracy. F1-score is calculated
as follows:

F1 = 2× Precision× Recall
Precision + Recall

. (4)

5. Area under the curve (AUC) is the area under an ROC curve which is a plot of an
algorithm’s true-positive rate (TPR) (Equation (5)) vs. its false-positive rate (FPR)
(Equation (6)). An algorithm’s true-positive rate can be defined as the ratio of positive
samples an algorithm correctly classifies to the total actual positive samples. The
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false-positive rate, on the other hand, can be defined as the ratio of an algorithm’s
false-positive sample classifications to the total actual negative samples.

TPR =
TP

TP + FN
. (5)

FPR =
Fp

Fp + TN
. (6)

6. Intersection over union (IoU), as shown in Equation (7), is an evaluation metric used
to assess how accurate a detection algorithm’s output bounding boxes around an
object of interest in an image (e.g., a weed) are compared to the ground truth boxes.
IoU is the ratio of the intersection area between a bounding box and its associated
ground-truth box to their area of union.

IoU =
Area o f overlap

Area o f intersection
. (7)

7. Mean average precision (mAP), as shown in Equation (8), is used to assess the quality
of object detection models. This metric requires finding a model’s average AP across
its classes. The calculation of AP requires calculating a model’s precision and recall,
followed by drawing its precision–recall curve, and finally, finding the area under
the curve.

AP =
∫ 1

0
P(R)dR mAP =

1
n ∑k=n

k=1 APk. (8)

8. Average residual, as shown in Equation (9), is used to assess how erroneous a model
is. Average residual displays the average difference between a model’s predictions
and ground-truth values.

Average Residual =
1
n

n

∑
1

prediction− real_value. (9)

9. Root-mean-square error (RMSE), as shown in Equation (10), is used to assess an
algorithm’s ability to produce numeric predictions that are close to ground-truth
values. RMSE is calculated by finding the square root of the average distance between
an algorithm’s predictions and their associated truth values.

RMSE =

√
∑n

1 (prediction− real_value)2

n
. (10)

10. Mean absolute error (MAE), as shown in Equation (11), is an error metric used to
assess how far off an algorithm’s numeric predictions are from truth values. MAE is
calculated by finding the average value of the absolute difference between predictions
and truth values.

MAE =
∑n

1 |prediction− real_value|
n

. (11)

11. Frames per second (FPS) is a measure used to assess how fast a machine learning
model is at analyzing and processing images.

5. Survey Results

A total of 70 papers were shortlisted on the basis of the filtering methodology described
earlier. These papers used a variety of cameras to capture images from UAVs. The cameras
used ranged from low-end cameras such as the Raspberry Pi NoIR camera module to
commercial UAV cameras such as the DJI FC6310 with high-resolution imaging capabilities.
In addition, consumer cameras such as the 36.4 MP Sony A7R (RGB) camera were also
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deployed on larger UAVs. As Figure 2 shows, a wide image resolution was used in the
papers reviewed here, with image size ranging from 64 × 64 to 7000 × 5000 pixels.

Figure 2. Image size (pixels) used for vision tasks using UAV data.

Figure 3 shows the percentage of papers addressing the various precision agriculture
issues described in the taxonomy of Liliane and Charles [60]. As Figure 3 shows, spatial
segmentation, and pesticide and disease treatment were the primary areas of interest in the
reviewed papers.

Figure 3. Various precision agricultural issues addressed in the papers.

The results of the filtered papers are organized according to the various machine learn-
ing techniques used. Papers using traditional machine learning techniques are discussed
first, followed by those utilizing neural networks and deep learning methods.

5.1. Traditional Machine Learning
5.1.1. Support Vector Machines (SVM)

Support vector machines (SVM) were used for classifying vegetation by health status [52],
classifying trees by type [61], identifying and classifying weeds to generate weed maps [62],
and lastly, segmenting crop rows [53].
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Tendolkar et al. [52] proposed the use of an Agrocopter, a multipurpose farming
drone, to assess and evaluate plant health status and to take corrective actions. The system
assessed plant health on the basis of the NVDI index, texture, and color features of the
individual pixels. These features were extracted utilizing a filter bank of 17 Gaussian and
Laplacian filters. SVM was then used to perform semantic segmentation on the image pixels
and to classify the pixels as healthy or unhealthy. Lastly, a segmented mask was generated
and used to find the health ratio of the images according to the ratio of the area of healthy
pixels to the total area of the image. The health ratio was then used to classify images
into healthy, moderately healthy, and unhealthy. The trained model had 85% precision,
81% recall, and an F1-score of 79%.

Natividade et al. [61] proposed a pattern recognition system (PRS) to identify and
classify vegetation using the NDVI scale as a segmentation threshold. An SVM was trained
on two datasets: a tree dataset with five classes and a vineyard dataset with three classes.
The best models achieved an accuracy of around 72% on the two datasets.

Pérez-Ortiz et al. [62] introduced a UAV-based weed mapping system for the early
detection of weeds in crop fields. They used a semi-supervised SVM (SSVM) which aims to
find an optimal labeling for the test portion of the data using both labeled and unlabeled
data. The system used crop-row detection, vegetation indices, and spectral features to
classify pixels in field images as belonging to one of three classes of crop, weed, or soil.
Crop-row detection was introduced to improve classifier performance in differentiating
crops and weeds because their spectral features were similar. The proposed system took
UAV-captured images, partitioned them into 1000 × 1000 pixel images, and then calculated
the vegetation index of all image pixels. NDVI was used for multispectral images, and
the excess green index (ExG) was employed for visible images. The Otsu thresholding
procedure was then applied to the vegetation indices to create thresholds that divided the
indices into three classes where the highest vegetation index (VI) pertaining to crops, lower
values to weeds, and the lowest values to soil. The image was then binarized by taking
crop pixels as 1s and weed and soil pixels as 0s. The binarized image was then fed into the
Hough transform (HT) method to detect crop rows in the images. Lastly, a crop-row data
feature, along with VI and spectral features, was used to train different machine learning
models to classify pixels as soil, crop, or weed. The SSVM returned an MAE of 12.68%.

César Pereira et al. [53] compared the performance of multiple machine learning
algorithms for the problem of crop-row segmentation. Their study used a single image
of a sugar cane field as its dataset and compared the segmentation results of running this
image through different classifiers to a manually labeled image. The manually segmented
image’s pixels were classified into the two classes of crop row and background. Spectral
features were extracted using ExG and VI, and textural features were extracted through a
four-filter Gabor filter bank and a gray-level co-occurrence matrix (GLCM). The feature
vectors and color features (RGB) were used to train SVM models. For the linear SVM
model, the best combination of features was RGB, EXG, and Gabor filters. This combina-
tion yielded an F1-score of 88.01% and an IoU percentage of 78.86%. The worst feature
combination was RGB and GLCM. This combination yielded an F1-score of 62.48% and an
IoU percentage of 46.08%.

Table 3 shows a summary of the use of SVM with drone image data. Some similar-
ities can be observed. Many (e.g., [52,61,62]) used the NDVI scale to perform pixel-wise
classification, while others (e.g., [53,62]) used the ExG index for classification. The authors
of [53,61] used a radial basis function kernel to find the optimal hyperplane for separating
the dataset classes.
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Table 3. Summary of support vector machine models.

Paper
SVM

Model/Architecture Application Approach Comments Best Results

Tendolkar
et al. [52] SVM Pesticide/

disease treatment

Dual-step based approach of
pixel-wise NDVI calculation
and semantic segmentation

helps in overcoming
NDVI issues

Model was not compared
to any other

Precision: 85%
Recall: 81%

F1-score: 79%

Natividade et al. [61] SVM Fertilization

Pattern recognition system
allows for classification of

images taken by
low-cost cameras

Accuracy, precision, and
recall values of model

varied highly
across datasets

Dataset #1
(1st configuration):

[accuracy: 78%,
precision: 93%,

recall: 86%,
accuracy: 72%]

Dataset #2:
[accuracy: 83%,
precision: 97%,

recall: 94%,
accuracy: 73%]

Pérez-Ortiz et al. [62] SVM Crop-row detection
Able to detect weeds outside

and within crop rows; does not
require a big training dataset

Segmentation process
produced salt-and-pepper

noise effect on images
Training images were

manually selected
Model inference was

influenced by training
image selection

Mean average error
(MAE): 12.68%

César Pereira et al. [53] LSVM Crop-row detection Model can be trained fast with
a small training set

Image dataset was small
and simple, containing

images of sugarcane
cultures only

Using RGB + EXG +
GABOR filters:
IOU: 0.788654
F1: 0.880129

5.1.2. K-Nearest Neighbors (KNN)

The K-nearest neighbor algorithm (KNN) has been used extensively in precision agri-
culture in land-cover classification [63], sugarcane planting line detection/fault studies [64],
and crop-row segmentation [53].

