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Abstract: Motivated by the increasing number of drones used for package delivery, we first study
the problem of Multiple drOne collaborative Routing dEsign (MORE) in this article. That is, given
a fixed number of drones and customers, determining the delivery trip for drones under capacity
constraint with stochastic demand for customers such that the overall expected traveling cost is
minimized. To address the MORE problem, we first prove that MORE falls into the realm of the
classical vehicle routing problem with stochastic demand and then propose an effective algorithm
for MORE. Next, we have a scheme of resplitting customers into different individual delivery trips
while the stochastic demands are determined. Moreover, we consider a variety of MORE, MORE-TW,
and design an effective algorithm to address it. We conduct simulation experiments for MORE to
verify our theoretical findings. The results show that our algorithm outperforms other comparison
algorithms by at least 79.60%.

Keywords: stochastic demands; capacity constraint; drone delivery; approximation algorithm

1. Introduction

Boosted by the rapid development of technology in communication and artificial
intelligence, the market for drones is growing rapidly. The global commercial drone market
size was valued at 13.44 billion dollars in 2020; it is expected to expand at a compound
annual growth of 57.5% from 2021 to 2028 [1]. Due to the benefit of drones, such as small
size, lower construction cost, and lower fuel consumption, drones have been utilized
in many areas, such as aerial photography, search and rescue operations, agriculture,
shipping and delivery, engineering, 3D mapping, safety surveillance, wireless internet
access, research and nature science, and so on [2–14].

Recently, drones have been widely used in parcel delivery areas [15]. Large companies
such as Amazon, Walmart, UPS, and Google have invested in drone delivery projects.
The US Federal Aviation Administration (FAA) has approved Amazon’s drone delivery
program. The drone delivery of Amazon can connect rural populations and deliver pack-
ages in 30 min or less via Amazon Prime Air [16]. UPS was granted the FAA approval to
operate the UPS Flight Forward drone airline [17]. Zipline delivers blood and then expands
to PPE when COVID-19 hits [18]. Google’s drones have finished burritos and dog food
delivery in Australia, baked goods in Finland, and recently groceries in the United States.
According to the new market research report, the drone package delivery market grew
from USD 528 million in 2020 to USD 39,013 million [19]. With the growth of the market,
an increasing number of drones are used for package delivery.

Drone routing is a basic problem in package delivery, and drone routing has the
following advantages [20]:
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• Drone routing for package delivery can save labor as no drivers are needed
• Drone routing for package delivery can provide faster and on-time delivery service

for customers
• Drone routing for package delivery is not limited by the complex road network

Motivated by the above advantages of drone routing for package delivery, we embark
in this paper on a systematical formulation and analysis of the Multiple drOne collaborative
Routing dEsign (MORE) to increase delivery efficiency as shown in Figure 1.

Base station

Customer

Drone

Delivery routing

Serving range

Figure 1. Scenario of our MORE.

Specifically, we consider a generic drone delivery scenario with a set of customers
distributed on a 2D Euclidean plane having different demands every day, termed stochastic
demands. Our focus on stochastic demands for customers is motivated by the practical
parcel delivery scenarios including but not limited to:

• Drone contactless delivery for nucleic acid test samples, plasma, medicines, and other
medical supplies;

• Fresh food and daily groceries delivery for customers every day;
• Takeaway delivery.

In all these applications, customer demands vary from day to day and are volatile.
It is also impossible to forecast customer demands before a few days. Hence, we seek to
determine the adjusted delivery routes for most m drones to meet the actual demands
of customers with the goal of minimizing the total expected delivery cost subject to the
constraint that the total demands of served customers in one delivery trip of a drone should
be no more than its capacity.

