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Abstract: Visual servoing is a control method that utilizes image feedback to control robot motion,
and it has been widely applied in unmanned aerial vehicle (UAV) motion control. However, due
to field-of-view (FOV) constraints, visual servoing still faces challenges, such as easy target loss
and low control efficiency. To address these issues, visual servoing control for UAVs based on the
deep reinforcement learning (DRL) method is proposed, which dynamically adjusts the servo gain
in real time to avoid target loss and improve control efficiency. Firstly, a Markov model of visual
servoing control for a UAV under field-of-view constraints is established, which consists ofquintuplet
and considers the improvement of the control efficiency. Secondly, an improved deep Q-network
(DQN) algorithm with a target network and experience replay is designed to solve the Markov model.
In addition, two independent agents are designed to adjust the linear and angular velocity servo
gains in order to enhance the control performance, respectively. In the simulation environment, the
effectiveness of the proposed method was verified using a monocular camera.

Keywords: field-of-view (FOV) constraint; visual servoing; deep reinforcement learning; UAV

1. Introduction

An unmanned aerial vehicle (UAV) is an integrated agent capable of functions includ-
ing environmental perception, motion planning, and servoing control among others [1].
Meanwhile, it also represents an integration of sensing technology, electronic engineering,
communication engineering, computer engineering, automation control, and artificial intel-
ligence [2,3]. Quadrotor UAVs can take off and land vertically, hover in the air, fly at low
altitudes, cruise slowly, and so on. Hence, UAVs represent a focus of current research [4].
Quadrotors are widely used in daily life, e.g., in drones, small logistics transportation,
pesticide spraying, and high-altitude auxiliary fire extinguishing [5].

Visual servoing adopts the image information of the target position obtained from
airborne cameras to control the relative position and altitude of a quadrotor UAV [6].
Generally, visual servoing can be divided into position-based visual servoing (PBVS)
and image-based visual servoing (IBVS) [7]. Errors in PBVS originate from the three-
dimensional Cartesian space; thus, it is sensitive to noise, camera parameter errors, and
the estimation accuracy of the target position [8]. IBVS uses the image feature error to
calculate the input of the control robot directly, which enhances the robustness of the
camera parameters. In contrast to PBVS, an accurate geometric model of the visual target is
no longer required [9]. Thus, IBVS is widely applied in the control of mobile robots [10] and
UAVs [11–13]. Servo gain is critical for IBVS because it affects the output and convergence
speed of the whole system [14].

In various applications, such as cluster control based on vision [15,16], target track-
ing [17], and visual navigation [18], the target may be lost because of the limited FOV. Once
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the target is lost, these tasks cannot be performed properly. Therefore, it is important to
consider the FOV constraint in the design stage of the servo controller.

To avoid feature loss, several methods have been proposed in recent decades. Hajiloo et al. [19]
optimized the trajectory of features in image frames using the MPC method to address
the FOV constraints. Chesi et al. [20] used the in-plane trajectory of a camera in three-
dimensional Cartesian space but did not optimize the trajectory of features in the image
frame [20]. Huang et al. [21] designed a constraint controller using the control obstacle func-
tion and quadratic programming to prevent the target on the ship exceeding the FOV of the
camera. Zhang et al. [22] presented a new real-time optimal trajectory planning method for
a rotorcraft with the constraint of speed and inputs of thrust and altitude. Their framework
ensures the field-of-view constraints on the visual servoing control of the rotorcraft by
transforming the FOV constraint into an altitude constraint. Zheng et al. [23] established
a control barrier function to ensure the FOV constraint to maintain visibility. The barrier
function is used to create a visible range that sets the maximum distance between the center
of the image plane and the visual feature coordinates in the image plane. This visible range
can be defined as the upper limit of the distance between these two points.