Rodríguez-Garlito and Paz-Gallardo [63] proposed a KNN-based land-cover classifica-
tion system. This system classified land cover into olive trees, soil, weeds, and shadow. In
this system, high-resolution, multispectral images of the studied field were first captured
using a UAV. These images went through spatial partitioning to reduce the memory costs of
the machine learning algorithm. As a result, processing windows were formed, with each
window holding the spectral information of a row of image pixels. The KNN algorithm
was then applied to one processing window at a time to perform land-cover classification,
and to classify individual pixels into the classes to which they belonged. The trained KNN
model had a precision of 95.5%, an accuracy of 91.8%, and an accuracy score of 90.9% on an
equally balanced dataset. Similarly, Rocha et al. [64] used KNN to detect gaps in curved
sugarcane planting lines from aerial images. The training and test sets were created using
RGB images and classified using decision tree, linear discriminant analysis, and KNN.
KNN had the best results with a relative error of 1.65%, and it effectively evaluated the
planting conditions.

Pereira Júnior et al. [53] studied the use of the KNN algorithm in crop-row segmenta-
tion. Two KNN models with two different K values of 3 and 11 were used. Constructing
a KNN model with a K value of either 3 or 11 yielded similar results. The models used
Euclidean distance and RGB, ExG, and Gabor filters as features, and both models achieved
an IoU score of about 76% and an F1-score of about 86%. Results for applying K-NN are
summarized in Table 4.
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Table 4. Summary of K-nearest neighbor models.

Paper
KNN

Model/Architecture Application Strengths Comments Best Results

César Pereira
et al. [53] KNN3, KNN11 Crop-row detection

Simplest algorithms to
implement amongst

implemented algorithms
in the paper

Models did not achieve
the best results in

the paper

KNN3 and 11 with RGB +
EXG + GABOR filters:
[IOU: 0.76, F1: 0.86]

Rodríguez-Garlito
and Paz-Gallardo [63] KNN

Crop-row
detection/land-cover

mapping

Uses an automatic
window processing

method that allows for the
use of ML algorithms on

large multispectral images

Model did not achieve the
best results in the paper

Approximate values:
AP: 0.955

Accuracy score: 0.918

Rocha et al. [64] KNN Crop-row detection Best-performing classifier

Model could not perform
sugarcane line detection

and fault measurement on
sugarcane fields of all

growth stages

Relative error: 1.65%

5.1.3. Decision Trees (DT) and Random Forests (RF)

Decision tree classifiers were used in precision agriculture to classify vegetation like
trees and vineyards [61]. Similarly, the random forest algorithm was used to classify sugar
beet crops and weeds [54].

Natividade et al. [61] used decision trees to detect and classify trees and vineyards in
a field, where trees were classified into five distinct types and vineyards into three types.
On the tree data set, the best model resulted in 87% precision, 88% recall, and 74% accuracy.
On the vineyard data, 87% precision, 90% recall, and 79% accuracy were achieved.

Lottes et al. [54] proposed a crop and weed detection, feature extraction, and classifica-
tion system that could identify and classify sugar beets and several types of weeds. NDVI
and ExG were used as features. A segmented mask based on the VI threshold was then used
to extract a spectral feature vector per segmented object in the image and a feature vector
per key point in the image. These feature vectors, along with geometric and statistical
features, were used to train a random forest model. The Phantom and Matrice-graining
datasets contained UAV-captured images of crops and weeds, while the JAI training dataset
contained ground-captured images. The Phantom dataset was used to test how well the
model could classify vegetation into sugar beet crops, saltbush weeds, chamomile weeds,
and other weeds. The model yielded a precision of 85% for both saltbush and chamomile
weeds. The recall values were 95% and 87% for saltbush weeds and chamomile weeds,
respectively. Lastly, a recall of only 45% was attained for other weeds. The overall accuracy
of the model was 86%. When weed-type classification was ignored, and vegetation was
classified into two classes, 99% recall and 97% precision were achieved. Table 5 summarizes
the two studies that used decision trees.

Table 5. Summary of decision trees and random forests.

Paper
DT and RF

Model/Architecture Application Strengths Comments Best Results

Natividade
et al. [61] DT Fertilization

Pattern recognition
system allows for

classification of images
taken by

low-cost cameras

Model did not outperform
SVM on all chosen metrics

Dataset #2:
[accuracy: 77%, precision: 87%,

recall: 90%, accuracy: 79%]

Lottes et al. [54] RF Pesticide/disease
treatment

Model can detect plants
relying only on its shape

Low precision and recall
for detecting weeds under

the “other weeds” class

Saltbush class recall: 95%,
chamomile class recall: 87%,
sugar beet class recall: 78%,

recall of other weeds class: 45%
Overall model accuracy for

predicted objects: 86%
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5.2. Neural Networks and Deep Learning
5.2.1. Convolutional Neural Networks (CNN)

Convolutional neural networks (CNN) have been used extensively in analyzing images
for precision agriculture. Specifically, transfer learning has often been used successfully
using a variety of pretrained models, including Inception V3 and VGG. For example,
Crimaldi et al. [65] used the Inception V3 model and achieved 78.1% accuracy for classifying
a crop into one of 14 crop types using data consisting of 54,309 images. Milioto et al. [66]
built a CNN model using RGB and NIR camera images. The model had 97.3% accuracy
for images of early crop growth and 89.2% accuracy for images of crops in later stages.
However, both models had the same recall percentage, with the early stage scoring 98% and
the later stage scoring 99%. Similarly, Bah et al. [67] used the AlexNet model on spinach,
beet, and beans datasets and achieved precision of 93%, 81%, and 69%, respectively. The
authors claimed that the bad results were primarily due to leaves overlapping between
crops and weeds. Reddy et al. [68] used a customized CNN model for their work on
plant species identification and achieved 99.5% precision for Flavia, Swedish leaf, and
UCI leaf datasets. Sembiring et al. [69] focused on tomato plant disease detection. Their
proposed model achieved 97.15% validation accuracy using the tomato leaf dataset from
Plant Village. However, their model did not achieve the highest validation accuracy
among all four trained models. The highest accuracy score of 98.28% was achieved by
the VGG16 model. Geetharamani et al. [70] achieved a classification accuracy of 96.46%
using a customized nine-layer CNN model. The authors of [71] used a residual learning
CNN with an attention mechanism. The goal was to perform real-time corn leaf disease
recognition. They also used the Plant Village disease classification challenge dataset [72].
An overall accuracy of 98% was achieved. Nanni et al. [73] used different combinations
of CNNs, including ResNet50, GoogleNet, ShuffleNet, MobileNetv2, and DenseNet201,
with different Adam optimization methods. These CNN models were trained on three
datasets of insect images: the Deng dataset, the IP102 dataset, and the Xie2 dataset. The
best-performing CNN achieved state-of-the-art accuracy on both insect datasets: 95.52% on
Deng, a score that competed with human expert classifications, and 73.46% on IP102.

Atila et al. [74] proposed using the EfficientNet architecture for plant disease classifica-
tion on the Plant Village dataset and achieved 99.91% and 99.97% accuracy on original and
augmented datasets, respectively. Prasad et al. [75] proposed a two-step machine learning
approach that analyzed low-fidelity and high-fidelity images from drones in sequence,
preserving the efficiency and accuracy of plant diagnosis. The Pathology 2020 dataset
and a set of synthetically generated images were used. A semi-supervised model derived
from EfficientNet called EfficientDet was used. The end goal was to perform segmenta-
tion and classification. The model scored 75.5% for the average accuracy of the identifier
model. Albattah et al. [76] proposed a customized model of using EfficientNet called
EfficientNetV2-B4 backbones to address plant disease classification. The Plant Village
dataset and additional UAV images were used to train the model. The results were 99.63%,
99.93%, 99.99%, and 99.78% for precision, recall, accuracy, and F1-score, respectively.

Mishra et al. [77] developed a standard CNN model to detect corn plant diseases in real
time. The model was deployed on an Intel Movidius NCS and a Raspberry Pi 3b+ module.
The authors used the Plant Village disease classification challenge dataset and divided
the images into three classes: rust, northern leaf blight, and healthy. The system achieved
an accuracy of 98.40% using a GPU and 88.56% on the NCS chip. Bah et al. [78] used
unsupervised data labeling for weed detection from UAV images. The dataset consisted
of two fields: beans and spinach. Each dataset was divided into the two classes of crop
and weed. Two-thirds of the data were labeled in a supervised manner, while one-third
were labeled using unsupervised methods. The ResNet18 model was used to perform the
classification. ResNet18 significantly outperformed SVM and RF methods in the bean field
as it achieved an average AUC of 91.7% on both supervised and unsupervised labeled
data in comparison to 52.68% using SVM and 66.7% using RF. On the other hand, RF
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resulted in a slightly better average AUC% in the spinach field compared to that achieved
using ResNet18.

Zheng et al. [79] proposed multiple CNN models to estimate percentage canopy cover
and vineyard leaf area index in each field. The authors compared the estimation perfor-
mance of five different models, including a CNN–ConvLSTM model, a vision transformer
model, a joint Model, a CNN model of 71 layers (Xception model), and a ResNet50 model.
The five models were trained on a dataset containing approximately 840 images extracted
from UAV videos taken of vineyard fields at Alcorn State University. The five models were
evaluated using the RMSE of both leaf area index (LAI) and percentage canopy cover. For
the prediction of leaf area index, Xception, CNN-ConvLSTM, vision transformer, ResNet50,
and the joint model had RMSEs of 0.28, 0.32, 0.34, 0.41, and 0.43, respectively. For predicting
percentage canopy cover, Xception, CNN-ConvLSTM, vision transformer, ResNet50, and
the joint model had RMSEs of 4.01, 4.50, 4.56, 5.98, and 6.08, respectively. Clearly, Xception
performed best in both LAI estimation and percentage canopy cover estimation.

