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Abstract: Unmanned Aerial Vehicles (UAVs) are increasingly utilized for urban patrol and defense
owing to their low cost, high mobility, and rapid deployment. This paper proposes a multi-UAV
mission planning model that takes into account mission execution rates, flight energy consumption
costs, and impact costs. A kinematics and dynamics model of a quadcopter UAV is established, and
the UAV’s flight state is analyzed. Due to the difficulties in addressing 3D UAV kinematic constraints
and poor uniformity using traditional optimization algorithms, a lightning search algorithm (LSA)
based on multi-layer nesting and random walk strategies (MNRW-LSA) is proposed. The convergence
performance of the MNRW-LSA algorithm is demonstrated by comparing it with several other
algorithms, such as the Golden Jackal Optimization (GJO), Hunter-Prey Optimization (HPO), Pelican
Optimization Algorithm (POA), Reptile Search Algorithm (RSA), and the Golden Eagle Optimization
(GEO) using optimization test functions, Friedman and Nemenyi tests. Additionally, a greedy strategy
is added to the Rapidly-Exploring Random Tree (RRT) algorithm to initialize the trajectories for
simulation experiments using a 3D city model. The results indicate that the proposed algorithm
can enhance global convergence and robustness, shorten convergence time, improve UAV execution
coverage, and reduce energy consumption. Compared with other algorithms, such as Particle
Swarm Optimization (PSO), Simulated Annealing (SA), and LSA, the proposed method has greater
advantages in addressing multi-UAV trajectory planning problems.

Keywords: lightning search algorithm; multi-layer nesting strategy; path planning; quadcopter UAV;
urban patrol

1. Introduction

In the era of 5G and the upcoming 6G, the demand for UAVs in public safety and
other fields is increasing. UAVs equipped with infrared thermal dual-light cameras play an
important role in smart city aerial intelligence, providing a practical solution for large-scale
urban patrols. Smart city aerial intelligence is a feasible and cost-effective solution to
address the challenges of large inspection and supervision areas, heavy inspection tasks,
and limited frontline inspection staff in the process of urban governance, reducing potential
safety hazards and illegal incidents [1]. Multi-UAV coordinated trajectory planning for large
urban patrols is crucial in the process of autonomous patrol tasks performed by multiple
UAVs and directly impacts the efficiency of patrol missions. It is the key to autonomous
patrol tasks performed by UAVs [2].

The use of UAVs encompasses a wide range of applications, such as monitoring
tasks [3], logistics distribution [4], warehousing [5], and industrial [6] operations, among
others. At this stage, although there has been much research on UAV patrols [7], efficient
UAYV patrol path-planning algorithms in cities are almost missing. Yao et al. [8] developed
a new algorithm based on disturbing fluid and trajectory propagation to solve the problem
of UAV’s three-dimensional path planning in a static environment. Xia et al. [9] established
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a trajectory optimization model based on uniform time intervals and proposed a gradient-
based sequential minimum optimization (GB-SMO) algorithm to solve the UAV planning
problem. Gao et al. [10] also studied trajectory planning for battlefield missions based on
the war environment, based on the improved RRT algorithm, with the shortest trajectory
and the shortest planning time as the goal. The above studies have carried out useful
explorations on multi-UAV trajectory planning based on various backgrounds; however,
none of them involve the field of urban patrol. Further, Wang et al. [11] proposed a heuristic
algorithm for urban road network surveillance tasks to study multi-aircraft trajectory
planning for rotary-wing UAVs. In addition, Zhang et al. [12], based on the urban mission
background, aimed at the problem that UAV flying in the urban environment posed a
greater threat to pedestrians and public property and established a mathematical model of
UAV trajectory planning with the introduction of risk assessment. Further, they proposed
an improved ant colony algorithm for optimal trajectory planning and achieved certain
results. Na et al. [13], on the other hand, focused on 3D path optimization and real-time
obstacle avoidance of UAVs based on the urban context. Munoz et al. [14] instead focused
on the formation control of UAVs in cities. Wang et al. [15] also studied UAV flight planning
based on the urban environment and hybrid strategy to ensure the smooth progress of
urban flight. In addition, there is still much research on UAV trajectory planning based on
the urban environment [16,17]. The above studies have all made significant contributions
to the field of urban patrol. However, their research objectives are limited to the shortest
trajectory and the maximum safety factor, task completion rate, and other issues.

Involving the UAV trajectory planning algorithm, Dai et al. [18] used the genetic algo-
rithm to plan the path of the UAV in small-scale trajectory planning problems. Yuan et al. [19]
added pheromone and heuristic functions to the traditional particle swarm algorithm to
realize the path planning of UAVs. He et al. [20] proposed a novel hybrid algorithm called
HIPSO-MSOS by combining Improved Particle Swarm Optimization (IPSO) and Modified
Symbiotic Search (MSOS). There are also methods based on the mixed integer linear pro-
gramming (MILP) method [21], the hybrid genetic and A* algorithm [22], the improved
CSA algorithm [23], the PIOFOA algorithm [24], etc. However, these methods are not
applicable for multi-UAV trajectory planning under multiple constraints, as it is difficult to
find an optimal solution. The biological heuristic algorithm is widely used in large-scale
optimization problems, such as multi-aircraft cooperative trajectory planning, due to its
excellent characteristics [25-27]. Sun et al. [28] used the bat algorithm to optimize UAV
mission planning. Duan et al. [29] proposed a dynamic discrete pigeon-inspired optimiza-
tion algorithm based on multi-UAV coordinated trajectory planning in a three-dimensional
environment. Jain et al. [30] used the multi-universe algorithm to research UAV trajectory
planning in a dynamic environment. The above research on various UAV trajectory plan-
ning algorithms has carried out a useful exploration to optimize UAV trajectory with certain
reference significance. The lightning search algorithm [31], a new biological heuristic al-
gorithm, has the advantages of a simple structure and a short calculation time. However,
when applied to the three-dimensional trajectory planning of UAVs, the search accuracy is
low, and it is easy to fall into optimal local values, resulting in the problem of algorithm
premature convergence. Therefore, this paper aims to improve the shortcomings of the
lightning search algorithm, which are that it is easy to fall into the local optimum and the
uniformity is not good enough.

