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Abstract: Unmanned aerial vehicles (UAVs) are promising in large-area data collection due to their
flexibility and easy maintenance. In this work, we study a UAV-enabled wireless sensor network
(WSN), where K UAVs are dispatched to collect a certain amount of data from each node on the
ground. Most existing works assume that the flight energy is either distance-related or duration-
related, which may not suit the practical scenario. Given the practical speed-related flight energy
model, we focus on deriving the optimal energy and delay tradeoff for the K UAVs such that each
node can successfully upload a certain amount of data to one of the K UAVs. Intuitively, the higher
flight speed of the UAV results in the shorter completion time of the data collection task, which
may however cause the higher flight energy consumption of UAVs during the task. Specifically, we
first model the total energy consumption of the UAV during the flight for collecting data within
the WSN and then design the flight speed as well as the flight trajectory of each UAV for achieving
different Pareto-optimal tradeoffs between the maximum single-UAV energy consumption among
all UAVs and the task completion time. To achieve this goal, we propose a novel multi-objective ant
colony optimization framework based on the adaptive coordinate method (MOACO-ACM). Firstly,
the adaptive coordinate method is developed to decide the nodes visited by each of the K UAVs,
respectively. Secondly, the ant colony algorithm is incorporated to optimize the visiting order of nodes
for each UAV. Finally, we discuss the impact of UAVs’ speeds scheduling on the tradeoff between the
task completion time and the maximum single-UAV energy consumption among all UAVs. Extensive
simulations validate the effectiveness of our designed algorithm and further highlight the importance
of UAVs’ flight speeds in achieving both energy-efficient and time-efficient data collection.

Keywords: UAV-enabled WSN; trajectory design; multi-objective optimization

1. Introduction

Unmanned aerial vehicles (UAVs) can provide scalable and barrier-free communi-
cation paradigms for terrestrial wireless sensor networks (WSNs) due to their rapid de-
ployment, ubiquitous connectivity and high flexibility [1]. UAVs also have the advan-
tage in achieving high probability line-of-sight wireless communication link with ground
nodes [2–4]. Ref. [3] studied the UAV-assisted non-orthogonal multiple access multi-way
relaying network. Multiple terrestrial users exchange their mutual information via an
amplify-and-forward UAV relay. Ref. [4] conducted an in-depth analysis of the through-
put of the uplink/downlink NOMA system assisted by UAV relays in a delay-limited
transmission mode. Therefore, with the improvement of UAV endurance and the rapid
development of miniaturization of communication equipment and other aspects, people
highly expect that the UAV-based communication mode will receive more and more at-
tention in future applications based on wireless sensor networks, such as natural disaster
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monitoring, border monitoring, emergency assistance and security communication [5–8].
Since most rotor-wing UAVs cannot be loaded with high-storage batteries due to the
size and weight constraints [9], the UAV’s onboard energy is usually limited [10]. Thus,
the energy consumption issue should always be carefully addressed when designing the
UAV-based communication system [11].

For the internet of things [12] and data collection equipment supporting UAVs, UAVs
can fly close to each ground node to shorten the corresponding communication link dis-
tance, thus achieving more energy-efficient data collection [13,14]. For such applications,
the system performance highly depends on the designed UAV trajectories [15,16].

In recent years, many research works on UAV-based WSNs focus on the minimization
of either the overall flight energy consumption or the flight time [17–21]. However, in most
practical scenarios, it is more significant to consider the performance optimization across
multiple UAVs, especially when nodes are distributed unevenly within the network and
each node has a different data-uploading demand. Since each UAV may have different
onboard energy and corresponding endurance capabilities, if some UAVs drain their
batteries in advance, the whole task could fail. Thus, balancing the energy consumption
across multiple UAVs for a particular task is crucial.

Based on the practical speed-related flight energy model [22], when each UAV flies
among multiple data-collection locations within the network with the maximum flight
speed, the total time (task completion time) until each node successfully uploads its data is
reduced; this, however, may increase the overall flight energy consumption of UAVs. On
the contrary, to reduce the overall flight energy consumption of UAVs, we may decrease
the flight speed of each UAV, which however may result in the longer time until each
node successfully uploads its data. Since each UAV may visit different ground nodes to
collect data from them, the speed control and the trajectory design of each UAV jointly
determine the flight energy consumption as well as the task completion time. Besides the
flight energy consumption used when flying among different data collection locations,
we should also consider the hovering energy consumption when the UAV hovers above
each node for data collection and the communication energy consumption incurred during
the data transmission period. Thus, the goal of this work is to jointly consider the energy
minimization and the task completion time minimization in a multi-UAV-enabled WSN.
Generally speaking, choosing the appropriate flight speed as well as the flight trajectory for
each UAV can both balance the energy consumption across UAVs and minimize the task
completion time. In particular, the energy consumption of a single UAV includes the flight
energy consumption, the hovering energy consumption and the communication energy
consumption during the task. We also use the maximum single-UAV energy consumption
among all UAVs to evaluate the balance level of energy consumption across all UAVs. We
define the maximum single-UAV flight time as the task completion time.

At the same time, the quantity, placement and sequence of nodes accessed by UAVs
exert a notable influence on energy consumption and time. Considering the varying
data volumes of nodes, when there is a substantial number of nodes accessed by UAVs,
it is desirable to minimize the data collection requirements for these nodes. Conversely,
excessive data volume for nodes accessed by UAVs will inevitably escalate the time and
energy consumption of the UAVs. Therefore, achieving a balance in the number of nodes
accessed by each UAV is crucial. Additionally, if the nodes accessed by UAVs are widely
dispersed or the sequence of UAV access increases the distance traveled, it will invariably
amplify the time and energy consumption during flight. Hence, it is essential to consider
the spatial distribution and order of node access by UAVs.

Given the distinct preferences of decision-makers stemming from their respective
domains, wherein time or energy consumption may be prioritized, this study formulates
the UAV flight time and energy consumption as a multi-objective optimization problem.
We devise a joint design of flight trajectories and speeds for each UAV to minimize the
maximum energy consumption and maximum flight time across all UAVs, catering to the
diverse requirements of decision-makers.
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To solve the above problem, we propose a novel multi-objective ant colony optimiza-
tion framework based on the adaptive coordinate method (MOACO-ACM). Firstly, we
develop the adaptive coordinate method to decide the nodes visited by each UAV, which
effectively balances the number of nodes and their locations visited by each UAV. Then,
the ant colony optimization algorithm is incorporated to plan the visiting order of nodes
decided in the first step for each UAV, which balances the maximum single-UAV energy
consumption among all UAVs and the task completion time. Finally, we investigate the
impact of UAVs’ different speed scheduling on the tradeoff between the task completion
time and the maximum single-UAV energy consumption among all UAVs. The main
contributions of this work is summarized as follows:

• We propose the optimization framework called MOACO-ACM for designing the flight
speed as well as the flight trajectory of each UAV, which achieves different Pareto-
optimal tradeoffs between the maximum single-UAV energy consumption among all
UAVs and the task completion time.