In recent years, with the rapid development of artificial intelligence, machine learning
has been widely applied in various fields. Meanwhile, formal methods for the verification
and validation of machine learning systems have been proposed in [24,25]. In the field
of robot control, the reinforcement learning (RL) algorithm is used to complete the visual
servoing task [26]. Wang et al. [27] introduced controllers to addresses the retention of
visual features in the field of view of the camera for wheeled mobile robots (WMRs). When
the feature is located in a dangerous area, a controller based on Q-learning is activated to
avoid feature loss. This method uses Q-learning to directly control the motion of a WMR,
but these controllable actions are rare and only applicable to some scenarios. In contrast to
directly using the RL algorithm for the input of the control system, Shi et al. [28,29] used
the Q-learning algorithm to choose the adaptive law to update the gain of IBVS, and the
stability and convergence of the control system were improved. However, these methods
did not consider the issue of field-of-view constraints. As we know, there is little research
on learning-based FOV constraint control for UAVs. A comparison of our work with related
works is provided in Table 1.

Table 1. Comparison of current related work.

Reference Object Method

[19] Six-DOF robot
manipulator

The constraints due to actuator limitations and visibility constraints can be
taken into account using MPC strategy and computational complexity.

[20] Six-DOF articulated arm Trajectory in the 3D space satisfying FOV constraints. It depends on accurate
environmental and system models.

[21] VTOL UAVs Generate the constrained control inputs to ensure the nonsingular attitude
extraction and FOV.

[22] Quadrotor FOV is indirectly guaranteed by attitude constraints.
[23] Quadrotor The system is bounded by a visible set. Control barrier function
[27] WMRs Using Q-learning to design a controller, the action is simple.

[28,29] Quadrotor Using Q-learning to design adaptive laws, the control effectiveness is
improved without considering the FOV

Ours Quadrotor Using DQN to design adaptive laws, the control effectiveness is improved
considering the FOV

In order to solve the problem of feature loss and improve the efficiency of IBVS, we
propose a method of IBVS control of UAVs with visibility constraints based on the deep
reinforcement learning method, which dynamically adjusts the servo gain in real time to
avoid target loss and improve control efficiency. The Markov model of visual servoing
control for a UAV under field-of-view constraints is established, and an improved DQN
algorithm with a target network and experience replay is designed to solve the Markov
model. Then, to enhance the control performance of the control system, we designed two
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independent servo gains for linear and angular velocities to replace the single servo gain in
the traditional method.

The remainder of this paper is organized as follows. In Section 2, the works related
to the proposed method are presented, which include a model of a quadrotor UAV and
the method of classical IBVS. Section 3 describes the proposed algorithm for adjusting the
adaptive servo gain using a DQN. To demonstrate the effectiveness of the proposed method,
simulations are presented in Section 4. Finally, Section 5 summarizes the conclusions of the
study.

2. Preliminaries
2.1. Quadrotor Model Description

The coordinate frames of a quadrotor are shown in Figure 1, where the body coor-
dinate frame and world coordinate frame are denoted as Xb − Yb − Zb and Xi − Yi − Zi,
respectively. The coordinate of the quadrotor’s centroid ξ = (X, Y, Z):

.
ξ = Rv
m

.
v = −mω× v + F

.
R = R · sk(ω)
I

.
ω = −ω× Iω + Γ

F = mgRTe− u1ez
Γ = [u2, u3, u4]

(1)

where “× ” represents the cross multiplication operation; R ∈ SO(3) is the rotation matrix
from the body coordinate to world coordinate; I ∈ <3×3 is the UAVs constant inertia matrix
around the centroid; sk() is a skew-symmetric matrix with sk(a)b = a× b; u1 is the total lift
force along the axis of the coordinate system; and u1, u2, u3 are the moment of rotation for
the x, y, and z axes of the body coordinate system. u1, u2, u3, u4 in the body coordinates can
be calculated as follows:

u1
u2
u3
u4

 =


KF KF KF KF
−KFL 0 KFL 0

0 −KFL 0 KFL
KM −KM KM −KM




w2
1

w2
2

w2
3

w2
4

 (2)

where KF and KM are the lift coefficient and moment coefficient, respectively. The parameter
L is the arm of force, indicating the displacement of the motor relative to the center of mass
of the aircraft. wi represents the rotational speed of each motor.
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Figure 1. The coordinate frames of a quadrotor. 
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2.2. The Classical IBVS Method