Based on the studies mentioned above, this paper aims to establish a multi-rotor
UAV-coordinated mission planning model for urban patrol. The model incorporates a
multi-objective function that considers the least impact cost of UAVs, the shortest UAV
flight energy consumption cost, and the highest UAV mission execution rate. This paper
introduces a multi-level nesting strategy and random walk strategy to improve the global
search ability and convergence accuracy of the lightning search algorithm (LSA). Further-
more, the improved algorithm is combined with the RRT algorithm, which introduces the
greedy strategy to overcome the problems of falling into the optimal local solution and slow
convergence speed when solving the trajectory planning problem. Finally, a real patrol en-
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vironment based on a satellite image of a specific location in Beijing is established to verify
the effectiveness of the proposed multi-rotor UAV urban patrol mission trajectory planning
program. The simulation results show that the proposed algorithm has fast convergence
speed and high accuracy compared with LSA and other algorithms. It can efficiently plan
the trajectory for UAVs performing urban patrol tasks, thereby improving the urban patrol
efficiency of the multi-rotor UAV. The UAV to perform patrol tasks schematic is shown
in Figure 1.

The remainder of this paper is organized as follows. The urban environment model,
UAV cost model, etc., are built in Section 2, modeling of UAV mission planning, which
introduces the concept and necessity of urban patrol. Urban environment modeling estab-
lishes the environment model of the city. Trajectory cost modeling establishes the UAV cost
model for urban patrol. Quadrotor UAV system modeling is built in Section 3, quadrotor
UAV system modeling. The improvement strategy of the RRT algorithm and the process
and improvement based on the lightning search algorithm is described in Section 4, al-
gorithm description based on multi-layer nesting and randomized swimming strategy.
The simulated data and graphs are shown in Section 5, simulation results. Simulation
results conduct experimental simulations by the improved RRT algorithm. The conclusion
draws conclusions. Finally, the conclusions and contributions of this paper based on the
simulation results are in Section 6, conclusions and future research.
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Figure 1. The UAV to perform patrol tasks schematic.
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2. Modeling of UAV Mission Planning

In this section, the mission description of UAV city patrol is first introduced, then
the environmental model is established, and a multi-UAV mission planning model that
considers UAV mission execution rate, flight energy consumption cost, and impact cost
are developed.

2.1. Problem Description

As smart cities move towards high-quality construction and development, the demand
for intelligent information control is increasing. UAVs can conduct comprehensive surveys
and maps of urban management effects at different times, providing the government with
accurate and objective bases for urban management. The specific tasks of UAV patrol
operations in large cities are as follows: Each UAV departs from the same center and
returns to the center after completing all missions, flying according to the established
planned route and not accepting new mission assignments. The urban environment is
complex, with many pedestrians and vehicles, and a crash can cause damage to pedestrians
and vehicles. Therefore, it is necessary to ensure that all patrol tasks are carried out under
the premise of the minimum danger to the public in the event of a crash and with the
shortest trajectory as the goal. Ultimately, a flight path with full coverage of the patrol area
is planned for multiple UAVs.

2.2. Urban Environment Modeling

In a complex and dense urban environment, UAV patrols encounter a wide variety of
obstacles, unevenly distributed and restricted by the complex constraints of the airspace
environment. Three-dimensional environment modeling solves the prerequisite of UAV
path planning. To improve the efficiency of UAV planning, create a simplified modeling
diagram of the city’s three-dimensional space. Simplify various obstacles into rectangular
bodies, and perform environmental modeling after simplifying all buildings, just like
Figure 2. All buildings are avoidance areas for UAVs to fly, and the plane coordinates of
the y—th building are expressed as (x1,¥1), (x2,42), .-, (xg,, ¥p, )- The height is expressed
as hy, By and it is the number of plane coordinates of 7y building coordinates. Where
v € (1,n), n is the number of buildings. Avoidance area constraints of ground UAVs are

i( (x1,51,0), (x2,42,0), - . (xp,, Yy, 0) ) 1)

S\ Gy o), (2,0, 1), (i, Y )

400 m

300m X (m)

Figure 2. Example map of urban 3D environment modeling.

2.3. Trajectory Cost Modeling

Building upon the mathematical model proposed by Zhang et al. [8], this paper
introduces a cost-effectiveness ratio of UAVs equipped with infrared thermal dual-light
cameras to enhance urban patrols’ efficiency and minimize energy consumption. It should
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be noted that the assumptions in this study are limited to urban architectural environments
and do not account for geographical features, such as mountains and basins. The UAV
impact cost formula is presented below:

R= f,CT + fiopzr—, @)
max
The UAV impact cost formula includes several variables. R represents the impact
cost of the UAV in case of a fall. f, denotes the reliability factor of the UAV. C reflects the
density of vehicles per unit area while pp represents the density of population per unit
area. T indicates the death rate of the population due to car accidents. Hmax and & are the
highest-flying height and true flying height of the UAV, respectively.
The formula for UAV flight energy consumption cost with e representing the energy
consumed per unit distance of flight is presented below:

Ec= €2<\/(xi — xi—1)2 + (yi — yi_1)2 + (z,- — zl-_l)z), 3)

2.4. UAV Mission Execution Rate

The infrared thermal dual-lens camera is equipped with a 25 mm lens, 90° infrared light,
and a shooting angle of 90°, with the best observation distance being between 50-100 m.
The objective is to maximize the patrol area of each UAV while minimizing the repetition
rate of patrols. The patrol area of each UAV is presented below:

S; = 2Lh; tan(%), 4)
where [; is the track length of each UAV. I; is the flying height of each UAV. S is the
maximum coverage angle that the UAV equipped with the camera can shoot on the vertical
plane. Where J; represents the track length of each UAV, k; denotes the flying height of each
UAV, and « indicates the maximum coverage angle that the camera-equipped UAV can
capture on the vertical plane.

s=Ys, ®)
0,u > 2u,
Piiy1= {méouou,u < 2uy’ (6)

where P; ;|1 represents the patrol repetition rate of the two UAVs, u is the flight distance
between the two UAVs, and u, is defined as the minimum distance between any two UAVs
to avoid repeated patrols.