Yang et al. [80] proposed a method of multisource data fusion for disease and pest de-
tection of grape foliage using the ShuffleNet V2 model. The dataset consisted of 834 groups
of grape foliage images. Each group contained three types of images of grape foliage:
RGB image (RGBI) (2592 × 1944, three channels), multispectral image (MSI) (409 × 216,
25 channels), and thermal infrared image (TIRI) (640 × 512, three channels). The accuracy
of MSI was 82.4%, that of RGB was 93.41%, and that of TIRI was 68.26%.

Briechle et al. [81] used multispectral images to classify tree species and standing dead
trees. They used the PointNet++ model. The data used were UAV-based light detection
and ranging, including laser echo pulse width (LIDAR) data and five-channel MS imagery.
They also applied segmentation to the images during the preprocessing of the data. Their
model achieved an accuracy of 90.2%.

Aiger et al. [82] proposed a method of image classification based on multi-view image
projections. Their method used projections of multiple images at multiple depth planes
near the reconstructed surface. This enabled the classification of categories whose most
noticeable aspect was appearance change under different viewpoints, such as water, trees,
and other materials with complex reflection/light response properties. They obtained the
best accuracy of 96.3% on their proposed 3D CNN.

Weinstein et al. [83] developed a semi-supervised model for individual tree detection
from UAV imagery. The model used an existing LIDAR algorithm to generate RGB trees
that could be used for training as a starting point. The model was then retained using a
small number of manual labels to correct errors from the unsupervised detection. Then a
pretrained ResNet50 backbone was used to classify the images. The model was tested on
the NEON public dataset and achieved the best performance among existing LIDAR-based
models (+2%) in comparison to that achieved by Silva et al. [84]. Table 6 shows a summary
of convolutional neural networks literature review.

Table 6. Summary of convolutional neural networks.

Paper
CNN

Model/Architecture Application Strengths Comments Best Results

Crimaldi
et al. [65] Inception V3 Pesticide/disease

treatment

The identification time
was 200 ms which is

good for real-time
applications

Low accuracy Accuracy of 78.1%

Milioto et al. [66]
CNN model fed with

RGB + NIR
camera images

Spatial segregation and
segmentation

High accuracy for early
growth stage

Low accuracy for the
later growth stage

Early growth stage
Accuracy: 97.3%

Recall: 98%
Later growth stage

Accuracy: 89.2%
Recall: 99%
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Table 6. Cont.

Paper
CNN

Model/Architecture Application Strengths Comments Best Results

Bah et al. [67] AlexNet Pesticide/disease
treatment

Fewer images with high
resolution from a drone

Overlapping of the
leaves between crops

and weeds

Best precision was for
the spinach dataset

with 93%

Reddy et al. [68] Customized CNN Spatial segregation
and segmentation

The results had a high
precision and recall Large dataset

Precision of 99.5% for
the leaf snap dataset;

the Flavia, Swedish leaf,
and UCI leaf datasets

had a recall of 98%

Sembiring
et al. [69] Customized CNN Pesticide/disease

treatment

Low training time
compared to other

models compared in
the paper

Not the
highest-performing
model compared in

the paper

Accuracy of 97.15%

Geetharamani
et al. [70] Deep CNN Pesticide/disease

treatment

Can classify 38 distinct
classes of healthy and

diseased plants
Large dataset Classification accuracy

of 96.46%

Karthik et al. [71]
Residual learning

CNN with
attention mechanism

Pesticide/disease
treatment

Prominent level of
accuracy and only 600 k

parameters, which is
lower than the other
papers compared in

this paper

Large dataset Overall accuracy of 98%

Nanni et al. [73]

Ensembles of CNNs
based on different

topologies (ResNet50,
GoogleNet, ShuffleNet,

MobileNetv2, and
DenseNet201)

Pesticide/disease
treatment

Using Adam helps in
decreasing the learning

rate of parameters
whose gradient changes

more frequently

IP102 is a
large dataset

95.52% on Deng and
73.46% on

IP102 datasets

Bah et al. [85] CrowNet Crop-row detection
Able to detect rows in

images of several types
of crops

Not a single
CNN model

Accuracy: 93.58%
IoU: 70%

Atila et al. [74] EfficientNet Pesticide/disease
treatment

Reduces the
calculations by the

square of the
kernel size

Did not have the lowest
training time compared
to the other models in

the paper

Plant Village dataset
Accuracy: 99.91%
Precision: 98.42%

Original and
augmented datasets

Accuracy: 99.97%
Precision: 99.39%

Prasad et al. [75] EfficientDet Pesticide/disease
treatment

Scaling ability and
FLOP reduction

Performed well for
limited labeled datasets;
however, the accuracy

was still low

Identifier model
average accuracy: 75.5%

Albattah et al. [76] EffecientNetV2-B4 Pesticide/disease
treatment

Really reliable results
and has low

time complexity
Large dataset

Precision: 99.63%
Recall: 99.93%

Accuracy: 99.99%
F1: 99.78%

Mishra et al. [77] Standard CNN Pesticide/disease
treatment

Can run on devices
such as raspberry-pi or

smartphones and
drones; works in

real-time with
no internet

NCS recognition
accuracy was not good
and could be improved
according to the authors

Accuracy
GPU: 98.40%

NCS chip: 88.56%

Bah et al. [78] ResNet18 Spatial segregation
and segmentation

Outperformed SVM
and RF methods and
uses unsupervised

training dataset

Results of the ResNet18
are lower than SVM and
RF in the spinach field

AUC: 91.7%
on both supervised and

unsupervised
labelled data

Zheng et al. [79]

Multiple CNN models
including: CNN joint

Model, Xception model,
and ResNet50 model

Pesticide/disease
treatment

Compares
multiple models

The joint model had
trouble with LAI

estimation, and the
vision transformer had
trouble with percentage
canopy cover estimation

Xception model: 0.28
CNN–ConvLSTM: 0.32

ResNet50: 0.41

Yang et al. [80] ShuffleNet V2 Pesticide/disease
treatment

The total number of
params was 3.785 M,

which makes it portable
and easy to apply

Not the lowest number
of params when

compared to the models
in the paper

Accuracy
MSI: 82.4%

RGB: 93.41%
TIRI: 68.26%
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Table 6. Cont.

Paper
CNN

Model/Architecture Application Strengths Comments Best Results

Briechleet
et al. [81] PointNet++ Spatial segregation

and segmentation

Good score compared to
the models mentioned

in the paper

Not yet tested for
practical use Accuracy: 90.2%

Aiger et al. [82] CNN Environmental
conditions

Large-scale, robust, and
high-accuracy

Low accuracy for
2D CNN 96.3% accuracy

5.2.2. U-Net Architecture

The U-Net architecture was originally introduced in the medical domain by Ron-
neberger et al. [86] and is commonly used for image segmentation. U-Net follows an
encoder–decoder architecture. Many factors, such as the density of the crops, their growth
stage, and the flight height of the drone, have an impact on how well a U-Net will perform.
According to Kitano et al. [87], U-Net did not perform well when the plants were remark-
ably close together. However, some techniques could be used to solve this problem, such
as using the opening morphological operator [88]

Lin et al. [89] used U-Net to achieve an accuracy of 95.5% and an RMSE of 2.5% with
1000 manually labeled training images. Arun et al. [25] achieved an accuracy of 95.34%
and an RMSE of 7.45 using reduced U-Net by designing an efficient pixel-wise classifier for
weeds and crops in agricultural field images. Hoummaidi et al. [90] used the U-Net model
to perform vegetarian extraction and achieved an overall accuracy of 89.7%. However, palm
trees and Ghaf trees had higher detection rates of 96.03% and 94.54%, respectively. The
authors justified their results with the fact that trees were obstructed by other trees. Palm
trees also caused some errors due to their physical characteristics and the small crown sizes
of some trees. The authors suggested that including young palms in the training data could
improve the crown size error rate. Doha et al. [91] used the U-Net architecture to detect
crop rows by performing semantic segmentation on vertical aerial images. Zhang et al. [92]
used the dual-flow U-Net (DF-U-Net) to detect yellow rust severity in farmlands. The
dataset was from the Yangling experiment field, which used a red-edge camera on board
a DJI M100 UAV with a sensor size of 1336 × 2991. The F1-score, accuracy, and precision
scores were 94.13%, 96.93%, and 94.02%, respectively. Sparse channel attention (SCA)
was designed to increase the receptive field of the network and improve the ability to
distinguish each category. Using U-Net, Lin et al. [89] achieved high accuracy with a small
dataset. Similarly, with only 48 images, Tsuichihara et al. [93] achieved an accuracy of
about 80% in detecting broad-leaved weeds. Table 7 provides a summary of studies using
the U-Net architecture.

Table 7. Summary of U-Net models.