• We validate the effectiveness of the proposed algorithm through extensive simulations.
We also reveal the impact of UAV’s different flight speed scheduling on the tradeoff
between the task completion time and the energy consumption across UAVs.

Most research to date has focused on studying the impact of UAV flight paths on UAV
time and energy consumption. However, this study stands out by introducing an algorithm
that addresses the challenge of collecting information using multiple UAVs. The algorithm
considers the number of task nodes, UAVs and tasks to optimize energy consumption and
time efficiency for the UAVs. Furthermore, the study examines the influence of speed on
this matter through experimental analysis.

The rest of this work is organized as follows. Section 2 introduces some related works
and the motivation. Section 3 presents the system model and problem formulation. In
Section 4, we illustrate the multi-UAV trajectory design and speed control algorithm in
detail. Section 5 presents the comparison algorithm design and the simulation setting.
Section 6 shows the simulation results and the corresponding analysis. We finally conclude
this work in Section 7.

2. Related Works and Motivation

Due to the limited onboard energy of each UAV and in order to ensure the freshness
of collected data, sending UAVs to execute data collection tasks should simultaneously
maximize energy efficiency and minimize task completion time. In the following section,
we will introduce some related works to better motivate this study.

For energy efficiency problems in UAV-enabled WSNs, Ref. [11] tried to find the
optimal strategy for UAV deployment to maximize the total charged energy received by
all ground sensors in a wireless rechargeable sensor network (WRSN). Ref. [23] aimed
at reducing the total energy consumption of a data collection system, where a node’s
wake-up scheduling and the UAV trajectory design was jointly designed to minimize the
weighted energy consumption of nodes and the UAV. Ref. [24] considered a UAV-enabled
communication system where rotary-wing UAVs act as aerial base stations for providing
ground nodes wireless communication services. The maximum energy efficiency was
achieved through the joint optimization of user scheduling and UAV trajectory design.
Ref. [25] studied a UAV-enabled data collection system where a UAV is dispatched to collect
a given amount of data from a ground terminal at the fixed location, taking into account
the energy tradeoff between the UAV and the ground terminal. Ref. [26] explored the
energy efficiency of UAVs under a given trajectory and conducted experimental research
with both Line of Sight (LOS) and Non-Line of Sight (NLOS) communication models.
In Ref. [27], the energy consumption and data throughput, the delay of machine-type
communication devices (MTCDs) tasks and the data acquisition and computing efficiency
with different priorities were jointly optimized. Ref. [28] studied the secure energy efficiency
maximization problem in UAV-enabled communication systems. By jointly optimizing the
transmission scheduling, the power allocation and UAV trajectories over a certain period of
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time, the energy consumption required for secure communication is minimized. Ref. [29]
proposed a new UAV-assisted data acquisition scheme by designing the fixed-wing UAVs’
3D trajectories and data acquisition plan for saving energy of both UAVs and sensor nodes.
Ref. [30] explored the use of mobile-edge computing (MEC) system for IoT computation
offloading and proposes a similar alternating optimization algorithm to investigate the
balance between UAV time and energy consumption. Ref. [31] introduced an iterative
algorithm that provides charging and task offloading for ground IoT devices. The proposed
approach is validated in terms of energy consumption through comparisons with Monte
Carlo simulations and other benchmark schemes.

For the flight time minimization problem, Ref. [19] proposed a UAV trajectory opti-
mization method to minimize the completion time of the wireless charging task where
a UAV is dispatched to charge a certain amount of energy to each of the ground nodes.
Ref. [32] studied the task completion time minimization problem for content delivery in
cache-enabled UAV networks. Ref. [33] investigated UAV-to-UAV communications with
a turning angle constraint, in which the data transmission time is minimized by joint
UAV flight trajectory planning and transmit power control. Ref. [34] jointly optimized the
trajectory of UAVs, the wake-up time allocation and the transmit power of ground nodes
for minimizing task completion time. Ref. [35] solved the flight time minimization problem
for accomplishing the data collection task in a one-dimensional sensor network. Ref. [36]
derived the minimum task completion time by jointly optimizing the UAV trajectory and
resource allocation at each sensor node. Ref. [37] presented a linear programming algorithm
that jointly optimizes two types of services, achieving a trade-off between efficiency and
transmission latency, thereby reducing task completion time.

Some researchers believe that minimizing the flight path of a UAV in data collection
can save time and energy consumption. As a result, optimizing the UAV’s trajectory has
been proposed by some researchers. Ref. [38] introduced an ant colony optimization-
based method for solving the UAV trajectory, called ACO-NODE. This method utilizes
the probabilistic and spatial characteristics of the problem to quickly obtain high-quality
UAV trajectories. Ref. [39] presented a multi-UAV (UAV)-assisted Mobile Edge Computing
(MEC) system called GTPA-VP. By optimizing the flight trajectory of the UAVs, the sum of
hovering and flying energy consumption of the UAVs is minimized. Ref. [40] integrated re-
inforcement learning into the grey wolf optimizer algorithm and proposed a new algorithm
called RLGWO for UAV path planning.

All the above works provide very valuable insights into the energy efficiency and
the delay analysis in UAV-enabled WSNs. Different from those existing works, we focus
on investigating the optimal energy and delay tradeoff in a multi-UAV-enabled WSN; in
practice, UAV flight energy consumption and task completion time are coupled due to
the practical speed-related flight energy model of UAVs. Thus, the results obtained in this
work may initiate the first step towards the both energy-efficient and time-efficient design
in UAV-enabled data collection systems.

3. System Model and Problem Formulation

We assume that there are N ground sensor nodes randomly distributed within a
two-dimensional WSN. There are K UAVs in total which are dispatched to perform data
collection tasks within the network. During the task execution process, the energy con-
sumption of each UAV mainly includes the flight energy consumption, the hovering
energy consumption and the communication energy consumption. Figure 1 shows the
system model.
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Figure 1. System model.