P=Y D, 7)
Therefore, the objective function is as follows:
minf = RESCP, (8)

This is expressed as the lowest impact cost and UAV flight energy consumption cost,
the largest patrol area, and the lowest UAV patrol repetition rate in the route from departure
to return when multiple UAVs are dispatched for urban patrol missions.

2.5. Restrictions

Based on the three-dimensional city map established in Section 2 and the trajectory ob-
jective function established in the previous section, the following constraints are formulated.
UAV flight range constraints. UAV patrols are restricted by relevant legal supervision
and other factors, and there are space restrictions on patrol areas. Let Xmin, Xmax, Ymin, Ymax,
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Zmin, and Zmax be the minimum and maximum spatial locations that the relevant laws allow
UAVs to reach. The constraint is expressed as the following:

Xmin < Xi < Xmax

Ymin < Yi < Ymax (9)
Zmin < Zi < Zmax

where Xmin, Xmax, Ymin, Ymax, Zmin, and zmax are the space limits for UAVs to perform
patrol missions.

Limitations of UAV flying height. There exists a minimum flight height /i,;, and a
maximum flight height limax for UAV manufacturing specifications to ensure flight safety
when performing patrol tasks, which are constrained to be expressed as the following:

hmin < hi < hmaXr (10)

UAV range restrictions. The energy carried by UAVs is limited, and there is a maximum
range limit. Let Enax be the maximum energy the UAV possesses before taking off. The
constraint is expressed as the following:

EC S Emax/ (11)

Patrol area coverage limit. When the UAV performs a patrol mission, subject to the
mission requirements, the UAV patrol coverage area S needs to be larger than the other
mission requirements.

According to the patrol mission requirements, the minimum patrol area is defined as
S¢. The corresponding constraint can be expressed as the following;:

S Z SC/ (12)

UAV navigation angle constraints are shown below:

Ig. — cos~ 1 { X1 XiXiXi 1 TYit1YiYiVi-1 }
;=

\/xi+1xi2+xixi—12\/yi+1]/i2+yiyi—12 (13)
(zi = zig1)
0 S /31' S ,Bmax/ (14)
— tan—! |zi—zi_1]
: [\/(xixil)zﬂyiyil)z (15)
(zi # zig1)
0 < i < tmax, (16)

In Equation (13), B; is the turning angle at position (x;, y;, z;). When the UAV performs
a turning operation, it satisfies z; = z;;1. Equation (14) is the turning angle constraint of
the UAV, where Bmax is the maximum turning angle of the UAV. In Equation (15), y; is the
climb angle at position (x;, y;, z;). When the UAV is performing a climb operation, z; # z;1.
Equation (16) is the climb angle constraint of the UAV, where pimax is the maximum climb
angle of the UAV.

3. Quadrotor UAV System Modeling

In this section, kinematic models and kinematic models are established for the flight
state of quadrotor UAVs to conduct mechanical analysis of UAVs in performing tasks and
ensure the integrity and science of UAV mission planning.
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3.1. Quadrotor UAV Kinematic Model
O¢ XY Z, denotes the inertial coordinate system of the UAV, O, X} Y}, Z;, denotes the

body coordinate system of the UAV, and Py = [x, Y, z] T is the position vector of the UAV in
the inertial coordinate system with roll angle ¢, pitch angle 6, and deflection angle . The
rotation matrix from the body coordinate system to the inertial coordinate system is Ry:

cosfcosp —singsinfsiny —cos@siny  sinfcosy + sin ¢ cos O sin P
Ry = cosfsinyp +singsinfcosyp  cos@cosyp sinfsiny —singpcosbcosy |, (17)
—cos @sinf sin ¢ cos ¢sin 6

The velocity vector of the UAV center of mass at Oy XY, Z, is denoted as vy and the angular
velocity vector is (), and the roll angle ¢, pitch angle 6, and deflection angle i are denoted
by ©.

©=1[g,0,9]", (18)

The relationship between the angular velocity vector in the inertial coordinate system

and the three angles of roll angle ® = W(), pitch angle ¢, and deflection angle 6 is expressed
by the equation .
cos@ 0 —cosgsinf
W= 0 1 sin @ , (19)
sinf 0 cosgcos®

Define the augmented state variables of the UAV system as
q =[P, ®,a]" € R*P, (20)

where & = [aq, a7, ... Dép]T € RP, a; are the angles i of the joints of the UAV system, and
p are the degrees of freedom of the UAV system so that the kinematic equations of the
UAV are

Pg = [I3x3, 033, Opxpld, (21)
Q= [O3><3/ Wr OPXP]Q/ (22)

where, I,x; denotes the n x n-dimensional unit matrix and O,,«, denotes the n x n-
dimensional zero matrix. The quadrotor UAV system and coordinate system are shown
in Figure 3.

F, F> 9

Figure 3. Quadrotor UAV system and coordinate system.
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3.2. Quadrotor UAV Dynamics Model Building

Transformation matrix R(®), R(®) = R;(¢)R,(#)Ry(¢) for UAV conversion from
airframe coordinate system to geodetic coordinate system.

cosyp sinyp 0| | cos@ 0 sinf| |1 0 0
Rz(¥)Ry(0)Rx(¢) = | —siny cosyp 0 0 1 0 0 cosg sing|, (23)
0 0 1| |—sin® 0 cosf| |0 —sing cosg

cosflcosyp cosysinfsing —sinypcosg cosypsinf cos ¢ + sinypsin @
R(©) = |cosfsiny sinysinfsing+ cospcose sinyPsinfcos g —cosyPsing|, (24)
—sinf cos fsin ¢ cos 6 cos ¢

Based on Newton's second law and the law of angular motion, it follows that

d
F= E(mv) = ma, (25)
T=lw, (26)

where m is the mass of the UAV, g is the linear acceleration of the UAYV, F is the combined
force of gravity and tension of the UAV, T is the torque of the UAYV, I is the rotational inertia
of the UAV, and w is the attitude angular velocity of the UAV.