Paper
U-Net

Model/Architecture Application Strengths Comments Best Results

Lin et al. [89] U-Net Tree/crop counting Can detect overlapping
sorghum panicles

The performance
decreased with a lower

number of training
images (<500)

Accuracy: 95.5%
RMSE: 2.5%

Arun et al. [25] Reduced U-NET Spatial segregation
and segmentation

Reduces the total number
of parameters and results

in a lower error rate

The comparison was
made with models that
were used to problems

not related
to agriculture

Accuracy: 95.34%
Error rate: 7.45%

Hoummaidi
et al. [90] U-Net Land-cover mapping Real-time and uses

multispectral images

Tree obstruction and
physical characteristics
caused it to have errors;

however, it could be
improved using a

better dataset

Accuracy: 89.7%
Palm trees

Detection rate: 96.03%
Ghaf trees

Detection rate: 94.54%
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Table 7. Cont.

Paper
U-Net

Model/Architecture Application Strengths Comments Best Results

Doha et al. [91] U-Net Crop-row detection

The method they used
could refine the results of

the U-Net to reduce errors,
as well as do frame

interpolation of the input
video stream

Not enough results
were given Variance: 0.0083

Zhang et al. [92] DF-U-Net Pesticide/disease
treatment

Reduced the computation
load by more than half

and had the highest
accuracy among other

models compared

Early-stage rust disease
is difficult to recognize

F1: 94.13%
OA: 96.93%

Precision: 94.02%

Tsuichihara
et al. [93] U-Net Spatial segregation

and segmentation
Accuracy was 80% for
only 48 images trained

Low accuracy and that
is due to the small
number of images

which is due to
manually painting

6 colors on each image

Accuracy: ~80%

5.2.3. Other Segmentation Models

Efficient dense modules of asymmetric convolution (EDANet) is another model that
works well for real-time semantic segmentation. Therefore, EDANet can be useful for
real-time applications such as UAVs. Yang et al. [94] proposed an EDANet that performs
semantic segmentation for detecting rice lodging. Lodging occurs when the stem weakens
and the plant falls over. EDANet outperformed many systems because of its efficiency,
low computational cost, and model size. The model identified normal rice at 95.28%
and lodging at 86.17% accuracy. The model accuracy was improved to 99.25% when less
than 2.5% of rice lodging was neglected.

Weyler et al. [95] proposed an ERFNet-based instance segmentation model that seg-
ments individual crop leaves in plant imagery to extract relevant phenotyping information
and then groups the instances that belong to one crop together. This model made use
of two decoders, one of which was used to predict the offset of image pixels from leaf
regions, while the other was used to predict the offset of image pixels from plant regions.
The two decoder outputs were then used to generate one image with leaf clusters and
another with plant clusters. The model was trained on a dataset of 1316 RGB images of
sugar beet fields captured by a camera onboard a UAV. The model was evaluated on its
ability to perform crop leaf segmentation, as well as full crop segmentation. In crop leaf
segmentation, the model was able to achieve an average precision of 48.7% and an average
recall of 57.3%. The model achieved an average precision of 60.4% and an average recall of
68% for crop segmentation.

Guo et al. [96] developed a three-stage model to perform plant disease identification
for smart farming. The model located the diseased leaves using a region proposal network
(RPN) algorithm trained on a leaf dataset in complex environments, after which regression
and classification neural networks were used to locate and retrieve the diseased leaves.
Later, the Chan-Vese algorithm [97] was used to perform segmentation according to the
set zero level set and minimum energy function. Lastly, the diseases were identified using
a pretrained transfer learning model. The proposed model outperformed the traditional
ResNet101 model significantly, with an accuracy of 83.75% in comparison to 42.5% by
the latter.

Sanchez et al. [98] used a multilayer perceptron (MLP) neural network for the early
detection of broad-leaved weeds and grass weeds in wide-row crops from UAV imagery.
The data were manually collected using a UAV quadcopter equipped with a low-cost RGB
camera. Image segmentation was done using the multiresolution segmentation algorithm
(MRSA). The model achieved an average overall accuracy of 80.9% on two classes of crops.

Zhang et al. [99] proposed a unified CNN called UniStemNet for joint crop recognition
and stem detection in real time. The architecture of UniStemNet is similar to that of Mask-
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RCNN. The architecture consists of a backbone and two subnets, among which the first
performs crop recognition, while the other performs stem detection simultaneously. The
backbone consists of five convolutional stages, where the first is a standard CNN with batch
normalization, while the other four contain two MobileNet2 inverted residual modules
(IRMs). The subnets follow a varied-span feature fusion structure, as each has different
detection targets. The evaluation was performed on the open-source CWF-788 dataset, and
labels were manually annotated. The model obtained an F1-score of 97.4% and an IoU score
of 94.5 in segmentation, which were slightly lower than those achieved by CR-DSS [100].
Nonetheless, the model achieved the best-known results in stem detection with an SDR of
97.8%. A summary of the segmentation models described above is presented in Table 8.

Table 8. Summary of other segmentation models.

Paper
Other Segmentation Models

Model/Architecture Application Strengths Comments Best Results

Yang et al. [94] EDANet Spatial segregation
and segmentation

Improved prior work
on identifying and

lodging by 2.51% and
8.26%, respectively

Drone images taken
from a greater height
did not perform well;

however, with the
method they proposed,

it could have
reliable results

Identify rice
Accuracy: 95.28%

Lodging
Accuracy: 86.17%

If less than 2.5% lodging is
neglected, then the accuracy

increases to 99.25%

Weyler et al. [95] ERFNet-based
instance segmentation

Spatial segregation
and segmentation

Data were gathered
from real

agricultural fields

Comparison was made
on different datasets

based on average
precision scores
using ERFNet

Crop leaf segmentation
Average precision: 48.7%

Average recall: 57.3%
Crop segmentation

Average precision: 60.4%
Average recall: 68%

Guo et al. [96]

Three-stage model with
RPN, Chan-Vese
algorithm, and a

transfer learning model

Pesticide/disease
treatment

Outperformed the
traditional ResNet101

which had an accuracy
of 42.5% and

is unsupervised

The Chan-Vese
algorithm ran for a

long time
Accuracy 83.75%

Sanchez et al. [98] MLP Spatial segregation
and segmentation

Evaluated in
commercial fields and

not under
controlled conditions

The dataset was
captured noon to

avoid shadow

Overall accuracy on two
classes of crops: 80.09%

Zhang et al. [99] UniSteamNet Spatial segregation
and segmentation

Joint crop recognition
and stem detection in

real time; fast and could
finish processing each

image within 6 ms

The scores of this model
were not always the

best, and the differences
were small

Segmentation
F1: 97.4%
IoU: 94.5

Stem detection
SDR: 97.8%

5.2.4. You Only Look Once (YOLO)

You Only Look Once (YOLO) is a real-time object detection neural network model
where a single-stage neural network is applied to the full image. The network divides
the image into regions and predicts bounding boxes along with probabilities for each
region. The use of YOLO in agricultural disease and crop detection has recently been
gaining popularity. For example, Chen et al. [101] proposed a UAV to photograph and
detect pests and employed a Tiny-YOLOv3 model built on NVIDIA Jetson TX2 to recognize
their position in real time. The detected pest positions could later be used to plan optimal
pesticide spraying routes, which agricultural UAVs would later follow. The model attained
the best mAP score of 95.33% and 89.72% on 640 × 640 pixel test images.

Similarly, Qin et al. [102] proposed a solution for precision crop protection based on
a light deep neural network (DNN) called Ag-YOLO consisting of a modified version
of ShuffleNet-v2 backbone, a ResBlock neck, and a YOLOv3 head. This model enabled
the crop protection UAV to perform embedded real-time pest detection and autonomous
spraying of pesticides. The model was tested on the Intel NCS2 hardware accelerator owing
to its low weight and low power consumption. The detection system achieved an average
F1-score of 92.05%.

Parico et al. [103] proposed YOLO-WEED, a weed detection system trained with
720 annotated UAV images to detect instances of weeds, based on YOLOv3 using NVIDIA
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GeForce GTX 1060 for green onion crops. They obtained an mAP score of 93.81% and an
F1-score of 94%.

Rui et al. [104] proposed a novel comprehensive approach that combined transfer
learning based on simulation data and adaptive fusion using YOLOv5 for improved
detection of small objects. Their transfer learning and adaptive fusion mechanism led to
a 7.1% improvement as compared to the original YOLOv5 model.

Parico et al. [105] proposed a robust real-time pear fruit counter for mobile applica-
tions using only RGB data. Various variants of YOLOv4 (YOLOv4, YOLOv4-tiny, and
YOLOv4-CSP) were compared. In terms of accuracy, YOLOv4-CSP was the best model,
with an AP of 98%. In terms of speed and computational cost, YOLOv4-tiny showed a
promising performance at a comparable rate with YOLOv4 at lower network resolutions.
If considering the balance in terms of accuracy, speed, and computational cost, YOLOv4
was found to be the most suitable with AP >96%, inference speed of 37.3 FPS, and FN rate
of 6%. Thus, YOLOv4-512 was chosen as the detection model for the pear counting system
with Deep SORT.

Jintasuttisak et al. [106] exploited the effective use of YOLO-V5 in detecting date palm
trees in images captured by a UAV flying above farmlands in the Northern Emirates of the
United Arab Emirates (UAE). The results of using YOLO-V5 for date palm tree detection in
drone imagery were compared with those obtainable with other popular CNN architectures,
YOLOv3, YOLOv4, and SSD300, both quantitatively and qualitatively. The results showed
that, for the training data used, the YOLO-V5m (medium depth) model had the highest
accuracy, resulting in an mAP of 92.34%. Furthermore, it provided the ability to detect and
localize date palm trees of varied sizes in crowded, overlapped environments and areas
where the date palm tree distribution was sparse.