3.1. The Relationship between the Flight Power Consumption and Flight Speed

Normally, the flight power increases with the flight speed, since UAVs need to consume
more energy to overcome air resistance and gravity. In fact, the relationship between flight
power and flight speed can be modeled as the shape shown in Figure 2. In particular,
flight power first decreases with flight speed until reaching the minimum value, and
then, it increases with flight speed. When the travelling distance is fixed, it is not always
feasible to decrease the flight energy by reducing the flight time (increasing the flight speed).
Therefore, it is necessary to carefully control the UAV’s flight speed for balancing the flight
energy consumption and the flight time.
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Figure 2. The relationship between the flight power and the flight speed.

In the following, we first introduce some energy consumption models of the UAV
including the flight energy consumption model, the hovering energy consumption model
and the communication energy consumption model.

3.2. Flight Energy Consumption Model

According to the work [11], the energy consumption of the UAV during the flight
is mainly determined by its flight distance and flight speed. When the UAV flies with
a constant speed, the flight energy consumption increases linearly with the flight dis-
tance. We denote dij as the Euclidean distance between two target nodes i and j, which is
represented as

dij =
√
(xi − xj)2 + (yi − yj)2, (1)
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where (xi, yi) and (xj, yj) represent the locations of nodes i and j. In Ref. [41], the author
studied the trade-off between the power consumption and flight performance of fixed-wing
UAVs. In this work, we mainly focus on the flight power consumption model of rotary-
wing UAVs developed in Ref. [17], where the relationship between flight power P(v) and
flight speed v is represented by

P(v) = P0

(
1 +

3v2

U2
tip

)
+Pi

(√
1 +

v4

4v2
0
− v2

2v2
0

) 1
2

+
d0ρSAv3

2
, (2)

where P0 is the blade power, v is the horizontal flight speed, Utip is the blade tip speed of
the rotating blade, Pi is the induced power, v0 is the average rotor induced speed during
hovering of the UAV, d0 is the fuselage resistance ratio, ρ is the air density, S is the rotor
robustness and A is the rotor disk area.

For linear acceleration or deceleration, the relationship between the flight speed and
the flight time can be modeled as v = vini + a · t, where vini is the initial speed, a is the
acceleration and t represents the flight time. During the flight between any two nodes i and
j, the UAV first accelerates from vini = 0 to a certain speed v, then flies with uniform speed
v towards node j, and finally decelerating from v to 0 when it hovers just above node j. For
any target node, the UAV spends some time hovering above this node for data collection.

If the UAV flies between two target nodes i and j with constant speed vij, the corre-
sponding flight energy consumption can be represented as

e f ly
ij = P(vij) ·

dij − dmin

vij
+ eacc + edec, (3)

where P(vij) represents the UAV’s flight power during the flight with speed vij, and dmin
represents the total flight distance of acceleration and deceleration. eacc represents the
UAV’s flight energy consumption during the acceleration process, while edec represents
the UAV’s flight energy consumption during a different phase. The UAV’s flight energy

consumption during the acceleration process can be represented by eacc =
∫ v

a
0 P(t)dt, where

P(t) is derived from P(v) by replacing v with a · t. Since the flight energy consumed during
deceleration is the same as that during the acceleration, we have eacc = edec.

Due to the short period of both acceleration and deceleration processes during the
flight between any two target nodes, we ignore both the acceleration and deceleration
processes for simplicity. Therefore, the UAV’s flight energy consumption during the flight
between any two target nodes is reformulated as

e f ly
ij = P(vij) ·

dij

vij
. (4)

We use the decision variable xijk ∈ {0, 1} to indicate whether the kth UAV passes
through dij, which is specified as

xijk =

{
1, UAV k passes through dij;
0, UAV k does not pass through dij.

(5)

Then, the total flight trajectory length of UAV k for visiting N target nodes is
represented by

Dk =
N

∑
i=1

N

∑
j=1

xijkdij, ∀k ∈ K. (6)

where N is the number of nodes, K is the number of UAVs, xijk is calculated by Equation (5),
and dij is the Euclidean distance between two target nodes i and j.
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The total flight energy consumption of UAV k for visiting N target nodes is represented by

E f ly
k =

N

∑
i=1

N

∑
j=1

e f ly
ij xijk, ∀k ∈ K. (7)

3.3. Hovering Energy Consumption Model

The UAV needs to hover above each target node to collect data. The hovering energy
consumption of the UAV is mainly determined by its hovering power and hovering time.
According to the literature reference [11], if the speed in Equation (2) is set to 0, then P(v)
represents the hovering power of the UAV. The hovering time of the UAV above each target
node depends on the amount of data to be uploaded by the node. Thus, the corresponding
hovering energy consumption of the UAV called ehov

i above node i is represented by

ehov
i = Ph(0)ti. (8)

where Ph(0) is the hovering power. The hovering power of the UAV can be obtained
from Equation (2) by substituting v = 0, and thus, we have P(0) = Ph(0) + Pi. Assuming
that node i needs to upload Bi bits data to the UAV and the data-uploading rate is b, the
hovering time of the UAV above node i is ti =

Bi
b .

The hovering energy consumption of UAV k for visiting N target nodes called Ehov
k is

represented by

Ehov
k =

N

∑
i=1

ehov
i , ∀k ∈ K. (9)

where N is the number of nodes and K is the number of UAVs.

3.4. Communication Energy Consumption Model

The communication energy consumption of the UAV is determined by the communi-
cation power and communication duration. Since UAVs only communicate when hovering
above a node and collecting data from that node, the time used to communicate with a
node equals the hovering time above that node. According to reference [11], assuming that
the communication power of the UAV when collecting data from a target node is Pcom, the
communication energy consumption of the UAV for a target node i is represented by

ecom
i = Pcomti, (10)

where Pcom is a constant. The communication energy consumption of UAV k for visiting N
target nodes is represented by

Ecom
k =

N

∑
i=1

ecom
i , ∀k ∈ K. (11)

3.5. Total Energy Consumption Model

To sum up, the total energy consumption of UAV k for visiting N target nodes is
calculated as

Ek = E f ly
k + Ehov

k + Ecom
k

=
N

∑
i=1

N

∑
j=1

e f ly
ij xijk+

N

∑
i=1

ehov
i +

N

∑
i=1

ecom
i , ∀k ∈ K.