Substituting the relationship between the lift and gravity of the UAV into Equation (25),
the x, y, z directions of the UAV are represented in the inertial coordinate system as

0 0 X
R -1 0 =m| y |, (27)
f mg z
X = %(cos P sinf cos @ + sin P sin @), (28)
y= %(sintﬁsin@cosgo —cossing), (29)
z= i(cochos ®)— g (30)
m

The Eulerian angular moment of a UAV can be obtained from the Eulerian metric
equation Mt = Iw + w x Iw for a rigid body as

T Le 0 07| ¢ ¢ Le 0 07 ¢
B | =0 Iy Of[ 6 [+]6[x|0 L ofle]| G
Ty 0 0 ILz| ¢ P 0 0 Lz| ¢y
. o V2 2 2 2 2
¢ =Tp/Lix + 0P (Lyy — Lz)/Iux = TdCT(wl —wy — w3+ wi)/ Ly, (32)
; > V2 2 2 2 2
0 =19/lyy + QP(Lzz — Lux) /Ly = 7dcT(w1 + w5 — w3 —wy)/ Ly, (33)
¥ = Tp/ Lz + ¢0(Lex — Lyy) / L = cpp(w? — w3 + w} — wd)/ L, (34)

Therefore, the lift force of the UAV can be expressed as

f=cr(wi +wj; + w3 +wy), (35)
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w% _ 1| er— V2der V2der — ey Ty (36)
wi | 4| cr —V2der —2der ey T |
wy cr V2der  —V2der  cpm Ty

where, w;(i = 1,2,3,4) denotes the rotational speed of the four rotors of the UAV, cr
denotes the constant, d is the distance between the center of the UAV and the center of
the motor, Iy, Iy, Iz denotes the rotational inertia in the direction of the x, y, z position,
Ty, Tg, Ty denotes the 1 roll angle moment, pitch angle moment, yaw angle moment, and
¢y is the constant.

4. Algorithm Description

This section proposes two improvements to the RRT algorithm for UAV trajectory
planning. Firstly, the greedy strategy is integrated into the RRT algorithm. Secondly, the
lightning search algorithm is enhanced by introducing multi-layer nesting and random walk
strategy, which is combined with the improved RRT algorithm for UAV mission planning.

4.1. RRT Algorithm Optimized by Greedy Strategy (GP-RRT)

The RRT algorithm is currently considered the most advanced method for UAV path
planning. It is particularly effective in navigating unexplored areas with ample space and
few obstacles. However, due to its exhaustive search approach, it may not be suitable
for directing UAVs to specific points. Therefore, to improve exploration efficiency and
avoid blind search, we propose a greedy strategy that modifies the exploration path. This
approach reduces exploration time, shortens the search path, and eliminates the search for
unproductive blank areas.

4.1.1. Impact Checking

To prevent UAVs from colliding with 3D terrain, set the collision detection rules
according to the terrain as follows:
true, Xnew ~= Xarc
7
{ false, else ’ (37)

where the output is true for no collision and false for a collision with the building. x;eq
represents a new location node and x,,. represents a set of location points where the
building is located.

4.1.2. Greedy Policy Detection

Simulation experiments are required to solve and validate the established model. The
model includes limits on the mission execution rate and calculates the patrol repetition rate
between UAVs. An optimization algorithm is used to obtain the optimal path of the UAV.
In the context of RRT, if the initial path is generated using the traditional algorithm, the
direction of optimization can be too large, making it difficult to quickly and efficiently find
a better path. To address this issue, we propose using the sampling points of the target
paranoid function for optimization while also adjusting the probability of the new node
location to avoid invalid searches. In addition to the greedy strategy, we also incorporate
a local expansion mechanism. This mechanism involves removing new nodes within the
already traversed area in the existing node region. By doing so, we further enhance the
optimization of the greedy strategy. The formula for updating nodes is as follows:

{ Xtree = Xnew, dif ference(X father, Xgoar) > dif ference(Xrand, Xgoal) (38)
Xtree = xfatherrelse ’

The improvement strategy steps are as follows.
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Step 1: randomly expand the tree to generate a new node Xy

Step 2: perform collision detection.

Step 3: If there are no obstacles, perform greedy policy detection. If the greedy rule is
met, add Xyep tO Xpree. If the greedy rule is not met, return to Step 1.

Step 4: If there is an obstacle, connect x,¢, to the parent node x ¢4y, Divide the line
segment into 2 equal parts, mark it as xpe, and return to Step 2.

Step 5: Repeat Steps 14 until reaching the target point.

The output includes the detection results for collision detection state, the result of
collision detection statecp, and the result of greedy detection states, as well as the number
of iterations n. The pseudocode of the algorithm is shown in Figure 4.

Input : x_ X

goal >“*init

Result : A Path T from x,

init

to X,

fori=1tondo

X g < Choose Target(x, ,xgoal);

1
state., < Collision Detection(X .4 »X puner )5
while state == true

x_. < Equally Divide(X,_, X;.0 )

pre
state., <« Collision Detection(X ;X e )
else
state; <« Greedy(x,,, X coal X father );
while state, == true
xtree < Xnew;
else
break
end
end
X, ==X, then

success();

Figure 4. Pseudocode of GP-RRT.
The schematic diagram of the process is shown in Figure 5.

4.2. Lightning Search Algorithm Based on Multi-Level Nesting and Random Walk Strategy
(MNRW-LSA)

In the field of multi-UAV path planning, there exist numerous optimization algorithms
to solve such problems. However, the key challenges in the UAV trajectory cost model
are the coverage rate and repetition rate, which are more difficult to address. Multi-UAV
collaborative patrol tasks are complex and involve issues such as information interaction
and path prioritization. It is essential for the individuals involved to possess diverse
properties to enhance the effectiveness of the optimization algorithm. We suggest utilizing
an enhanced version of the lightning search algorithm (LSA) to resolve the model. LSA
mimics the natural occurrence of lightning discharge in the environment. According to the
lightning conduction mechanism, there are three types of discharges: transient, spatial, and
guided. Each type has unique discharge characteristics, and their probabilistic and detour
characteristics can be utilized to optimize individual space.
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Figure 5. UAV path coding—decoding diagram.