Tian et al. [107] proposed an anthracnose lesion detection method based on deep
learning. Cycle GAN was used for data augmentation. DenseNet was then utilized to
optimize the feature layers of the YOLO-V3 model, which had a lower resolution. The
improved model exceeded faster RCNN with VGG16 and the original YOLO-V3 model and
could realize real-time detection. The model obtained an F1-score of 81.6% and 91.7% IoU
on the entire dataset.

Table 9 presents a summary of methods using YOLO. As the table shows, it is possible
to get results above 90% from most YOLO models in a variety of domains.

Table 9. Summary of YOLO models.

Paper
YOLO

Model/Architecture Application Strengths Comments Best Results

Chen et al. [101] Tiny-YOLOv3 Pesticide/disease
treatment

Results in excellent
outcomes with regard to
FPS and mAP; reduces

pesticide use.

Has a high false
identification in adult

T. papillosa
mAP score of 95.33%

Qin et al. [102] Ag-YOLO
(v3-tiny)

Pesticide/disease
treatment

Tested Yolov3 with
multiple backbones and

achieved optimum results
in terms of FPS and
power consumption

Uses NCS2 that
supports 16-bit float

point values only
F1 Score of 92.05%

Parico et al. [103] YOLO-Weed (v3) Pesticide/disease
treatment

High speed and
mAP score

Limitations in detecting
small objects

mAP score of 93.81%
F1 score of 94%

Parico et al. [105] YOLOv4
(multiple versions) Tree/crop counting

Proved that YOLOv4-CSP
has the lowest FPS with

the highest mAP

Limitations in detecting
small objects AP score of 98%

Jintasuttisak
et al. [106] YOLOv5m Tree/crop counting

Compared different
YOLO versions and

proved that YOLOv5 with
medium depth

outperforms the rest even
with overlapped trees

YOLOv5x scored a
higher detection

average due to the
increased number

of layers

mAP score of 92.34%

Tian et al. [107] YOLOv3 (modified) Pesticide/diseases
treatment

Tackles the lack of data by
generating new images

using CycleGAN

The model is weak
without the images

generated
using CycleGAN

F1-score of 81.6% and
IoU score of 91.7%



Drones 2023, 7, 382 21 of 36

5.2.5. Single-Shot Detector (SSD)

The single-shot detector (SSD) is a one-stage object detection network that can detect
objects in one feed-forward pass with low-resolution input images [108]. The model consists
of three different modules. The first is a feature extraction module. This module is made
up of a truncated base CNN model that is followed by convolutional layers used for the
extraction of features at various scales. The second module is the object detection module
which takes in feature maps and runs a set of default bounding boxes on their cells. The
result is a defined number of box predictions, all of which have a shape offset and a class
confidence score associated with them. The last module is the nonmaximal suppression
module which chooses the best predictions out of the set presented by the detection module
using a specific value of IoU and confidence score as a threshold. Lately, SSDs have made
an appearance in precision agriculture for their ability to perform fast inference and work
with low-resolution input images. These two features of SSDs make them desirable in
real-time precision agriculture applications.

Veeranampalayam Sivakumar et al. [109] proposed using a single-shot detector to de-
tect mid-to-late season weeds in soybean fields for weed-spread suppression. The authors
used a feature extractor from the Inception V2 network and a stack of four extra convo-
lutional layers to extract features at varying scales. The output of this feature extraction
module was six feature maps that were then fed into the SSD’s detection module. A set of
bounding boxes with five different aspect ratios and six different scales were used on all
locations in all six feature maps, resulting in several box-bounded detection predictions,
each with its own shape offset and class confidence score. An RMS prop optimizer was
used. After training the model over 25,000 epochs, the model achieved a precision of 66%,
a recall of 68%, an F1-score of 67%, a mean IoU of 84%, and an inference time of 21 s
over 1152 × 1152 image test data.

Ridho and Irwan [110] proposed a strawberry-picking robot that could detect straw-
berries of different health states in real time. The robot ran an SSD-MobileNet architecture
on a single-board computer (SBC) to perform real-time inference. The network used a
feature extraction module built with a MobileNet backbone. The choice of MobileNet
was prompted by computational power and time restrictions associated with running a
real-time inference model on a low-computational power single-board computer. Using
transfer learning, the SSD-MobileNet V1 model was previously trained on 91 classes from
the COCO dataset. The model was then retrained on two new datasets containing a total
of 250 training images of strawberries in good and bad condition. The result of the train-
ing returned an accuracy of 90% in detecting good and bad strawberries on image input
extracted from a real-time-streamed video. Table 10 presents a summary of SSD methods.

Table 10. Summary of SSDs.

Paper
SSD

Model/Architecture Application Strengths Comments Best Results

Veeranampalayam
Sivakumar et al. [109]

SSD with a feature
extraction module made

of an Inception v2
network and 4

convolutional layers

Spatial segregation
and segmentation

Model is scale- and
translation-invariant

Low optimal confidence
threshold value of 0.1;
failure to detect weeds

at the borders of images

Precision: 0.66, recall:
0.68, F1-score: 0.67,

mean IoU: 0.84,
inference time: 0.21 s

Ridho and Irwan [110]
SSD with MobileNet as

a base for the feature
extraction module

Seed quality
and germination

Fast detection and
image processing

Detection was not
performed on a UAV;

model did not yield the
best accuracy in

the paper

Accuracy: 90%

5.2.6. Region-Based Convolutional Neural Networks

The region-based convolutional neural network (RCNN) is a two-stage object detection
system that extracts many region proposals from input images, uses a CNN to perform
forward propagation on each region proposal to extract its features, and then uses these
features to predict the class and bounding box of this region proposal.
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Sivakumar et al. [109] proposed an approach where object detection-based CNN
models were trained and evaluated using low-altitude UAV images to detect weeds in
middle and late seasons in soybean fields. Faster RCNN and SSD were both evaluated and
compared in terms of weed detection performance. When faster RCNN was configured
with 200 box proposals, its weed detection performance was like the SSD model. The
faster RCNN model with 200 box proposals returned a precision of 0.65, a recall of 0.68,
an F1-score of 0.66, and an IoU of 0.85. On the other hand, the SSD model returned 0.66,
0.68, 0.67, and 0.84 for precision, recall, F1-score, and IoU, respectively. The performance
of a patch-based CNN model was also evaluated and compared to the previous models.
The faster RCNN model performed better than the patch-based CNN model. In conclusion,
faster RCNN was found to be the best model in terms of weed detection performance and
inference time among the different models compared in this study.

Ammar et al. [111] proposed an original deep-learning framework for the automated
counting and geolocation of palm trees from aerial images. They applied several recent
convolutional neural network models (faster RCNN, YOLOv3, YOLOv4, and EfficientDet)
to detect palm trees and other trees and conducted a complete comparative evaluation in
terms of average precision and inference speed. YOLOv4 and EfficientDet-D5 yielded the
best tradeoff between accuracy and speed (up to 99% mAP and 7.4 FPS).

Su et al. [112] used the Mask-RCNN model for identifying Fusarium head blight
disease in wheat spikes and its degree of severity. To perform this task, two Mask-RCNNs
performed instance segmentation on the input images, one of which segments individual
spikes in the images and the other segments diseased areas of spikes. Thereafter, the
severity of the infection on the spikes was evaluated by calculating the ratio of infected
spike pixels in the images to the total number of spike pixels. The backbone of this model
for feature map extraction was composed of a combination of a ResNet101 model and
an FPN model. The model returned a prediction accuracy of 77.19% after comparing the
results to a set of manually labeled images.

Yang et al. [113] used an FCN-AlexNet model to perform real-time crop classification
using edge computing. The authors collected 224 images using a UAV during the growing
period of rice and corn. The quantitative analysis showed that the SegNet model slightly
outperformed FCN-AlexNet by 1% in the overall recall rate of object classification.

Menshchikov et al. [114] proposed an approach for fast and accurate detection of hog-
weed. The approach includes a UAV with an embedded system on board running various
fully convolutional neural networks (FCNNs). They proposed an optimal architecture
of FCNN for the embedded system relying on the tradeoff between the detection quality
and frame rate. In their pilot study, they determined that different architectures could
successfully solve the semantic segmentation task for the aerial hogweed detection of two
classes. The SegNet model achieved the best ROC AUC with 96.9%. This model could
detect hogweed, which was not initially labeled. The modified U-Net architecture was
characterized by a high frame rate (up to 0.7 FPS) and a reasonable recognition quality
(ROC AUC > 0.938). Along with the low power consumption, the U-Net architecture
demonstrated its applicability for real-time scenarios and running on edge-computing
devices. One of the U-Net modifications could achieve 0.46 FPS on the NVIDIA Jetson
Nano platform with an ROC AUC of 0.958.

Bah et al. [85] proposed a model that combined CNN and the Hough transform to
detect crop rows in images taken by a UAV. The model called CRowNet was a combination
of SegNet (S-SegNet) and a CNN Hough transform (HoughCNet). The model achieved an
accuracy of 93.58% and an IoU of 70%, respectively.