(12)

The total time used by UAV k for visiting N target nodes is

Tk =
N

∑
i=1

N

∑
j=1

(
dij

vij
+ ti), ∀k ∈ K. (13)
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3.6. Problem Formulation

There are, in total, K UAVs initially deployed at the base station (0, 0), and the UAV k
denotes the kth UAV deployed at the base station. Each UAV starts from the base station,
sequentially visits some nodes and finally returns to the base station. For each visited node,
the UAV hovers above that node for a certain period of time while collecting data from that
node.

Our goal is to design the flight trajectory (which nodes to visit and the corresponding
visiting order) as well as the flight speed between any two neighbouring visited nodes on
the flight trajectory for each of the K UAVs, such that the task completion time (the total
time until when all nodes successfully upload their data) and the maximum single-UAV
energy consumption among all the K UAVs are both minimized. We formulate the above
joint trajectory design and speed scheduling problem as a multi-objective optimization
problem. The representation of the objectives is as follows:

fE = [E1, E2, ..., Ek, ..., EK],
fT = [T1, T2, ..., Tk, ..., TK],
Fobj = min(max( fE), max( fT))

(14)

where N represents the total number of target nodes that the UAVs need to visit, and K
denotes the number of UAVs. Ek represents the energy consumption of the kth UAV (as
in Equation (12)), while Tk represents the time taken for the kth UAV to complete its tasks
(as in Equation (13)). We aim to maximize two objectives, fE and fT . Additionally, the
UAVs are subject to the following constraints during task execution:

s.t



vmin ≤ vijk ≤ vmax, ∀i, j ∈ {1, 2, ..., N},
xijk = 0, 1, ∀i, j ∈ {1, 2, ..., N}, k ∈ {1, 2, ..., K},

N
∑

i=0,i 6=j

K
∑

k=1
xijk = 1,

N
∑

j=0,j 6=i

K
∑

k=1
xijk = 1, ∀i, j ∈ {1, 2, ..., N},

N
∑

i=0

N
∑

j=0

−→
X ij · xijk = 0, ∀k ∈ {1, 2, ..., K}

(15)

where N is the total number of target nodes that the UAVs need to visit, and K is the number
of UAVs. According to the reference [42], the first constraint represents the variation range
of the UAVs’ flight speed, where vmin is set to 0.01 m/s and vmax is set to 30 m/s. The
second constraint, xijk, is a binary decision variable indicating whether a UAV flies from
node i to node j. The third constraint ensures that each node is visited once, meaning that
a UAV flies from node i to node j and then to other nodes. The fourth constraint states
that each UAV departs from the base station, visits the nodes, and must return to the base
station, resulting in a closed loop for the flight path of each UAV (the sum of the vectors is
equal to zero); the vector

−→
Xij represents the straight-line vector connecting task node i and j

with direction from i to j.

4. Multi-UAV Trajectory Design and Speed Control

In recent years, evolutionary algorithms inspired by nature have become more and
more popular in UAV trajectory planning, because evolutionary algorithms can effectively
deal with the dynamic constraints of UAVs and can search for the globally optimal solution
in complex scenarios. At present, many evolutionary algorithms have been developed
and used to solve the trajectory planning problem in UAV-enabled WSNs, such as the
cuckoo search algorithm (CS) [43], ant colony optimization algorithm (ACO) [44], genetic
algorithm (GA) [45], differential evolution algorithm (DEA) [46] and particle swarm opti-
mization algorithm (PSO) [47]. ACO is a kind of new imitation evolutionary algorithm
which is designed to solve the adaptive computing problem. ACO imitates the behavior of
ants when foraging and gradually converges to the global optimal solution to the targeted
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problem according to the heuristic idea and through the induction of information cable.
This algorithm is widely used to solve TSP problems [48].

This paper introduces MOACO-ACM, a method that optimizes the trajectory and
speed of deployed UAVs simultaneously. The solution process consists of three stages,
as shown in Algorithm 1:

(1) The adaptive coordinate method is used to determine orbital nodes for each UAV.
Initially, N task nodes are mapped to a two-dimensional plane coordinate system
denoted as (xj, yj), where j = 1, 2, . . . , N. Assuming the central hangar is at (0, 0), K
rays are generated from this node, dividing the two-dimensional plane into K regions,
each containing a certain number of task nodes. To ensure that each task node falls
between two adjacent rays, a node capture mechanism is designed. This mechanism
assigns a node to a task node based on the angle and distance between the node and
its adjacent rays. The generation of K rays follows these steps: a random generation
strategy is used during the first 1

3 period of the iteration to explore the entire area and
avoid local optima. After this period, local exploration is performed by adjusting the
angles of the K rays using Equations (18)–(20).

(2) Once the first stage is completed, the matching between the flying UAVs and the N
task nodes is established. Then, the ACO is applied to find the shortest TSP path for
each UAV based on the assigned task nodes.

(3) The UAV’s speed interval is discretized into several speed values. Each speed value
is sequentially substituted to solve for the candidate optimum between the task
completion time of the largest single UAV and the energy consumption of the largest
single UAV, resulting in a Pareto front.

Algorithm 1 MOACO-ACM.
Input: The coordinate of each node, the number of UAVs K and the maximum number of

iterations MaxIts.
Output: Pareto-optimal solution to the proposed problem.
1: while it_R ≤ MaxIts do
2: //Stage 1: Use the method introduced in Section 4.1 to plot task nodes and UAVs
3: if it_R < MaxIts/3 then // Global exploration stage
4: Randomly generate K rays;
5: Each ray uses probability to capture nodes;
6: else// Local exploration stage
7: Use Equations (18)–(20) to adjust the angle of the rays represented by each UAV;
8: Each ray uses probability to capture nodes;

Endif
9: //Stage 2: Finding the shortest TSP path

10: for i = 1 : K do
11: Use ant colony optimization algorithm to optimize the flight trajectory of each

group of UAVs; // Details can be found in Algorithm 2
12: Endfor
13: //Stage 3: Speed Setting
14: Use the speed to optimize the time and energy consumption of the trajectory;

EndWhile
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Algorithm 2 Ant colony optimization algorithm for optimizing the flight trajectory of the
kth UAV.