This paper introduces a solution to the problem of weak random performance and low
traversal coverage in the spatial search of an individual gradient optimization mechanism.
The proposed solution involves implementing random touring based on the original
algorithm and performing multi-layer nesting operations to achieve end re-optimization.
A lightning search algorithm based on multi-layer nesting and random touring strategy is
proposed as a way to complete the solution of the model.

4.2.1. Algorithm Principle
Transient Discharger

A transient discharger is a random-direction discharge body. Therefore, it can be con-
sidered a random number obtained from the standard uniform probability distribution on
the open interval of the solution space—these dischargers whose positions satisfy the prob-
lem to be optimized. Generate an initial population that obeys a uniform distribution, and
the population size is N. The probability density function of standard uniform distribution:

1/b—a,a<xT <b

Ty _ ;A XS

fx7) = { 0, otherwise ' 39
where xT is a random number that can provide a candidate solution. a and b are the lower

and upper bounds of the solution space.
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Spatial Discharger

Transition dischargers form the next channel. Let the position of the spatial discharger
be PS = {PS , PZS Lo, Pﬁ,} Randomly generated numbers using an exponential distribu-
tion function with an exponential distribution probability density function:

S
S )\67/\’( , xS 2 0
= , 40
fx) { 0, otherwise (40)

x% represents the position of the space discharge body and represents the solution in
the calculation formula. The position of the spatial discharger or the direction of the next
iteration can be controlled by the shape parameter A. PZ.S at the i 4- 1 iteration position can
be described as the following:

P? o = PP M), (41)

i_new

where e/™4(Ai) g exponential random numbers, and if Pis is negative, then the resulting

random number should be subtracted because Equation (40) only provides positive values.

However, the new position PiS new does not guarantee channel formation unless Pl-S new

is a better solution. If Pl.S 1ew PTOVides a better solution in the next step, then Pl.S will be

updated to P? , otherwise it will remain unchanged. If P?  is better than the current

iteration, then the spatial discharger becomes guide discharger.

Guide Discharger

Randomly generated numbers using a normal distribution with a normal distributions
probability density function:

1 ek’
V2ro

e 2, (42)

The randomly generated guide discharger can be searched in all directions from the
current position defined by the shape parameter, and its mining capacity can be defined
by the scale parameter. u and ¢ represent the shape parameter and scale parameter in
the normal distribution, respectively. The shape parameter ¢ of the induced discharge Pt
exponentially decreases as it advances toward the Earth or finds the optimal solution. The
position of the guide discharge P! at the i + 1 iteration can be described as the following:

fxt) =

Pt .. = Pt 4 normrand(u*, o), (43)

The basic lightning search algorithm steps are as follows.

Step 1: initialize the parameters, and set the number of races N, the maximum number
of iterations M, and channel time T.

Step 2: initialize the transition discharger and calculate the fitness value of the discharger.

Step 3: update the fitness value of the guide discharger.

Step 4: update the best and worst transition dischargers and record the channel time.

Step 5: if the maximum channel time is reached, the worst channel is eliminated, and
the channel time is reset to zero.

Step 6: update the conduction time and the fitness value of the discharger, and generate
the spatial discharger and the guide discharger.

Step 7: update the transition discharger.

Step 8: If the maximum number of iterations is reached, the best discharge body is
output; if the maximum number of iterations is not reached, return to Step 2.
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4.2.2. Multi-Level Nested Synchronization Optimization Mechanism

In this study, we propose a multi-layer nested synchronization optimization mecha-
nism to address the challenge of optimizing the paths of multiple UAVs during collaborative
patrols. While it is relatively easy for UAVs to exchange information with each other, opti-
mizing the coverage, cost, and repetition rate of each UAV patrol is a complex task. Our
approach considers these factors and aims to find an optimal solution. The algorithm has
been optimized by storing the optimized and unoptimized parts in separate spaces. This
approach is superior to traditional optimization methods and makes the algorithm more
effective in solving the model.

In the above at Step 5, if the renewal of the transient discharge body is not completed
within the maximum conduction time, the time channel is eliminated. However, at the
maximum conduction time, the transient discharge body of this time channel is superior
to that of any other time channel. This paper utilizes a multi-level nesting operation in
Step 5 to enhance the performance of the algorithm to prevent the loss of a more efficient
discharge channel.

The implementation steps are as follows.

Step 1: put the location, X, of the discharge body in the time channel eliminated in
Step 5 into the additional generated storage space.

Step 2: Randomly select the position of the discharge body in other time channels. If
its position is better than x, the time channel will be eliminated.

Step 3: If x is better than the randomly selected discharge body position, the time is
reset to zero, but the time channel is not eliminated.

The algorithm’s pseudo code is shown in Figure 6.

Input : N, M, T
Result : fit, curve
fori=1tondo
Dpoint,,, <« fitness(x,,;,)
x, <« Preferential(Dpoint )
ift>=T
Xpa < Area(X,.,);
X g = Xigg
Xpq < NaN;
else
[Area] « x,,;
end
t « 0;
else
fit,, = fitness(x,);
fity, = fitness(xg,);
if Ep <Ed
Xeurent = Xp>
else
state, = Bifurcation();
if state, == ture
[P1,P2] <« Passageway(statey);
Bad(P1,P2) <« NaN;
X < Best(P1,P2);

new

end
if m == M then
success();

Figure 6. Pseudocode of MNRW-LSA.
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4.2.3. Random Walk Strategy

After obtaining the initial path using the improved RRT algorithm, direct path op-
timization often leads to duplicated patrol paths and a high repetition rate. However,
utilizing the random touring strategy can effectively expand the search space and increase
path diversity while still optimizing the path.

The discharge body obtained in Steps 5-7 does not have a definite time channel. In
Step 8, if the maximum number of iterations is not reached, the conduction time will be
increased, and the next cycle will be entered. This will disperse the positions of the better
individuals. This paper proposes using a random walk strategy to concentrate the better
discharge bodies and optimize their channels to address this. The set with the largest
number of optimal discharge bodies is the most optimized area.