To the best of our knowledge, the above multiple drone collaborative delivery route
design with stochastic demand problems has never been studied in the literature despite
its practical importance. More specifically, there is literature [20–27] that considers multiple
drone delivery problems, but none of them consider the stochastic issues for customer
demands. There have emerged some works studying truck and drone collaborative delivery
problems [28–34]. However, most of them consider the collaborative scheduling between
drones and trucks, which is fundamentally different from ours and cannot be applied to
address MORE. In addition, some other work considers the problem of vehicle routing
with stochastic demand [35–38], which is shown to be mostly related to ours. Nevertheless,
none of them can be directly used to address MORE. The root reason is that we consider
the property of flexibility and capacity constraint for each drone.

To fill the gap in drone delivery routing design with the stochastic demands of the
state-of-the-art, we make the following contributions in our paper:

• We first give the definition of MORE—the collaborative delivery route design with
stochastic demands for customers.
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• We develop a comprehensive algorithm to solve MORE and give the performance
analysis for the proposed algorithm.

Our MORE problem has three main technical challenges. The first challenge is that
MORE is NP-hard. MORE is NP-hard because MORE can be polynomially reduced to
the realm of the vehicle routing problem with stochastic demand, which has proved to be
NP-hard. The second challenge is to design an effective algorithm to find delivery trips for
drones with stochastic and capacity constraints. The third challenge is that it is difficult to
determine the number of individual delivery trips for a drone with limited capacity due to
the uncertain property of demands.

To address the first challenge, we reduce our MORE to the realm of the classical vehicle
routing problem with stochastic demand. To address the second challenge, we design a
new algorithm for MORE. Most importantly, we prove the performance of our proposed
algorithm for MORE. To address the third challenge, we propose an algorithm scheme to
reduce the coupling of capacity constraint and stochastic demand.

To verify the performance of our proposed algorithm for MORE, we conducted ex-
tensive simulations. The results show that our algorithm outperforms other comparison
algorithms by at least 79.60%.

2. Related Work

This review focuses on problems involving the coordinated use of trucks and drones
for making deliveries, the use of only drones for parcel delivery, and the vehicle routing
problem with stochastic demand [29].

Truck-drone delivery problems. The truck and drone collaborative delivery problem
is closely related to ours [39–49]. However, it is mainly mixed integer linear programming
as it considers the collaborative relationship between drones and trucks, which is funda-
mentally different from our problem. Chase C. Murray et al. [28] consider the scenario
in which an unmanned aerial vehicle works in collaboration with a traditional delivery
truck to distribute parcels. They present mixed integer linear programming formulations
for the proposed flying sidekick traveling salesman problem (FSTSP) and parallel drone
scheduling TSP (PDSTSP), along with two simple yet effective heuristic solution approaches.
Later, Chase C. Murray et al. [29] extend to the situation in which a delivery truck and a
heterogeneous fleet of drones coordinate to deliver small parcels. Chase C. Murray et al.
proposed a heuristic solution approach for mFSTSP that consists of solving a sequence of
three subproblems. The authors in [30] address the tradeoffs between speed and range in a
variant of a delivery truck and the drone’s coordinated delivery problem where the speeds
of the drone are treated as decision variables. In [31–34], the authors consider using multi-
ple trucks and multiple drones to deliver parcels. The authors in [50] model two different
types of drone tasks (drop and pickup) scheduling problems as an unrelated parallel ma-
chine scheduling with sequence-dependent setup, precedence-relationship, and reentrant.
In [34], the authors propose the Drone Assignment and Scheduling Problem (DASP) to
look for an optimal assignment and schedule of drones with the goal that the makespan is
minimized. In [49], the authors consider the uncertain set of pickup requests with deadlines
to maximum working hours using trucks and drones. They propose a heuristic approach to
solve their problems. However, our study considers the uncertain demands of customers to
minimize the delivery distances using only drones. We propose a greedy algorithm to solve
our problem. In [51], the authors consider the impact of the wind to plan minimum-energy
trajectories for the drone to provide service for the customers from starting and returning
to the truck. In [52], the authors introduce the docking hub to improve the service coverage
of load-dependent drones. They design a branch-and-price-and-cut algorithm to solve the
mixed-integer problem.