Input: The city number visited by the kth UAV; MaxIterAnts (Maximum number of
iterations of ant colony optimization algorithm); numAnts (Ant colony numbers).
Output: trajectory of the kth UAV.
1: Initialize the pheromone information τ;
2: while it_A ≤ ACOMaxIts do
3: for each ant=1:K do
4: Solution construction using the pheromone trails;
5: Set of potentially selected cities S (Node number accessed by the kth UAV);
6: Random selection of the initial node i;
7: while S= do

8: Select new node j with probability pij =
τα

ij×η
β
ij

∑k∈Sτα
ik×η

β
ik

;

9: S = S− j; i = j;
10: Endwhile
11: Endfor
12: Obtain the current optimal trajectory;
13: Pheromone solubility volatilization τij = (1− ρ)τij;
14: Update pheromone solubility τiπ(i) = τiπ(i) + ∆ ;

EndWhile

4.1. Adaptive Coordinate Method

Since the data-uploading demand of each node and the flight trajectory of each UAV
both influence the flight time and energy consumption, to ensure the minimum flight time
and the minimum energy consumption of a single UAV among all UAVs, a balance must
be made between the number and locations of nodes visited by UAVs. Specifically, if a
certain UAV chooses to visit the nodes which have relatively high data-uploading demands,
then the UAV may need to reduce the number of nodes to be visited or try to find a short
trajectory for minimizing both the flight time and the energy consumption during the task.
Therefore, we first use the adaptive coordinate method to divide all the N nodes into K
different groups where each group of nodes will be visited by one of the K UAVs. Then, the
ant colony optimization algorithm is applied to plan the trajectory of each UAV for visiting
its assigned group.

The adaptive coordinate method is mainly divided into two stages: the global explo-
ration stage and the local exploration stage. In the exploration stage, more attention is
paid to the search space of the algorithm and more feasible solution regions are searched.
In the development stage, attention should be paid to the local exploration of solution
space, and the local exploration should be carried out near high-quality feasible solutions
to ensure the convergence of the algorithm.

The exploration phase is operated as follows (as shown in Figure 3): K rays are
generated to represent K UAVs (The following assumption of K = 5 is used to illustrate the
algorithm process). Each ray will capture nearby nodes and the captured nodes will be
visited by the corresponding assigned UAV. For the exploration phase, we should answer
the following two questions: (1) How can we generate K rays? (2) How do rays capture
nodes?

First, we divide the coordinate system through angle partition in [0, 2π]. We randomly
generate a starting angle and K− 1 random numbers from a distribution with mean 1

K and
variance 0.05. From the starting angle, we sequentially generate K angles which correspond
to K rays. We use the array θ to record the K angles, which is shown in Figure 4.
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Figure 3. Exploration phase of the adaptive coordinate method.

Start angle

K-1 random numbers with [0-2π]  
normal distribution 1.4812 1.1922 1.2176 1.7246

0.5259 2.0071 3.1993 4.4169 6.1415θ : 

+ + + +

Figure 4. K angles generation schematics.

Secondly, to group the captured nodes, we first assign an angle to each node, which
is the angle of the ray formed by connecting the origin. Then, we determine which two
rays the node is located between (as shown in Figure 3) and calculate the angle α or β
between the node and these two rays. Finally, we use Equations (16) and (17) to calculate
the probability p of the node of being visited by UAV K1 and K2.

x =
α

α + β
. (16)

p = sigmoid(x) =
1

1 + e10(2x−1)
, (17)

where α and β represent the two angles between rays K1 and K2. The probability p is shown
in Figure 5.
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Figure 5. Sigmoid function.

When entering the global exploration stage, we will first select and record the optimal
coordinate angle found in the local exploration stage, and then use this angle for local
exploration. There are two optimization methods in this stage. One is to reduce the
coordinate angle of the previous UAV and increase the coordinate angle of the latter UAV
according to the UAV with the maximum flight time or energy consumption. The other is
to choose the UAV with the minimum flight time or energy consumption, increasing the
coordinate angle of the former UAV and decreasing the latter UAV. Here, the increment or
decrement of the coordinate angle is controlled by Equations (19) and (20).

stepsize =
|TEidx − TEidx+1|

mean(TE)
, (18)

θidx+1 = θidx ± rand() ∗ stepsize ∗ |θidx − θidx+1|, (19)

θidx−1 = θidx ± rand() ∗ stepsize ∗ |θidx − θidx−1|, (20)

where idx represents the number of the UAV that consumes the most or least flight time
and energy consumption while generating the trajectory. stepsize uses the flight time or
energy consumption difference between neighbouring UAVs to control the step size of the
moving angle. |θidx − θidx+1| is adjacent UAVs angle distance.

4.2. The Discussion of the Impact of Flight Speed

When the UAV needs to quickly reach a certain height or speed in a short period of
time, variable speed flight may be more efficient, but if it needs to maintain a certain speed
and height in a long period of time, constant speed flight will save more energy. Therefore,
the impact of variable speed and constant speed on flight energy consumption of the UAV is
closely related to specific tasks, flight distance, speed, height and other factors. In practical
application, in order to balance the relationship between UAV energy consumption and
flight time, various factors such as task requirements and flight environment should be
comprehensively considered. This paper discusses the influence of uniform and variable
speed flight of UAV on the objective function, which will be shown in Section 6.
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5. Comparison Algorithm Design
5.1. Comparison Algorithms and Parameter Setting

All algorithms were run on Matlab of the same computer. The main parameter settings
of UAV in this work are shown in Table 1. Each algorithm runs independently 30 times. In
order to verify the effectiveness of the proposed algorithm, we will describe the parameter
settings of all algorithms in detail below:

(1) UAV trajectory optimization algorithms: Our algorithm was compared with three pop-
ular trajectory optimization algorithms (variation of the ant colony algorithm named
ACO-NODE [38], a genetic trajectory planning algorithm with variable population
size naemd GTPA-VP [39], a novel reinforcement learning based grey wolf optimizer
algorithm called RLGWO [40]). In this section of the experiment, the UAV speed is set
to 10. The parameters of all the algorithms being compared are based on the settings
described in the paper. The maximum number of iterations is set to 1000. However,
this section does not discuss the communication traffic of task nodes.

(2) Multi-objective algorithms: Our algorithm was compared with two advanced multi-
objective methods (multi-objective particle swarm optimization (MOPSO), multi-
objective ant colony optimization-Kmeans (MOACO-Kmeans)). PlatEMO or Github
uploaded the source code of the corresponding algorithms. The common parameters
of these algorithms are shown in Table 2, and some unique parameters are defined
as follows.