The position of the random walk strategy is updated as follows:

x'i(m) = xi(m) + e(xj(m) — x(m)), (44)

where x;(m) is the i-th solution of the m-th generation. x;(m) and x(m) are two random
solutions of the m-th generation. m is the scaling factor, and its range is € ~ U(0, 1).
The flow chart of the MNRW-LSA algorithm is shown in Figure 7.

Set the number of
populations /N, the
maximum number of
iterations M, and the
channel time 7

!

Calculate the fitness . -
value of the discharge Initialize transient
body discharge body
l Update the best and
Update the fitness worst transient
value Ed of the guide discharge body
discharge body The worst channel enters
the waiting space, and e worst channel}
channels of other better than the
dimensions are randomly andom channel}
selected
Update direction and v
fitness value of space [+—] Zero channel time
_djiv.hm‘gf_b.o.dy_
. Generate space Eliminate the worst N
discharge body and lead hannel
discharge body Ep channe
Y
Calculate the fitness
value of the discharge
body
Y Y Generate two
symmetrical channels
N N
Keep the original Generate new lenmate channels
osition location with poor fitness
D values

[he maximum numb@
of iterations?

Figure 7. MNRW-LSA algorithm flow chart.
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5. Simulation Results

In this section, the proposed MNRW-LSA algorithm is tested with eight benchmark
functions and Friedman and Nemenyi tests. Moreover, a validity test of the GP-RRT
algorithm was also conducted. Finally, the proposed model is simulated by the improved
algorithm and compared with multiple algorithms, then further analyzed and verified
according to the experimental results.

5.1. Algorithm Improvement Strategy Verification and Multi-Algorithm Data
Comparison Analysis

First, to evaluate the improvement of the LSA by the strategy proposed in this paper,
we first selected several typical test functions for comparison experiments, comparing
GJO, HPO, POA, RSA, and LSA with the MNRW-LSA proposed in this paper, where the
dimensionality is Dim = 30. The objective functions for conducting the tests and testing
standards are shown in Tables 1 and 2 [32-35].

Table 1. Benchmark function.

Function

™

-1
25
F(x) = % + o P
=Lt X (ximai)

2 2
F(x) = % {a,v — M}

=1 blz+b1xg+x4
F(x) =4x3 —2-1x} + %x? + x1%p — 4x3 + 4x3

2
Fu(x) = (xz — a2y 5y —6) +10(1 - s%) cosx; + 10

Fs(x) = [1 + (21 4 12+ 1)2(19 — 14x; + 322 — 14, + 63173 + 3x§)] [30 + (221 — 3x2)2 (18 — 32y + 1252 + 48x, — 36x1%7 + 27x%)}

4 3 )
Fo(x) = — Y ciexp —.21 uij(x]- — pj)
=

i=1

B() =~ E[(X-a)(X—a) +a]

F3(x) = —20exp <—0.21 / %i] x?) —exp (% i] cos(27rxi)) +20+e
i= i=

Table 2. Composite benchmark test functions.

Function Dim Range Minimum

F 2 [—65, 65] 1

F; 4 [-5, 5] 0.1484
F3 2 [-5,5] -1

F4 2 [-5,5] 0.3

Fs 2 [-2,2] 3

Fe 3 [1,3] —4

F7 4 [0, 10] —10

Fg 30 [-32,32] 0

Figure 8 represents the search space range of the eight composite benchmark test
functions, the fitness evolution curve of the MNRW-LSA algorithm, and the other four latest
algorithms published in 2022. The 3D search space range visually reflects the solution value
region within the range of values, and the curve plots clearly compare the performance
of the algorithms. It can be seen from Table 3 that the MNRW-LSA algorithm proposed
in this paper achieves the optimal solution value six out of eight times with the test
results of different composite benchmark test functions. The results show the optimization
performance of the MNRW-LSA algorithm in the composite function and prove that the
MNRW-LSA algorithm can be used in other optimization problems.
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Table 3. Comparison table of test results.
. e . Is the
. Theoretical Optimization Result Value MNRW-LSA

Functions Minimum Algorithm

Value GJO HPO POA RSA LSA MNRW-LSA Optimal?
Fq 1 0.998 0.998 0.998 11.14 0.998 12.67 0
F, 0.1484 0.0003483 0.0003133 0.0003075 0.09601 0.001293 0.002039 1
F; -1 —1.032 —1.032 —1.032 —1.032 —1.032 —1.017 1
Fy 0.3 0.3981 0.3979 0.3979 0.3979 04 0.3979 1
Fs 3 3 3.003 3 12.38 3 3 1
Fg —4 —3.855 —3.855 —3.863 —3.863 —3.754 —3.581 1
F; —10 —10.11 —10.15 —5.055 —10.15 —5.055 —9.953 1
Fg 0 8.882 x 1016 4.441 x 101  8.882 x 10'®  4.441 x 10  8.882 x 101° 20.22 0

5.2. Friedman and Nemenyi Test

In order to present a comprehensive statistical analysis of the comparison of optimiza-
tion algorithms based on a non-parametric test of significance, we conducted a study for
the eight typical benchmark test functions proposed above. The analysis of the results is
completed with the variation of each test function in three different dimensions (50, 100,
and 200) and clearly illustrates how the algorithm proposed in this paper compares with
other algorithms as the dimensionality increases.

We conducted the Friedman test to determine sample chi-squareness, with one factor
tested on the data and the other factor used to differentiate between groups of zones. The
computational procedure was selected after 25 independent runs of each function at each
algorithm size, allowing for the computation of three different dimensions.
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(b) Test Functions F2.
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Figure 8. (a—c) Dim = 30, comparison of the average curves of GJO, HPO, POA, RSA, LSA, and
MNRW-LSA algorithms. (d—f) Dim = 30, comparison of the average curves of GJO, HPO, POA, RSA,
LSA, and MNRW-LSA algorithms. (g,h) Dim = 30, comparison of the average curves of GJO, HPO,
POA, RSA, LSA, and MNRW-LSA algorithms.

Table 4 summarizes the final results obtained by the algorithm in 50, 100, and 200 di-
mensions as a function of the average final error of the function described as less than 1071,
Table 5 shows the results of the Friedman test, Table 6 shows the calculated knots of the
average sequence.