Assuming that PC
i = (XC

i , YC
i , ZC

i )
T is a point in the camera coordinate and pi = (xi, yi)

is the observed target point in the image, the relationship between PC
i and pi is illustrated

in Figure 2. The camera coordinate and image plane are represented by X-Y-Z and x-y,
respectively. The principal point is the intersection of the Z-axis and image plane; its
coordinates can be expressed as (u0, v0).
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The conversion between a point in the camera coordinate system and the image
coordinate system refers to the mapping of a 3D point in the world captured with a camera
to a 2D point on the camera sensor. The conversion can be described as

xi = f XC
i

ZC
i

yi = f YC
i

ZC
i

(3)

The derivative of Equation (3) with respect to time is expressed as

[ .
xi.
yi

]
=
−1
ZC

i

[
f1 0
0 f2

][
1 1 −XC

i /ZC
i

0 1 −YC
i /ZC

i

]
.

X
C
i

.
Y

C
i

.
Z

C
i

 (4)

Substituting Equation (3) into Equation (4) yields
.
xi =

(
.

X
C
i −x

.
Z

C
i

)
ZC

i

.
yi =

(
.

Y
C
i −y

.
Z

C
i

)
ZC

i

(5)
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The relationship between the velocity of the three-dimensional points and the spatial
velocity of the camera is established using the spatial kinematic equation:

.
X

C
i = −vx −ωyZC

i + ωzYC
i.

Y
C
i = −vy −ωzXC

i + ωxZC
i.

Z
C
i = −vz −ωxYC

i + ωyXC
i

(6)

Substituting Equation (6) into Equation (5) yields{ .
xi = − vx

Z + xvz
Z + xyωx −

(
1 + x2)ωy + yωz

.
yi = −

vy
Z + yvz

Z − xyωy −
(
1 + x2)ωx − xωz

(7)

Equation (7) can be rewritten in matrix form:[ .
xi.
yi

]
= Ji

[
ν
ω

]
(8)

where ν = (vx, vy, vz)
T and ω = (ωx, ωy, ωz)

T . Ji is the Jacobian matrix for each target
point and it satisfies:

Ji =

[
− 1

Z 0 xi
Z xiyi −

(
1 + x2

i
)

yi
0 − 1

Z
yi
Z 1 + y2

i −xiyi −xi

]
(9)

The crucial aspect of IBVS control is the discrepancy between the current coordinates
of the feature target and the desired coordinates in the image. The feature error can be
expressed as follows:

e = s− s∗ (10)

where s ∈ <2M×1 are current positions of the target in the image and s∗ ∈ <2M×1 are the
desired positions of the target in the image. Meanwhile, the motion of the target position in
the image is directly related to the movement of the drone. The derivative of Equation (9)
can be expressed as

.
e =

.
s = J ·V (11)

where V = (vx, vy, vz, ωx, ωy, ωz)
T is the velocity vector of the UAV in the body frame and

J ∈ <2M×6 is the image Jacobian matrix.
To ensure the exponential decline in the characteristic error, the relationship between

the UAV speed and the characteristic error vector can be obtained using the following
method:

VT = −λJ+e (12)

where J+ = (JTJ)−1JT is the pseudo-inverse matrix of J and λ is the servo gain vector of
IBVS.