Hosseiny et al. [10] proposed a model with the framework’s core based on a faster
regional CNN (RCNN) model with a backbone of ResNet101 for object detection. The
proposed framework’s primary idea was to generate unlimited simulated training data
from an input image automatically. The authors proposed a fully unsupervised model
for plant detection in UAV-acquired pictures of agricultural fields. Two datasets were
used with 442 and 328 field patches, respectively. The precision, recall, and F1-score were
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0.868, 0.849, and 0.855, respectively. Table 11 shows a summary of papers using two-stage
detectors.

Table 11. Summary of two-stage detectors.

Paper
Two-Stage Detectors

Model/Architecture Application Strengths Comments Best Results

Sivakumar
et al. [109] FRCNN Spatial segregation

and segmentation

The optimal confidence
threshold of the SSD

model was found to be
much lower than that of
the faster RCNN model

Inference time of
SSD is better than

that of FRCNN, but
it can be improved

at the cost
of performance

66% F1-score and 85% IoU.

Ammar
et al. [111] FRCNN Tree/crop counting Large advantage in

terms of speed

Very weak in
detecting trees;

outperformed by
Efficient-Det D5

and YOLOv3

87.13% and 49.41% IoU for palm
and other trees, respectively

Su et al. [112] Mask-RCNN Pesticide/disease
treatment

Superior in comparison
to CNN

Inference time was
not taken

into consideration
98.81% accuracy

Yang et al. [113] FCN-AlexNet Spatial segregation
and segmentation

Provides good
comparison between
SegNet and AlexNet

Outperformed
by SegNet 88.48% recall rate

Menshchikov et al. [114] FCNN Pesticide/diseases
treatment

Proposed method is
applicable in real-world
scenario, and the use of

RGB cameras is
cheaper than

multispectral cameras

Complex
algorithms

compared to the
multispectral

approach

ROC AUC in segmentation: 0.96

Hosseiny
et al. [10]

A model with the core
of the framework based

on the faster regional
CNN (RCNN) with a

backbone of ResNet101
for object detection

Tree/crop counting Results are good for an
unsupervised method

Tested only on
single object

detection and
automatic crop row
estimation can fail

due to dense
plant distribution

Precision: 0.868
Recall: 0.849

F1: 0.855

5.2.7. Autoencoders

Weyner et al. [115] addressed the problem of automated, instance-level plant monitor-
ing in agricultural fields and breeding plots. They proposed a vision-based approach to
perform a joint instance segmentation of crop plants and leaves in breeding plots. They
developed a CNN-based encoder–decoder network with lateral skip connections that fol-
lows a two-branch architecture with two task-specific decoders to determine the position
of specific plant key points and group pixels to detect individual leaf and plant instances.
Lastly, they conducted pixel-wise instance segmentation of each crop and its associated
leaves based on orthorectified RGB images captured by UAVs. Their method outper-
formed state-of-the-art instance segmentation approaches such as Mask-RCNN on this task.
They achieved the highest score of 0.94 for AP50 at intermediate growth stages compared
to 0.71 by Mask-RCNN with respect to the instance segmentation of sugar beet plants.

Lottes et al. [116] presented a novel approach for joint stem detection and crop–
weed segmentation using a fully convolutional network (FCN) integrating sequential
information. Their proposed architecture enables the sharing of feature computations in
the encoder while using two distinct task-specific decoder networks for stem detection
and pixel-wise semantic segmentation of the input images. All their experiments were
conducted using different generations of the BoniRob platform. BoniRob was built by
BOSCH DeepField Robotics as a multipurpose field robot for research and development
applications in precision agriculture, such as weed control, plant phenotyping, and soil
monitoring. The system achieved the best mAP scores of 85.4%, 66.9%, 42.9%, and 50.1%
for Bonn, Stuttgart, Ancona, and Eschikon datasets, respectively, for stem detection and
69.7%, 58.9%, 52.9% and 44.2% mAP scores for Bonn, Stuttgart, Ancona, and Eschikon
datasets, respectively, for segmentation.

Su et al. [117] proposed a deep neural network (DNN) that exploits the geometric
location of ryegrass for the real-time segmentation of inter-row ryegrass weeds in a wheat
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field. Their proposed method introduced two subnets in a conventional encoder–decoder
style DNN to improve segmentation accuracy. The two subnets treat inter-row and intra-
row pixels differently and provide corrections to preliminary segmentation results of the
conventional encoder–decoder DNN. A dataset captured in a wheat farm by an agricultural
robot at different time instances was used to evaluate the segmentation performance, and
the proposed method performed the best among various popular semantic segmentation
algorithms (Bonnet, SegNet, PSPNet, DeepLabV3, and U-Net). The proposed method
ran at 48.95 FPS with a consumer-level graphics processing unit and, thus, is real-time
deployable at a camera frame rate. Their proposed model achieved the best mean accuracy
and IoU scores of 96.22% and 64.21%, respectively. Table 12 summarizes the recent works
using autoencoders.

Table 12. Summary of autoencoders.

Paper
Autoencoder

Model/Architecture Application Strengths Comments Best Results

Weyler et al. [115] CNN/autoencoder Spatial segregation
and segmentation

Performed joint instance
segmentation of crop

plants and leaves using a
two-step approach of
detecting individual

instances of plants and
leaves followed by

pixel-wise segmentation
of the identified instances

Low segmentation precision
for smaller plants;

outperformed
by Mask-RCNN

0.94 for AP50

Lottes et al. [116] FCN/autoencoder Pesticide/disease
treatment

Performed joint stem
detection and crop–weed

segmentation using an
autoencoder with two

task-specific decoders, one
for stem detection and the

other for pixel-wise
semantic segmentation

Did not achieve best mean
recall across all tested

datasets. + false detections
of stems in soil regions

Achieved mAP scores of 85.4%,
66.9%,42.9%, and 50.1% for Bonn,
Stuttgart, Ancona, and Eschikon
datasets, respectively, for stem

detection and 69.7%, 58.9%,
52.9%, and 44.2% mAP scores for

Bonn, Stuttgart, Ancona, and
Eschikon datasets, respectively,

for segmentation

Su et al. [117] Autoencoder Spatial segregation
and segmentation

Utilized two
position-aware

encoder–decoder subnets
in their DNN architecture
to perform segmentation

of inter-row and intra-row
rygrass with higher

segmentation accuracy

Low pixel-wise semantic
segmentation accuracy for

early-stage wheat

Mean accuracy and IoU scores of
96.22% and 64.21%, respectively.

5.2.8. Transformers

Vaswani et al. [118] proposed the transformer architecture based on the attention
mechanism. A transformer is a sequence transduction model initially designed to tackle
natural language processing (NLP) problems. Using transformers for computer vision tasks
was limited initially due to the high computational cost of training. To address this issue,
Dosovitskiy et al. [119] proposed the vision transformer (ViT) that requires fewer resources
while outperforming convolutional networks (CNNs). Other notable contributions include
utilizing detection transformers (DETR) targeting the same problem. [120].

Thai et al. [121] used ViTs for the early detection of infected cassava leaves and the
classification of their diseases. Initially, they used the ImageNet pretrained ViT model
published by the Google Research Team [122]. The model was then tuned using the cassava
leaf disease dataset [123]. Later, the model was quantized to reduce its size and accelerate
the inference step (FPS) before deploying it on a Raspberry Pi 4 Model B. Their model
achieved a 90.3% F1-score in comparison to the best CNN score of 89.2% achieved by the
Resnet50 model. Furthermore, they proposed a smart solution powered by the Internet
of Things (IoT) that can be used in the agriculture industry for real-time detection of leaf
diseases. The system consists of a drone that captures the leaf images, including the exact
position of the spot in the field. The ViT model installed on the Drones Pi classifies the
images and clusters the infected leaves. The results are then combined with the spot’s
position and sent to a server via a 4G network to create a survey map of the field. Farmers
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and rescue agencies can obtain the map on their mobile phones and prevent the loss of
crops beforehand.

Reedha et al. [24] used two different models of ViT for plant classification of UAV
images. Images were collected using a drone mounted with a high-resolution camera
and deployed in a crop field of beet, parsley, and spinach located in France. The camera
captured RGB orthorectified images at regular intervals in the field. The data were manually
labeled into five classes: weeds, beet, parsley, spinach, and off-type green leaves. They
also employed data augmentation to help improve the robustness of the model and the
generalization capabilities of the training dataset. Later, they used ViT-B32 and ViTB16
models. They also tested the training data on EfficientNet and ResNet CNN architectures for
comparison purposes. The results showed that ViT models outperformed the CNN models,
as F1-scores of 99.4% and 99.2% were obtained from ViT-B16 and ViT-B32, respectively.
In comparison, CNN models achieved slightly lower scores of 98.7% for EfficientNet B0,
98.9% for B1, and a close 99.2% using ResNet50. The authors pointed out that although
all techniques obtained high accuracy and F1-scores, the classification of crops and weed
images using ViTs yielded the best prediction performance. However, the inefficiency of
ViT as compared with CNNs is another consideration if the model is to be deployed for
real-time processing on a UAV.