Table 4. Number of functions successfully solved by each algorithm in three dimensions (average
error below 8 x 103).

MNRW-
GJO HPO POA RSA LSA LSA
D =50 4 3 4 6 6 7
D =100 4 3 4 4 4 5
D =200 3 2 4 3 4 4

Based on the p-values in Table 5, it can be inferred that MNRW-LSA is significantly
different from the other algorithms at a confidence level because all p-values (0.0346, 0.0318,
and 0.0271) are less than 0.05. However, further testing is needed to determine which
two algorithms are significantly different from each other.
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Table 5. Friedman's test for the results in the three dimensions.
D =50 D =100 D =200
GJO 4.126 4.102 4.071
HPO 3.324 3.322 4.286
POA 4.314 4.267 4.251
RSA 3.585 3.539 3.482
LSA 3.114 3.047 2.982
MNRW-LSA 2.846 2.844 2.786
p 0.0346 0.0318 0.0271
Table 6. Average sequential value difference between algorithms in the three dimensions.
vs. GJO vs. HPO vs. POA vs. RSA vs. LSA

D =50 2.921 2.842 2.718 2.734 2.698

D =100 2.894 2.733 2.622 2.722 2.681

D =200 2.812 2.651 2.549 2.708 2.673

Z(m)

100

Subsequently, we further distinguish the algorithms using the Nemenyi follow-up
test to calculate the critical value domain of the mean ordinal value difference using
Equation (45).
k(k+1)

6N 7

We bring in « = 0.05 and k = 4 to calculate g, = 2.728. If the difference between
the average sequential values of the algorithms exceeds the critical value domain, the
hypothesis that the two algorithms perform equally is rejected with the corresponding
confidence level.

Table 6 demonstrates that there is not a significant difference between the algorithms
at low dimensions, and even the disparity between MNRW-LSA and LSA algorithms is
minimal under these conditions. However, as the dimensionality increases, the contrast
becomes more apparent, and the MNRW-LSA algorithm displays a significant advantage
over other algorithms.

CD = g, (45)

5.3. Validity Test of GP-RRT Algorithm

Four UAVs, a common starting point, and four target points are set in this paper and
simulated using Matlab R2017a to make the UAV path planning typical and complete the
optimization calculation of the index of coverage in the objective function.

To verify the performance of the improved RRT algorithm, first, we used a three-
dimensional sphere to conduct a simulation test. We compared RRT, RRT-connet, and
GP-RRT. The test process is shown in Figure 9, and the data parameters are shown in Table 7.

RRT-Connet GP-RRT

100
80

60

Z(m)
Z(m)

40

20

0
. 100 m
~ 100m

Figure 9. GP-RRT algorithm improvement test comparison.
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Where the black lines are the paths finally found by the three algorithms, the red
lines are the branches of the expanded tree, and the green dots are randomly sampled
points in the three-dimensional space. It can be seen from Table 7 that the number of
effective nodes of the GP-RRT algorithm proposed in this paper is significantly higher than
that of the other two algorithms, which is an increase of about 63.17%. The average path
length was shortened from 234.79 m to 183.93 m, a reduction of about 21.66%. The average
running time is relatively higher than RRT-connet, but compared with RRT, the time is
shortened by nearly 48%. The above results prove that the GP-RRT algorithm makes the
path more directional, greatly reduces the number of unnecessary nodes, and effectively
improves performance.

Table 7. GP-RRT algorithm improvement test comparison data (a unit is one meter in length).

Average Running

Average Number Average

Average Number Average Path

Name/Parameter - of Sampling . Percentage of
Time Points of Effective Nodes Length Effective Nodes
RRT About 25 s 2516.81 84.16 23479 m 3.34
RRT-connet About 7 s 1247.64 46.61 207.35 m 3.74
GP—RRT About 13 s 761.91 41.51 184.93 m 5.45

300

5.4. UAV Path Planning Optimization Results
We first use the Dijkstra algorithm to preprocess the three-dimensional topographic
map and obtain the preliminary topographic path distribution, as shown in Figure 10.

0 Y% Target search area

50 1

100

> 150

200

250

150

* * * ’ 300 : * ! * ! !
200 250 300 350 0 50 100 150 200 250 300
X X

Figure 10. Basic path planning area.

After obtaining the path segmentation, we use the GP-RRT algorithm to obtain the
initial three-dimensional planning path and use the PSO, SA, LSA, and MNRW-LSA
algorithms to redistribute and optimize the coordinate values of each location point of
each UAV. When flying close to a building, control the altitude change to [—1, 1]. Thus, the
irregular variation loss in height is saved. The pitch angle changes of the four UAVs at each
node are shown in Figure 11b.
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Figure 11. (a) Four algorithms to optimize the path results and (b) changes in pitch angle of
four UAVs (°).

The results presented in Figure 12 demonstrate that the MNRW-LSA algorithm out-
performs other algorithms in terms of optimal solution value under the same number of
iterations and population size. Specifically, the optimal solution value of MNRW-LSA
is 91.75, which is significantly better than the optimal solution values of standard PSO
(120.39), standard SA (136.13), and standard LSA (140.52). These findings suggest that the
MNRW-LSA algorithm is not only faster but also more accurate in terms of convergence
speed and accuracy compared with the other algorithms. The energy loss of each node of
the four UAVs is shown in Figure 13.
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Figure 12. (a,b) Thirty runs of best, worst, and average results. (c) Thirty runs of best, worst, and
average results.
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Figure 13. Energy changes curve.

In algorithm analysis, the total number of executions of the statement T (1) is a function
of the problem size n, and then the change of T(n) when 7 is analyzed, and the order of
magnitude of T(n) is determined. The time complexity of the algorithm, which is the
time measure of the algorithm, is denoted as T(n) = O(f(n)). It means that with the
increase of the problem size n, the length rate of the algorithm execution time is the
same as the length rate of f(n), which is called the asymptotic time complexity of the
algorithm, referred to as time complexity, where f(n) is some function of the problem gauge
O(1) < O(logn) < O(n) < O(n x logn) < O(n?) < O(n®) < O(2") < O(n!) < O(n™").
According to the order in which the time complexity is arranged 1, when n approaches
infinity, only the terms of higher order are retained so that the time complexity results
obtained by the analysis are more efficient and reliable. The time complexity of the MNRW-
LSA algorithm is Tp(n) = O((n+ D + nD)z) = O(n?P), and the time complexity of the
LSA algorithm is Tr(n) = O((n+ D + nD“)z) = O(n?P*27), where D is the population
dimension and r is the number of duplicate channels.