3. IBVS with Deep Reinforcement Learning

This section presents an IBVS method based on a DQN. As shown in Figure 3, the
MDP model is first established. Next, the error e and state are fed into two different agents,
respectively. Then, the DQN is applied to solve the MDP problems and automatic servo
gain. The servo gains and depth Z are input into IBVS controller. Finally, the speed control
quantity (v , ω)T is obtained.
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3.1. The Markov Decision Process Model

To design an adaptive law based on the DQN algorithm, this task needs to be formu-
lated as an MDP model consisting of quintuplet (S, A, P, γ, r). The model of state transition
P is determined by the environment, and γ is generally set according to experience. Thus,
this paper focuses on the design of S, A, and r.

• State Space

The image plane is divided into c× v by pixel. A coordinate system is established in
the current image plane, and the coordinates of the desired position in the image plane can
be set as the origin. In the process of discretizing the image plane space, it is necessary to
divide the pixel plane into a certain number of grids. The image plane can be divided into
nx segments along the x-axis and ny segments along the y-axis, and it needs to meet the
complete division, i.e.,

c%nx = 0; v%ny = 0 (13)

From the above formula, it can be deduced that the size of the divided state space is:

K = ∑
nx
2

i=1

(ny

2
− i + 1

)
(14)

where K is the size of the state space.
If the pixel coordinate of the current position of the UAV in the image plane is (ci, vi),

and the expected position is (ca, va), then the formula can be obtained:

Ŝ = sgn(ci − ca)
2 + sgn(vi − va)

2 (15)

where Ŝ is the pixel distance of the image plane coordinates and sgn() is the sign function.
Figure 4 shows that the pixel coordinates are divided into state spaces. When the agent

is positioned in the black circle shown in Figure 4, it can be expressed as state 1; when the
agent is in the blue circle, it is state 3; and when the agent is in the gray circle, it is state 5.
Using this division method, a state space of size can be obtained, which is expressed as

S = {si|i = 1, 2, 3, · · · , K } (16)
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• Action Selection

The servo gain is the key factor affecting the control efficiency of the visual servo
control system. It is directly related to the control input; thus, this paper selects two
different gains for angular and linear velocities, respectively. If the servo gain is directly
used as the action of the agent, the action space will be too large and the phenomenon of
dimension disaster will arise. Therefore, it is necessary to perform an initial assignment to
the two servo gains, respectively, and then further design a limited regulation range for
this initial assignment, i.e., the action range. The action interval is also discrete; thus, we
can better carry out the learning process.

First, we design the action set according to the above idea: set an initial value as the
initial servo gain and then set the size of the action set. The angular and linear velocity
servo gains have the same size.{

αv =
{

av
i

∣∣i = 1, 2, · · · , 2n + 1
}

αω =
{

aω
i

∣∣i = 1, 2, · · · , 2n + 1
} (17)

The action space Av, Aω can be expressed as{
Av = {−nvdv,−(nv − 1)dv, · · · ,−dv, 0, dv · · · , (nv − 1)dv, nvdv}
Aω = {−nωdω,−(nω − 1)dω, · · · ,−dω, 0, dω · · · , (nω − 1)dω, nωdω} (18)

The update rules of the servo gain satisfy{
λv

t+1 = λv
t (av

t + 1)
λω

t+1 = λω
t (aω

t + 1)
(19)

• Reward Function

The reward function is the agent’s feedback with respect to the environment, which
is crucial to the convergence and stability of the whole learning algorithm. Indeed, it
determines the effectiveness of the reinforcement learning algorithm to some extent. The
reward function is the standard used to evaluate whether agents can learn the optimal
strategy in the process of continuous interaction with the environment. If we choose to
give only a reward value to the final goal or expected position of reinforcement learning in
the design of the reward function, the convergence time of the algorithm will be greatly
increased in the environment because the agent will obtain the reward only upon achieving
the final goal. In the state action value function, the reward feedback of other positions
in the state space is zero, and the amount of reinforcement learning will also be greatly
increased. If a positive value smaller than the reward value fed back by the final goal is
randomly designed in the reward function of a certain area in the state space, it is likely
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that a phenomenon similar to the repeated movement of the agent in this area will occur
because the agent constantly swipes the reward value in this area without choosing to move
to other areas in order to find a better reward or the final reward by using the influence of
strategy.