Table 1. UAV Parameters Setting.

Symbol Physical Meaning Numerical Value

Ecom Communication energy consumption in J/s 0.05
Ehov Hover energy consumption in J/s 100
/ Search space size in m2 1000 × 1000
b Data transmission speed in mbit/s 50
P0 Blade power, P0 = δ

8 ρsAΩ3R3 14.7517

Pi Induced power, Pi = (1 + k) W
3
2√

2ρA
41.5409

Utip Tip speed of the rotor blade, Utip , ΩR 80

v0 Mean rotor induced speed v0 =
√

W
2ρA 5.0463

d0 Fuselage drag ratio d0 , SFP
sA 0.5009

ρ Air density in kg/m3 1.225
s Rotor solidity, s , bc

πR 0.1248
A Rotor disc area in A = πR2 0.1256
R Rotor radius in meter m 0.2
W Aircraft weight in Newton, g = 9.8 m/s2 7.84
k Incremental correction factor to induced power 0.05
Ω Blade angular speed in r/s 400
SFP Fuselage equivalent flat plate area in m2 0.0079
b Number of blades 4
c Blade or aerofoil chord length 0.0196
m Airframe mass in kg 0.8
δ Profile drag coefficient 0.012
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Table 2. Algorithm Parameters Setting.

Algorithm Fixed Parameters

MOPSO Inertia Weight w = 0.5;
Intertia Weight Damping Rate wdamp = 0.99;
Personal Learning Coefficient c1 = 1;
Global Learning Coefficient c2 = 2;
Mutation Rate µ = 0.1;

MOACO Route selection probability parameter q0 = 0.3;
Heuristic weight parameter β = 1;
Initial pheromone concentration Q = 1;
The pheromone evaporation rate ρ = 0.5;
Number of ants numAnts = 50;
Maximum number of iterations of ant colony optimization
algorithm MaxIterAnts = 100;

MOPSO: This algorithm integrates the flight trajectory and flight speed of UAV into
one objective function. The PMX [49] crossover method is used to optimize the flight
trajectory of UAVs, and the MOPSO operator is used to optimize the flight speed of UAVs
(all UAVs have different flight speeds among different data collection locations). Since the
algorithm has only one layer of iteration, in order to maximize the fairness, the external
iteration is set as MaxIter = 1000 times (at this time, the algorithm basically converges and
increasing the number of iterations will consume computer resources).

MOACO-Kmeans: The algorithm designs the flight trajectory and speed for each UAV
individually. Firstly, the K-means clustering algorithm [50] is utilized to group N nodes into
K clusters, where each cluster is assigned a UAV for the task. Next, the MOACO algorithm
is employed to optimize the optimal path for the K clusters of task nodes and refine the
flight path for each UAV. Subsequently, Vmin and Vmax are divided into 100 segments,
representing 100 different speeds. The time and energy consumption needed for the UAV
to complete the task at these speeds are calculated to optimize the flight time and energy
consumption along the Pareto front. The maximum number of iterations for the outer
trajectory optimization is set to MaxIter = 100.

The proposed algorithm: The flight trajectory and flight speed of UAV are discussed
separately, and the proposed adaptive coordinate method is used to optimize the nodes
visited by each UAV. Then, the optimal trajectory of each UAV is optimized using the ant
colony optimization algorithm. Finally, different uniform speeds are set (all UAVs fly with
the same speed) to optimize the Pareto front for flight time and energy consumption. The
maximum number of iterations for the outer trajectory optimization is set to MaxIter = 100,
and 100 identical speeds are set for the inner speed between 0 and 30.

5.2. Experimental Setting

In reality, the distribution of nodes is random and the data-uploading demand of
each node is different. Therefore, this section discusses the performance of the algorithm
by setting different numbers of nodes and different data-uploading demands of each
node and studies the impact of the number of UAVs, the number of nodes and the data-
uploading demands on UAVs’ energy consumption and task completion time. This article
randomly generates 30 and 50 nodes in a coordinate system, with different data upload
ranges for each node. They are divided into four groups: [0–400], [0–600], [0–800], and
[0–1000]. In fact, the above setting is not a fixed value that researchers can adjust based on
specific environments. We set several feasible values based on the references [30,31,37] to
validate the performance of the algorithm. The number of UAVs dispatched to perform
data collection tasks are set as 3, 5 and 5, 8, respectively. Specific settings are shown in
Figure 6.
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Figure 6. Experimental Setting.

5.3. Evaluation Index

The quality of solution to the multi-objective optimization problem is mainly evaluated
by the quality of the Pareto frontier obtained. Therefore, we consider using hypervolume
(HV) to evaluate the quality of the obtained solution set. Hypervolume index (HV, Hyper-
volume) is defined as follows: The volume of the region in the target space enclosed by the
non-dominated solution set obtained by the algorithm and the reference point. The larger
the HV value, the better the comprehensive performance of the algorithm (the comprehen-
sive performance refers to the convergence and diversity of the algorithm), as shown in
Figure 7. The setting of reference points is crucial to HV calculation, so this work obtains
the maximum values of UAV time and energy consumption among all results as reference
points for HV. This standard evaluates both diversity and convergence measures [51]. HV
is calculated using the following equation

HV = δ
(
∪|S|i=1vi

)
, (21)

where δ represents the Lebesgue measure, which is used to measure the volume. |S| denotes
the number of non-dominated solution sets, and vi depicts the HV formed by the reference
point and the ith solution in the solution set.

Objective 1

O
b
je

ct
iv

e 
2

Hypervolume HV

Solutions

Reference point

Solutions

Reference point

Figure 7. Example in two dimensions about hypervolume.
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6. Simulation Experiment and Result Analysis

This section presents simulation results to evaluate the proposed designs’ effectiveness.
The main parameter setting of the UAV is shown in Table 1. All experiments were run on
Matlab R2020 with an Intel Core i7 6700HQ CPU and 32 GB of RAM.