In the MNRW-LSA algorithm, the loss of a more efficient discharge channel is pre-
vented due to the improved method, which makes it more efficient to find an efficient
channel. At the same time, the random walk strategy enables the algorithm to avoid
repeated path optimization, which improves the overall optimization efficiency of the algo-
rithm. Therefore, the algorithm should have a shorter run time and higher optimization
efficiency than the LSA algorithm.

According to the data in Table 8, in running the three algorithms 30 times, the results
of the algorithm proposed in this paper are all the best from the perspective of any of
the three indicators: the optimal solution, the worst solution, and the average value. The
paper presents an improved version of the MNRW-LSA algorithm that shows higher
convergence accuracy and faster speed in solving the problem of simultaneous urban patrol
path optimization by multiple UAVs. The algorithm also exhibits strong robustness and
uniformity, making it a promising approach for this task.
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Table 8. Objective function solution results.

PSO SA LSA MNRW-LSA
Optimal solution 120.39 136.13 140.52 91.75
Worst solution 122.68 174.77 280.50 91.88
Average solution 121.02 154.17 201.92 91.82
Optimal path length 1802.49 m 1621.69 m 1653.53 m 1497.03 m
Optimal coverage 74.42% 82.37% 83.99% 86.20%
Average running time 6.0476 s 4.8236 s 8.4435 s 5.8985s

At the same time, the optimal path length obtained by the MNRW-LSA algorithm is
shortened by 305.46 m at most and 124.66 m at least. Compared with other algorithms, the
optimal coverage rate has increased by 11.78% at most, reaching 86.20%, indicating that the
path is well planned, and most of the building groups and other spaces can be observed.

However, the average running time of the MNRW-LSA algorithm is longer than
that of the PSO and SA algorithms. After analyzing the process and principle of each
algorithm, we have identified that the MNRW-LSA algorithm takes longer to run due to the
inclusion of the cross-fetching process. This process is repeated in each iteration to ensure
the accuracy of the results, resulting in a running time that is approximately 1 s longer than
other algorithms. However, compared with the basic LSA algorithm, the number of times
the channel time is reset to zero is reduced due to the multi-level nesting process, which
significantly speeds up the running time.

6. Conclusions and Future Research

This paper explores the patrolling of multi-UAVs in urban environments and the
optimization of their trajectories. A three-dimensional topographic map was created for
certain building areas in Beijing, China, to support this research. The study takes into
account the UAV’s three-dimensional flight constraints, performance constraints, and
terrain constraints to establish a path cost model for multiple UAVs to patrol together.

To optimize the UAV trajectory cost in the model, we have enhanced the classical RRT
algorithm by incorporating a greedy strategy inspired by optimization algorithms. This
has led to the development of the GP-RRT algorithm, which effectively generates an initial
path for path arrangement. Our focus is on achieving both extensive patrol coverage and a
short path during UAV path planning. The patrol direction of the UAV is partitioned into
larger areas so that there is no overlapping of UAV patrol areas as far as possible.

This paper proposes the use of a multi-layer nesting strategy and random tour strategy
to enhance the performance of the lightning search algorithm. The resulting algorithm,
MNRW-LSA, is then compared to other algorithms, such as PSO, SA, and LSA. The study
shows that MNRW-LSA outperforms these other algorithms. The results show that the
MNRW-LSA algorithm optimizes the path length to 1497.03 m and achieves a coverage rate
of 86.20%. Its convergence speed and convergence accuracy are significantly higher than
other algorithms. The algorithm effectively optimizes the UAV’s trajectory in urban patrols
and proves the correctness of the model. It has great advantages in solving the Multi-UAV
trajectory planning problem.

The starting point of a UAV changes based on real-time data obtained from the road
detection system, such as navigation. This allows a UAV to adapt to changes in vehicle and
population density, completing its work in a real-time environment. The contributions of
the paper are summarized as follows.

1.  This manuscript introduces the concept of UAV urban patrol, which addresses the
need for efficient surveillance and monitoring in urban environments. Furthermore,
a reality-based model of the urban environment is developed, providing a realistic
representation for evaluating the proposed solutions.

2. Inorder to address the challenges of UAV urban patrol effectively, the mathematical
model has been expanded to consider various factors. These include the impact
cost of UAV operations, flight energy consumption cost, and mission execution rate.
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Moreover, the model takes into account the constraints imposed by the UAV’s flight
range and range limitation, resulting in a comprehensive approach to optimizing UAV
patrol strategies.

3. Anovel approach called the multi-level nesting and random walk strategy (MNRW-
LSA) has been developed to enhance the performance of the lightning search algorithm
(LSA) and achieve better resource allocation optimization. The MNRW-LSA algorithm
incorporates multiple levels of nesting and employs a random walk strategy to im-
prove search efficiency and accuracy, enabling more effective allocation of resources
for UAV urban patrol.

4. The reliability and integrity of the MNRW-LSA model are validated through simula-
tion experiments. These experiments demonstrate the effectiveness of the proposed
algorithm in comparison to other existing algorithms commonly used in UAV ur-
ban patrol scenarios. The comparison provides valuable insights into the superior
performance and benefits of the MNRW-LSA approach.

This paper provides a new improvement idea for UAV path planning, which can
effectively solve the related planning problems in static path planning. However, there are
still limitations in the current research process. For example, the interference of weather
factors during UAV flight and the changes in vehicle and population density in the real-time
environment are not considered. In future research, more improvement strategies should
be tried to be introduced, which will better improve the algorithm performance. At the
same time, we will consider applying machine learning methods to learn and optimize the
search strategies of heuristic algorithms to improve the efficiency of solving and the quality
of solutions, thereby addressing more complex task environments.
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