In the design of the abovementioned state space and action set, we can understand
that the UAV is controlled by the image visual servo controller, and deep reinforcement
learning is responsible for regulating the servo gain. Therefore, in reinforcement learning,
the agent can also represent the motion of the target in the image plane, which has a good
mapping relationship with the three-dimensional inertial space. On this basis, the feedback
of agents in the environment can be divided into three situations.

When the distance between all the feature points of the target and the coordinates of
the desired position feature points in the image plane is less than a fixed value, it can be
considered that the rotor UAV has reached the desired position and the one-time learning
algorithm of reinforcement learning is completed. In these circumstances, the agent can
obtain a maximum reward value.

When the UAV cannot obtain the total number of feature points of the desired target
in the state space, it means that the UAV has exceeded the observation range of the target
position by the visual servoing system. In this case, the target is lost and the minimum
reward value should be given to the agent.

When the rotor UAV can detect all the feature points but has not reached the desired
position, a function of feature error can be set:

e = ∑N
i=1|si − s∗i |/N (20)

where N is the number of characteristic points, si is the current location, and si
∗ is the

desired location.
The reward function can be set according to the above three situations as

r =


100, arriving at desired position

−100, feature loss
−qe− pav, otherwise

(21)

where q is the weight coefficient of the feature error vector and p is the weight coefficient of
penalized large actions.

3.2. DQN Algorithm

The Q function of Q-learning represents the value of each pair of state–action in a
specific configuration environment. In order to represent the Q function that may have
a large number of state actions, the deep Q-Network (DQN) uses the neural network
approach to approximate the characteristics, and the Q function is expressed as a weight
parameter θ as Q(s, a; θ). s and a represent state and action, respectively. The next state s′ is
obtained after performing a.

There are two major improvement measures for DQNs:

• Target Network: With only one network, updating the Q function in real time can
result in a chaotic trajectory and poor training. To avoid instability caused by updating
the Q function while simultaneously acquiring the Q value, a target network is used.
The target network provides a stable Q value for the Q function to be updated. The
target network is updated with the new Q function to improve performance.

• Experience Replays: Experience replays will build a replay buffer D = {e1, e2, e3 · · · |D|}.
The replay buffer is also called replay memory. Instead of using the samples in the
standard sequence, small batches are randomly selected from the data set for training
to diminish the relativity between training samples.
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In each iteration, the state and action are sent to the DQN and the estimated Q value is
generated.

Li(θi) = Es,a,r,s′ [
1
2

(
yDQN

i −Q(s, a; θi))
2
]

(22)

The loss function expressed in the expected form is:

yi
DQN = r + γmax

a′
Q
(
s′, a′; θ−

)
(23)

where θ− denotes the target network parameters.
Including the experience replays in Equation (22),

Li(θi) = E(s,a,r,s′)∼D[
1
2

(
yDQN

i −Q(s, a; θi))
2
]

(24)

The gradient of loss function is given by:

Oθ iLi(θi) = E(s,a,r,s′)∼D

[(
yDQN

i −Q(s, a; θi)
)
Oθ iQ(s, a; θi)

]
(25)

The optimization algorithm is gradient descent, which iteratively updates the model’s
parameters to find the optimal set of values. The parameters of separate target networks
are determined according to

θ− = τθ + (1− τ)θ− (26)

The proposed iterative algorithm’s process is provided in Algorithm 1, where the max
episode n, T denotes the MaxStep.