6.1. Comparison of the Speed in the Same Trajectory

This section focuses on the impacts of comparative speeds on task completion time
and energy consumption of UAVs. One is the uniform speed denoted vu, that is, each UAV
has the same speed during the flight. Given a vu range of (0, 30 m/s], this range is divided
into 100 equal parts, each representing a constant uniform speed value. The other one is
the variable speed denoted vv, that is, each UAV flies among nodes with different speeds.
Given a vv range of (0, 30 m/s], the PSO algorithm optimizes the value of vv. By varying
the values of B and K at different nodes, Figures 8–11 illustrate the impact of two speeds
on the completion time and energy consumption of the UAV during the task, and each
figure displays the UAV’s flight path and the results from 100 and 1000 iterations. It is not
difficult to find out that in the case of variable speeds, the Pareto front surface gradually
approaches the case of setting the average speed with the increment of the number of
iterations. Experiments confirm that this situation is independent of the number of UAVs,
the number of nodes, and the data-uploading demand of each node. Therefore, we believe
that each UAV works better with the same speed. Based on Figures 8–11, it is evident that
PSO converges after 1000 iterations.
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Figure 8. When Nodes = 30, B = [0–400], k = 5, the Pareto front surface is obtained at uniform speed
and variable speed.
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Figure 9. When Nodes=30, B = [0–600], k = 5, the Pareto front surface is obtained at uniform speed
and variable speed.
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Figure 10. When Nodes = 50, B = [0–600], k = 5, the Pareto front surface is obtained at uniform speed
and variable speed.
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Figure 11. When nodes = 50, B = [0–600], k = 8, the Pareto front surface is obtained at uniform speed
and variable speed.

6.2. Comparison Algorithms
6.2.1. UAV Trajectory Comparison Optimization Algorithms

This section compares the proposed algorithm with ACO-NODE, GTPA-VP and RLGWO.
The main aim is to explore the superiority of our algorithm in UAV trajectory optimization.
Since the speed of the UAV is fixed, the trajectory of the UAV is directly proportional to the
energy consumption. To showcase the algorithm’s performance more intuitively, we utilize
the maximum energy consumption of a single UAV as the fitness function. In other words,
we aim to minimize fE in Equation (14).

Figure 12 shows the maximum energy consumption of UAVs with different numbers
of task nodes and different numbers of UAVs. Since we are considering only one objective,
we have abbreviated our algorithm as ACO-ACM. It is evident from Figure 12 that the
proposed algorithm is highly competitive in minimizing the maximum energy consumption
in a UAV swarm compared to other algorithms. For example, when Nodes = 50 and K = 5
in the fourth sub-figure, the maximum energy consumption required for the UAV trajectory
optimized by our algorithm is the lowest throughout the entire iteration process.

6.2.2. Multi-Objective Comparison Algorithms

The optimal Pareto front obtained from running all algorithms 30 times under varying
conditions such as the number of UAVs, data upload requirements and node numbers for
UAVs is displayed in Figures 13–16. The horizontal axis represents the maximum time
required for a single UAV to complete the task among all UAVs, while the vertical axis
represents the maximum energy consumption. The title indicates the number of nodes
visited by the UAVs, the amount of data required for communication between nodes, and
the number of UAVs involved in the experiment. By comparing algorithms, it was found
that the proposed algorithm outperforms the others in minimizing the maximum energy
consumption and time of the UAVs. Moreover, we conducted a quantitative analysis of
the results of 30 experiments. Tables 3–6 show the HV evaluation results of all algorithms
in 30 independent experiments. The reference point’s setting is determined based on the
maximum time and energy consumption required by each UAV to complete the task in the
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30 experiments. The last column of Tables 3–6 displays the HV reference point selection
under different scenarios.
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Figure 12. Comparison of the maximum energy consumption between the proposed algorithm and
three other single-objective algorithms.
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Figure 13. When Nodes = 30, K = 3, the maximum energy and time consumption of a single UAV.
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Figure 14. When Nodes = 30, K = 5, the maximum energy and time consumption of a single UAV.

The superiority of the proposed algorithm over other algorithms is evident from
Figures 13–16. During the exploration phase, the proposed algorithm found more feasible
solutions and carried out high-quality local exploration of the solution space. This resulted
in achieving a better balance between the convergence and diversity of the population
during the search phase. The MOACO-ACM algorithm outperformed both MOPSO and
MOACO-Kmeans for several reasons. Firstly, due to the different data-uploading demands,
other algorithms cannot properly balance the number and locations of nodes visited by
each UAV. Secondly, the two objective functions of task completion time and the maximum
energy consumption of a single UAV among all UAVs are related to the nodes visited by
each UAV, the flight trajectory of each UAV and the flight speed of each UAV. However,
other algorithms do not jointly optimize these factors. Thirdly, when the flight trajectory and
flight speed of each UAV are decision variables of a node visited by each UAV, the algorithm
easily falls into a local optimum.

In addition, when the data upload requirements of each node change, our algorithm
obtains Pareto solutions that are superior to those obtained by other algorithms, and the
maximum energy consumption and task completion time of a single UAV continue to
increase. When the data-uploading demand of each node is small, the UAV can complete
the data acquisition task with only low hover energy consumption and communication
energy consumption. In order to visit nodes with larger data-uploading demands, the UAV
needs to spend longer hover times above the corresponding nodes, which means that the
UAV needs to consume more communication energy and hovering energy to complete
the data acquisition task. This makes the hovering, communication energy consumption
and flight time of UAV increase with the expansion of data-uploading demands. For
example: By observing Table 3, it can be found that when Nodes = 30 and k = 3, the HV
value is about twice that of MOPSO and 1.3 times that of MOACO-Kmeans. At the same
time, it can be seen that the standard deviation of HV of our algorithm is the smallest,
indicating that the more concentrated the value of our algorithm is, the higher the average
representativeness is, and the better the comprehensive performance of the algorithm is.
Similar conclusions can also be obtained from Tables 4–6.
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Figure 15. When Nodes = 50, K = 5, maximum energy and time consumption of a single UAV.
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Figure 16. When Nodes = 50, K = 8, maximum energy and time consumption of a single UAV.

When Nodes = 30, and K = 3 and 5, respectively, it can be found that our Pareto
solution is better than other algorithms, as seen in Figures 13 and 14. When the number
of UAVs increases appropriately, the maximum energy consumption of a single UAV and
the task completion time gradually decrease, because a UAV only needs to visit some
nodes to complete the data acquisition task and does not need to travel between some
ground nodes. At the same time, with the increase of the number of UAVs, the diversity
of trajectory solutions is expanded, which helps to reduce the energy consumption and
flight time of UAVs. By comparing Figures 15 and 16, a similar conclusion can be obtained
when the number of UAVs changes from five to eight when Nodes = 50. It can be seen
from Tables 3 and 4 that when Nodes = 30 and the number of UAVs increases from three
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to five, the HV value of our algorithm is basically reduced by 1.3 times compared with the
other two algorithms. It can be seen from Tables 5 and 6 that when Nodes = 50 and the
number of UAVs increases from five to eight, our evaluation index HV value is about three
times that of MOPSO and higher than that of MOACO-Kmeans.