Karila et al. [124] used ViT models to estimate grass sward (i.e., short grass) quality and
quantity in a field. The datasets were captured in the spring “primary growth phase”, and
the same dataset was captured again in the summer “regrowth phase” using a quadcopter
drone equipped with two cameras. The first captured RGB images, while the second
captured Fabry–Pérot (FPI) images. The results showed that ViT RGB models performed
the best on different datasets. Similarly, VGG CNN models provided equally satisfactory
results in most cases.

Dersch et al. [125] used a detection transformer (DETR) to detect single trees in high-
resolution RGB true orthophotos (TDOPs) and compared it to a YOLOv4 single-stage
detector. The multispectral images were collected by a 10-channel camera system with a
horizontal field of view. Later, the images were post-processed using structure-from-motion
(SFM) software. The data were later manually labeled with a split of 80% training and
20% validation. DETR outperformed YOLOv4 in mixed and deciduous plots with a 20%
difference in F1-score in mixed plots and 4% in the latter plots: 86% to 65% and 71% to 67%,
respectively. Across all three test plots, both methods had problems with over-segmentation.
Furthermore, DETR failed to detect smaller trees far worse than YOLOv4 in multiple cases.
The authors justified these poor results by the fact that DETR uses lower-resolution feature
maps than that of YOLOv4.

Chen et al. [126] proposed a new efficient deep learning model called the density
transformer (DENT) for automatic tree counting from aerial images. The model’s archi-
tecture contains four stages: a multi-receptive field CNN (Multi-RF CNN) to compute a
feature map over the input images, followed by a standard transformer encoder, and a
density map generator (DMG) to predict the density distribution over the input images.
They also introduced a benchmark dataset that contains aerial images for tree counting
called the Yosemite tree dataset and released it to the public [126]. The model outperformed
most state-of-the-art methods with an MAE of 10.7 and an RMSE of 13.7 in comparison
to 17.3 and 22.6, respectively, using YOLOv3. It is worth mentioning that the CANNet
model [127] achieved the closest values of 10.8 and 13.8, respectively, and achieved a better
MAE score in one of four regions than the DENT models.

Lastly, Zhang et al. [128] developed a spectral–spatial attention-based transformer
(SSVT) to estimate crop nitrogen status from UAV imagery. The model is an improved
version of the standard vision transformer (ViT) that can extract the spatial information of
images. The newly proposed model can predict the spectral information which contains
most of the features in agricultural applications. The model also tackles the computational
complexity of large images that ViT suffers from by adopting a self-supervised learning
(SSL) technology to allow models to train with unlabeled data. The results showed that the
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model with 96.2% accuracy outperformed the ViT model with 94.4% accuracy. However,
this model required four million additional parameters compared to those required for a
ViT model. Table 13 presents a summary of methods using transformers.

Table 13. Summary of transformers.

Paper
Transformers

Model/Architecture Application Strengths Comments Best Results

Thai et al. [121] ViT Pesticide/diseases
treatment

Proposed a smart
solution powered by

Internet of things (IoT)

The performance was not
tested with the system

attached to a drone

90.3% F1-score in
comparison to the best CNN
score of 89.2% achieved by

Resnet50 model

Reedha
et al. [24] ViT Spatial segregation

and segmentation

The classification of
crops and weed images

using ViTs
yielded the best

prediction performance

Slightly outperformed
existing CNN models

F1-scores of 99.4% and 99.2%
were obtained from ViT-B16

and ViT-B32, respectively

Karila
et al. [124] ViT

Crop yield
estimation/seed quality

and germination

The ViT RGB models
performed the best on

several types of datasets

VGG CNN models provided
equally reliable results in

most cases

Multiple results shown on
several types of datasets

Dersch
et al. [125] DETR Spatial segregation

and segmentation

DETR clearly
outperformed YOLOv4

in mixed and
deciduous plots

DETR failed to detect
smaller trees, far worse than
YOLOv4 in multiple cases

An F1-score of 86% and 71%
in mixed and deciduous

plots respectively

Chen
et al. [126] DENT Tree/crop counting

The model
outperformed

most of the
state-of-the-art methods

CANNet achieved
better results

A mean absolute error
(MAE) of 10.7 and a

root-mean-squared error
(RMSE) of 13.7

Coletta
et al. [129] Active Learning Pesticide/disease

treatment
The model can classify

unknown data
Did not test the performance
of other classification models

An accuracy of 98% and a
recall of 97%

5.2.9. Semi-Supervised Convolutional Neural Networks

Bosilj et al. [130] used the fundamental SegNet architecture to perform pixel-level
classification and segmentation of three classes of soil. The input comprised RGB and
near-infrared (NIR) images. The authors used a median frequency weighting to avoid
unbalanced labeling, as soil pixels are dominant in any given field with respect to crops or
weeds. The input data were directly taken in the form of RGB and NIR channels because
NDVI preprocessing typically results in minimal differences. The model was trained on
three different datasets of sugar beets, carrots, and onions (SB16, CA17, and ON17) in
which there were fully labeled examples in one, and partially labeled examples in the other,
with pixel-level and object-level training. Object-based detection performed better than
pixel-based detection precision-wise. However, pixel-based detection performed better in
terms of recall. It is worth noting that the partially labeled ON17 dataset with SB16 weights
outperformed the fully labeled dataset. The partially labeled CO17 dataset performed
significantly worse than the fully labeled dataset, with a difference of almost 20% on weeds
and 5% on crops.

5.2.10. Miscellaneous

Coletta et al. [129] used a semi-supervised classification algorithm that can aggregate
information from clusters with those provided by a supervised algorithm such as SVM
to discover new classes in an active learning manner. According to the authors, such an
ability is largely convenient for inconsistent agricultural environments. The data were
collected through a SenseFly eBee equipped with an RGB camera. The model consisted
of two blocks: a classification block (ClaB) representing an area of 0.16 m2 to be classified
and a contextual block (ConB) providing supplementary context information. Both blocks
formed a concentric pair that generates feature vectors to be classified. These vectors were
manually labeled as belonging to one of three classes. Then a semi-supervised classifier
was used to quantify the uncertainty of classification, and a density measure evaluated the
importance of a classified feature vector. If the instances resulted in highly uncertain labels,
they were denoted as novelties to be learned, which were labeled later by an entropy- and
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density-based selection (EDS) domain expert and incorporated into the training set. The
results showed that the all-class accuracy and recall improved iteratively.

Li et al. [131] used a radial basis function neural network (RBFNN) to predict farm-
land moisture accurately. In their work, they deployed a high-precision infrared sensor
mounted on a UAV to collect discrete-time images of farmland for later analysis and used
20 uniformly distributed soil moisture sensors to extract ground-truth data. To extract
relevant information from the images, the authors used an image preprocessing pipeline
that included adaptive median filtering, mean filtering, and edge information extraction
using the Canny edge detection algorithms. Principal component analysis (PCA) was
thereafter used for dimensionality reduction, and its effect was studied by comparing the
original model trained on the full dataset with the model trained on the dataset resulting
from PCA. The evaluation results showed that the performance of the two models was
similar, with the original achieving an R-squared score of 0.92176 and a mean percentage
error (MPE) of 0.063, and the PCA-RBFNN model achieving an R-squared of 0.90157 and
an MPE of 0.061. Ultimately, it could be concluded that applying PCA helped reduce the
model’s workload while maintaining similar accuracy.

6. Discussion and Future Work
6.1. Machine Learning Techniques

In general, SVMs did not work well in comparison to deep learning approaches.
The authors of [52,53,61,62,132] used SVMs to classify crops/weeds in agricultural fields.
Most of the results showed low accuracies. This can be because SVMs underperform
when there is no clear margin of difference between the different classes, which is usually
the case in agricultural imagery, even with the images being preprocessed. In addition,
SVMs are more likely to fail when classes are noisy and overlapping. KNN suffers from
similar limitations. The authors of [53,63,64] showed that KNNs performed slightly better
than SVMs. Nonetheless, they were still sensitive to noisy data. Random forests (RF)
were used in [54,61] and performed better than SVM and KNN in this limited context.
However, RF requires a higher computational cost as the algorithm involves multiple
decision trees, which makes it challenging to implement on a UAV for real-time predictions.
Decision trees and RF also have the problem of overfitting. It is worth mentioning that
Coletta et al. [129] used active learning to discover new classes through an SVM technique
on semi-labeled data, and the results were promising and reliable. The light detection and
learning algorithm was used by Weinstein [83] with a ResNet backbone and also achieved
decent results.

CNNs represent a good candidate for solving image-based classification and de-
tection problems in precision agriculture. U-Net models performed well with fewer
training samples and provided better performance for segmentation tasks [133]. The
authors of [25,89–93,99] showed that U-Net outperformed other CNN models. In addi-
tion, Arun et al. [25] showed that U-Net can be further optimized without compromising
performance. Other architectures included ResNet, ShuffleNet, ShuffleNetV2, and Mo-
bileNet, which all require higher computational costs and are less suitable for real-time
UAV applications.