Algorithm 1: DQN-based IBVS method

Initialization;
For episode = 1:n

For t = 1:T
If si > K or si ≤ 1 (Termination condition);

Break
End
Generate random number: µ (0 < µ < 1);
If µ < ε

Random selection of action av
t , aω

t ;
Else

Select the corresponding strategic actions av
t , aω

t ;
obtain the rewards rv

t , rω
t and servo gains λv

t and λω
t ;

λv
t and λω

t are substituted to VT = −λ J+e;
Observe the next State si+1;
Store the experience replay with [si, av

t , aw
t , rv

t , rω
t , si+1];

si = si+1;
End
If Experience replay full

Randomly selected datasets of buffer D;
Train the network by gradient descent method and updating network parameters θ

according to (24);
After training a certain number of times, update the target network θ− according to (25);

End
End

End

4. Simulations and Experiments

This section describes various simulations that were carried out to prove the effec-
tiveness and performance of IBVS based on a DQN. Due to the concise language and high



Drones 2023, 7, 375 10 of 14

programming efficiency of MATLAB, the proposed control system was simulated using
MATLAB R2021b.

The parameters of the quadrotor used in the simulation are m = 1 kg, g = 9.81 m/s2,
and J = diag{0.0081, 0.008, 0.0142} kg.m2/rad2. The focal length of the camera is 3.2 mm.
The length and width of the camera pixels are 1.4× 10−6 m. The targets are four points
on the horizontal plane. Their coordinates relative to the inertial system are (3,2,3), (2,2,3),
(2,3,3), and (3,3,3). The parameters of the DQN are shown in Table 2, where ε is the error
threshold, γ is the discount parameter, and α is the learning rate, while λω∗ and λω∗
represent the initial servo gain values of angular velocity and linear velocity, respectively.

Table 2. Intrinsic parameters of the DQN.

Parameters Value

ε 5 pixels
γ 0.8
α 0.9

λω∗ 0.04
λv∗ 0.6

episode 500

Figure 5 shows the two groups of servo gain obtained through deep reinforcement
learning. In the beginning, small servo gains are selected to avoid target loss, because a
large gain value will lead to an excessive control input and cause the UAV to move violently.
In the later stage, a large gain is chosen to improve the efficiency of IBVS.
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To prove the effectiveness and practicability of the new method, we compare C-
IBVS [28] under different servo gains in the simulation platform. Figure 6 shows the
position path trajectory diagram of the quadrotor UAV under various conditions.

Figure 7 shows the feature trajectories of the image, and four colored lines represent
the trajectories of different feature points in the image. It can be seen that when a gain of
λ = 1.5 is adopted in the C-IBVS method, the trajectories vary drastically and there is a risk
of losing the target because the feature points have reached the image border. When λ = 1,
there is a safe distance between the image trajectory and the edge. When λ = 0.5, the image
trajectory is the gentlest and the trajectory is shortest. The DQN method is also relatively
gentle, and the image trajectory is a safe distance from the edge, which ensures that the
target features are not lost.
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Figure 8 shows the position movement trajectories of a UAV in four cases. It can be
seen that when λ = 0.5, the convergence needs 25 time steps. When λ = 1, it needs 15 time
steps, and when λ = 1.5, it is also needs 15 time steps because it involves overshoot and for
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other reasons. The convergence of the adopted DQN method takes 12 time steps, and the
curve has fast convergence and no overshoot.
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5. Conclusions

To address the problems of target loss and the low control efficiency in image-based
visual servoing (IBVS), this paper proposes a DQN-based IBVS adaptive servo gain adjust-
ment method. First, a Markov model of UAV visual servoing control under field-of-view
constraints was established by designing the state space, action set, and reward function,
which considers the improvement of the control efficiency. Second, an improved DQN
algorithm with a target network and experience replay was designed to solve the Markov
model. To enhance the control performance, two independent agents were designed, with
each agent responsible for adjusting the linear and angular velocity servo gains, respec-
tively. Through a simulation analysis of a quadrotor UAV equipped with a monocular
camera, the proposed method can avoid target loss caused by FOV constraint and improve
the efficiency of IBVS.

The process of action selection in this method is discrete and the number of actions
is limited. In future work, a continuous action space will be designed to enhance the
algorithm’s performance. Additionally, the algorithm will be further validated through
real flight experiments.
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