As can be seen from Figures 14 and 15, when the number of nodes is different, our
Pareto solution is superior to other algorithms, because when the number of UAVs is fixed,
the energy consumption and flight time of UAVs will increase with the increase of nodes
to be visited. This is because the number of UAVs is fixed, but they need to visit more
ground nodes in turn to complete the system data acquisition task, which means that the
UAV may have to fly longer distances, which also consumes more flight energy and longer
task completion time. In addition, as the number of ground nodes increases, UAVs need
to spend more hovering energy consumption and communication energy consumption.
Therefore, the more ground nodes, the larger energy consumption and the longer task
completion time. By comparing Tables 4 and 5, it can be seen that when B = [0–400] and
the number of nodes changes from 30 to 50, the HV value of our algorithm and MOACO-
Kmeans is about four times the original value and the HV value of MOPSO is twice the
original value.

Table 3. The Supervolume Evaluation Table of 30 Experiments of the Algorithm.

HV (Nodes = 30, K = 3) MOPSO MOACO-Kmeans MOACO-ACM Reference Point Z*

B = [0–400]
Mean 1.02 × 107 1.53 × 107 2.05 × 107

[1.23 × 103, 1.06 ×105]Std 2.42 × 107 3.89 × 104 1.40 × 106

B = [0–600]
Mean 8.37 × 106 1.56 × 107 1.99 × 107

[1.27 × 103, 1.10 × 105]Std 2.08 × 106 8.33 × 105 8.87 × 105

B = [0–800]
Mean 7.42 × 106 7.93 × 106 1.86 × 107

[1.67 × 103, 1.39 × 105]Std 2.18 × 106 9.28 × 105 1.28 × 106

B = [0–1000]
Mean 1.05 × 107 1.16 × 107 2.15 × 107

[1.59 × 103, 1.29 × 105]Std 3.00 × 106 4.12 × 105 1.26 × 106

Table 4. The Supervolume Evaluation Table of 30 Experiments of the Algorithm.

HV (Nodes = 30, K = 5) MOPSO MOACO-Kmeans MOACO-ACM Reference Point Z*

B = [0–400]
Mean 6.04 × 106 1.10 × 107 1.19 × 107

[8.95 × 102, 7.28 × 104]Std 1.31 × 106 2.01 × 105 5.10 × 105

B = [0–600]
Mean 4.65 × 106 8.04 × 106 9.56 × 106

[9.29 × 106, 7.01 × 104]Std 1.45 × 106 9.25 × 104 7.91 × 105

B = [0–800]
Mean 3.66 × 106 8.60 × 106 8.42 × 106

[1.13 × 103, 9.09 × 104]Std 8.52 × 105 5.15 × 105 5.79 × 105

B = [0–1000]
Mean 4.39 × 106 6.34 × 106 8.62 × 106

[1.05 × 103, 8.52 × 104]Std 1.22 × 106 5.56 × 105 5.53 × 105

Table 5. The Supervolume Evaluation Table of 30 Experiments of the Algorithm.

HV (Nodes = 50, K = 5) MOPSO MOACO-Kmeans MOACO-ACM Reference Point Z*

B = [0–400]
Mean 1.25 × 107 4.09 × 107 4.08 × 107

[1.49 × 103, 1.30 × 105]Std 1.10 × 107 3.37 × 107 3.37 × 107

B = [0–600]
Mean 5.19 × 106 2.18 × 107 2.48 × 107

[1.66 × 103, 1.20 × 105]Std 4.88 × 106 1.80 × 107 2.05 × 107

B = [0–800]
Mean 6.59 × 106 2.56 × 107 2.78 × 107

[1.73 × 103, 1.45 × 105]Std 6.11 × 106 2.13 × 107 2.29 × 107

B = [0–1000]
Mean 5.73 × 106 1.84 × 107 2.74 × 107

[1.89 × 103, 1.43 × 105]Std 5.28 × 106 1.57 × 107 2.27 × 107
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Table 6. The Supervolume Evaluation Table of 30 Experiments of the Algorithm.

HV (Nodes = 50, K = 8) MOPSO MOACO-Kmeans MOACO-ACM Reference Point Z*

B = [0–400]
Mean 4.17 × 106 1.29 × 107 1.43 × 107

[1.14 × 103, 7.61 × 104]Std 3.74 × 106 1.07 × 107 1.19 × 107

B = [0–600]
Mean 5.68 × 106 1.47 × 107 1.73 × 107

[1.20 × 103, 1.01 × 105]Std 4.94 × 106 1.21 × 107 1.43 × 107

B = [0–800]
Mean 3.40 × 106 1.01 × 107 1.25 × 107

[1.35 × 103, 9.58 × 104]Std 3.21 × 106 8.49 × 106 1.04 × 107

B = [0–1000]
Mean 5.71 × 106 1.22 × 107 1.48 × 107

[1.45 × 103, 1.04 × 105]Std 5.06 × 106 1.02 × 107 1.24 × 107

7. Conclusions

In this work, the optimal energy and delay tradeoff in multi-UAV enabled WSNs was
studied. The energy consumption model of rotary-wing UAV during a data acquisition task
was analyzed. On this basis, the maximum energy consumption of a single UAV among all
UAVs and the task completion time were both minimized. Firstly, we proposed an adaptive
coordinate method to optimize the nodes to be visited by each UAV. Secondly, the ant
colony optimization algorithm was applied to plan the trajectory of each UAV. Finally, we
set different uniform speeds to optimize the Pareto front for achieving the optimal tradeoff
between the maximum energy consumption of a single UAV and the task completion time.
Numerical results validated the effectiveness of the proposed MOACO-ACM algorithm
and reveal the importance of flight speed in achieving both the time-efficient and energy-
efficient data collection.

Although the proposed method discusses many real-life situations, there are still
some deficiencies. For instance, several factors in real life can affect UAV flight, such as
weather conditions, UAV flying altitude, battery power attenuation, and others. Therefore,
in the future, we can aim to simulate the actual situation more accurately by considering
acceleration and deceleration scenarios, incorporating local wind speeds, and so on.
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