Single-stage detectors such as the YOLO series, CornerNet, and CenterNet improved
the detection speed while maintaining high accuracy. Tiny-YOLOv3 worked well in
real-time applications due to a small number of parameters, high speed, and efficient
computation. The authors of [101–103,107] showed that YOLOv3 performed the best among
all YOLO models. Using Tiny-YOLOv3 resulted in a slight tradeoff with accuracy, especially
in detecting smaller objects. Nonetheless, the overall accuracy remained high. Two-stage
detectors such as R-CNN, FPN, and Mask-RCNN performed better than single-stage
detectors. The authors of [82,109,110,112,115–117] showed that these models outperformed
single-stage detectors in terms of recall and accuracy. However, many authors argued that
region proposal modules required higher computation and runtime memory footprint,
thus making detection slow even on high-end GPUs [102].
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Transformers represent a viable approach in agricultural classification tasks using
UAV image data. In specific, the ViT model showed promising results. The authors
of [24,121,124] compared ViT models with current CNN architectures and showed that
both approaches achieved similar results, with ViTs enjoying a slight edge. The DETR
model [125] was compared to the YOLO series of models, and both approaches also
achieved similar results. However, it was evident that DETR models fell short in detecting
smaller trees and crops due to their encoder–decoder nature. DENT was used in [126] and
outperformed most current methods. However, the CNN model CANNet achieved better
results on the same data.

Generative adversarial networks (GANs) were primarily used to enhance the training
process by adding to the manually labeled data in a semi-supervised manner. The authors
of [134,135] used semi-supervised GANs (SGAN) and cGAN, respectively. In both studies,
GAN architectures were outperformed by CNNs for higher labeling rates.

6.2. Best Techniques for Agricultural Problems

Table 14 shows the current best solutions for each problem and the respective type of
learning architecture used. Because of the unavailability of appropriate benchmarks, it is
difficult to compare the proposed approaches. However, Table 14 represents the best results
achieved using specific datasets. The results generally show that machine learning and
deep learning can yield reasonable results for a variety of problems. There is clearly room
for improvement in most cases, as the results were sometimes in the range of 80% accuracy.

Table 14. Best results achieved in different agricultural problems.

Problem Type of Learning Paper Model/Architecture Dataset Best Results

Spatial segregation
and segmentation

Supervised Jintasuttisak et al. [106] YOLOv5 Date palm trees collected
using a drone mAP score of 92.34%

Semi-supervised Fawakherji et al. [118] cGANs
5400 RGB images of pears
and strawberries, of which

20% were labeled

An IoU score of 83.1% on mixed
data including both original

and synthesized

Unsupervised Bah et al. [78] ResNet18 UAV images of spinach
and bean fields AUC: 91.7%

Pesticide/diseases
treatment

Supervised Zhang et al. [73] DF-U-Net Yangling UAV images
F1: 94.13%

Accuracy: 96.93%
Precision: 94.02%

Semi-supervised Coletta et al. [129] Active learning: SVM
UAV images

collected from
Eucalyptus plantations

An accuracy of 98% and
a recall of 97%

Unsupervised Khan et al. [117] SGAN
UAV images collected
from strawberry and

pea fields
Accuracy ~90%

Fertilization
Supervised Natividade et al. [61] SVM UAV images of vineyards

and forests
Accuracy: 83%, precision: 97%,

recall: 94%

Unsupervised Zhang et al. [115] SSVT UAV images of a
wheat field 96.5% on 384 × 384 pixel images

Crop-row detection Supervised Cesar Pereira et al. [47] SVM Manually collected
RGB images 88.01% F1-Score

Semi-supervised Pérez-Ortiz et al. [62] SVM UAV images collected
from a sunflower plot MAE: 12.68%

Tree/crop counting
Supervised Ammar et al. [98] FRCNN Tree counting 87.13% IoU on palms and 49.41%

on other trees

Semi-supervised Chen et al. [113] DENT Yosemite tree dataset 10.7 MAE score

Others Supervised Aiger et al. [82] CNN UAV images of various
types of land cover 96.3% accuracy

To put things into perspective, the choice of the technique to be used is highly de-
pendent on the precision agriculture problem at hand. The survey results show that
problems that would typically require semantic segmentation from high altitudes such as
spatial segregation, crop-row segmentation, or weed detection are usually tackled using
an encoder–decoder architecture such as U-Net. On the other hand, problems that can be
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addressed without excessive features extraction (bounding boxes level) such as pest detec-
tion, tree counting, or fertilization can be solved by utilizing single- or two-stage detectors
such as YOLO, RCNNs, or other transformer-based techniques. The choice between these
options relies on the power consumption and memory footprint limitations. GANs can be
employed for enhancement purposes mainly such as obtaining super-resolution images or
synthesizing data.

Table 15 shows an overall summary of machine learning techniques using UAV image
data for precision agriculture. As the figure shows, supervised, semi-supervised, and
unsupervised techniques have been used for a variety of problems.

Table 15. A summary of the papers surveyed based on the agricultural problem and technique used.

Supervised Semi-Supervised Unsupervised

Spatial Segregation and
Segmentation

� CNNs: [25,66,68,81,93–95,98–100,113,130,135]
� SSDs: [99,109]
� TSDs: [109,115,117]
� Transformers: [24,125]

� CNNs: [84,130,135]
� GANs: [134] � CNNs: [78]

Pesticides/Diseases
Treatment

� Classical Methods: SVM [52,54]
� CNNs: [65,67,69–71,73,74,76,79,80,92,96,112,114,116]
� SSDs: [77,101–103,107]

� Classical Methods: SVM [129]
� Transformers: [120,121] � GANs: [75,132]

Tree/Crop Counting
� CNNs: [10,89,111]
� SSDs: [105,106,111]
� Transformers: [126]

Crop-Row Detection
� Classical Methods: SVM, KNN [53], RF [63], KNN [64]
� CNNs: [85,91] � Classical Methods: SVM [62]

Fertilization � Classical Methods: SVM & DT [61] � Transformers: [128]

A
gr

ic
ul

tu
ra

lP
ro

bl
em

Others
� Classical Methods: KNN [63]
� CNNs: [82,90,124]
� SSDs: [110]

� Transformers: [124]

6.3. Future Work

The current state of practice in deploying UAVs in an agricultural field typically con-
sists of using multiple UAVs or stages. One smaller UAV is used to collect images from
the field. Once the images are collected, machine learning algorithms are applied, and the
results are used to program another typically larger delivery UAV that applies pesticides,
fertilizer, or similar in a smarter fashion. A future vision is to have autonomous agricultural
UAVs that can process images onboard and take appropriate actions as necessary. How-
ever, current UAVs are resource-constrained, and their performance is limited by energy
consumption, memory size, and latency. As a result, it is not practical to use high-resource
algorithms to perform detection and classification tasks. Such issues can be addressed by
using low-bit architectures, by compressing a dense model, by using an effective model
with a small number of parameters, or by using a hardware accelerator that can be deployed
on an embedded system-on-chip (SoC) that includes graphic processing units (GPUs) or
field-programmable gate arrays (FPGAs) [136].

As the survey showed, many generic CNN backbones (e.g., ResNet18) have been
used to address various agricultural problems. However, these backbones are typically
pretrained on nonagricultural data and are only fine-tuned on agricultural data. The
availability of agricultural benchmarking datasets will help make progress toward creating
pretrained backbones for agricultural problems.

Many agricultural problems require semantic segmentation, object recognition, and
instance segmentation. As Table 14 shows, single-stage detectors such as YOLOv3 have
performed well for object recognition. In addition, two-stage detectors such as FRCNN and
specialized architectures such as DENT have relatively better performance. Transformers
such as ViT have been used. However, one issue with transformer-based architectures is
the higher computational inefficiency as compared to CNNs. Many new approaches to
optimize transformers for a more efficient footprint have been proposed [137]. This work
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is highly relevant for autonomous UAVs that need to perform the inference onboard the
UAV. In addition, entirely new architectures such as Hyena [138] that claim sub-quadratic
performance when compared with transformers have been proposed. Such new architec-
tures also carry promise when combined with the current object recognition and instance
segmentation approaches.

Many surveyed UAV studies used multispectral data as opposed to using just the
RGB data. Multispectral data represent a special challenge for UAVs because using a
higher number of channels in the input significantly increases the memory requirements,
which is not ideal for autonomous UAVs. Building efficient CNNs for multispectral data
is a well-researched problem [139]. Transformers are also being used with multispectral
data (e.g., [140]). Approaches for segmentation using multispectral data (e.g., [141,142])
have also recently been proposed. The efficient handling of multispectral data when using
transformers represents another important research problem for UAV image data.

Lastly, a significant amount of work has been conducted in agriculture using satellite
imagery [143]. The appearance of multimodal agricultural data, including synced and
UAV images (e.g., [144]) raises the interesting possibility of multimodal systems on a UAV
utilizing UGV, UAV, and satellite data in tandem to solve the various agricultural problems
more effectively.

From the agricultural problem perspective, many of the problems identified in Table 1
have been addressed using image data from UAVs. However, some problems in the
postharvest stage, such as fruit grading, quality retention, and storage environments, may
require additional attention.

7. Conclusions

In this survey, over 70 recent papers using UAV agricultural imagery to classify, detect,
and segment crops and trees using machine learning algorithms and deep learning models
were discussed. Deep learning models such as U-Net, YOLOv3, and ViT performed the
best among state-of-the-art approaches. The primary challenges include detecting small
trees and interleaved crops, as well as the high-power consumption of complex models.
Future work includes developing low-power-consuming and less expensive models that
could be deployed on the UAVs to perform real-time or on-edge tasks that can provide
faster and more sufficient solutions in the field of precision farming.
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