Drone-only delivery problems. There are many works that consider multiple drone
delivery problems, but none of them take into account the stochastic issue regarding
customer demands. Kevin et al. [21] propose two multi-trip VRPs for drone delivery that
address the issues of the effect of battery and payload weight on energy consumption.
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They design a simulated annealing heuristic to solve the problem. However, they do not
consider the stochastic demands. The work [22] is to create a decision-making tool for
the design of a drone fleet in the case of forecast deliveries over a time horizon under
operational constraints. The difference between our work with the work of [22] is that our
work considers the demands of customers to be stochastic, while the work of [22] regards
the demands of the customers as constant. The objective of [22] consists of minimizing
the total delivery distance and the total batteries, while our work focuses on minimizing
the total delivery cost. Figliozzi et al. [23] present a novel analysis of lifecycle UAV
and ground commercial vehicles CO2 emissions. The difference between our study with
study [23] is that the [23] focuses on the analysis of lifecycle UAV and ground commercial
vehicles in terms of CO2 emissions, while our study makes more attention to solving the
combinational problem.

Study [24] shows that the long traveling distances of drones per package greatly
increase the life-cycle impacts. They focus on minimizing extra warehousing and limiting
the size of drones, while our objective is to plan delivery routes for drones to reduce the
cost. Moreover, there is also literature [20,25] considering drone energy consumption.
They focus on designing exact algorithms, while we can not propose an exact algorithm
due to the uncertainty of the demands of customers. In [53], authors want to find the
distribution point for drones in the scenario that drones must follow up the open space
above the road while our scenario is that drones can freely fly on straight lines between
customers. In [54], authors jointly optimize the route and sensing task to minimize the
energy consumption of the drone and maximize sensing reward. The authors propose the
Bellman–Ford algorithm to solve their problem. In [55], the authors design a centralized
framework to deal with enormous collisions and can obtain a collision-free path for fast
delivery. However, our study deals with flying collisions by means of splitting customers
into different groups; only one drone can serve the customers in the same group. In [56],
the authors investigate the attention-based pointer network method to obtain multitrips for
a drone for parcel delivery.

Vehicle routing problem with stochastic demand. The related problem of vehicle
routing with stochastic demand has been well studied [35–38,57–59]. The proposed problem
in this paper distinguishes itself from this one by taking into account flexible drones as
well as capacity constraints for each drone. There is literature [35,36] studying this problem
with the assumption that the stochastic customer demand can only take values 0 or 1. Lei
et al. [37] consider the case that routes can be paired and the customer demand can be
split at the shared location. The authors in [38] combine ideas from vehicle routing and
manufacturing process flexibility to design an overlapped routing strategy before vehicles
are dispatched.

3. Problem Definition and Algorithm Overview
3.1. Assumptions

We make some assumptions to help us to build a reasonable formulation about drone
routing with stochastic demand.

• All drones start flying from the depot, deliver several parcels for customers, and need
to return to the depot to load new parcels with recharging.

• The depot has enough batteries for drones to provide energy.
• All drones are homogeneous; that is, all drones have the same limited capacity, flight

speed, and so on.
• The sum of demands of served customers by a drone in one trip can not exceed the

capacity of the drone.
• The stochastic demand for each customer is independently and identically distributed.
• The flight speed of all drones is constant, and we do not consider the weather factor

affecting flight speed.
• The time to replace batteries, load parcels at the depot, and unload parcels for cus-

tomers is ignored.
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• The takeoff and landing processes of all drones for different customers are the same.

3.2. Drone Routing Cost Model

Suppose there are n customers denoted as C = {c1, · · · , cn} in a 2D area with
fixed known positions. We use a directed graph G = (C0, E) to represent the drone
routing cost where C0 = {c0} ∪ C with c0 representing the depot of all drones, and
E = {(ci, cj)ci 6= cj, ci, cj ∈ C0}. We use the travel distance from customer ci to customer
cj as a routing cost u(ci, cj) associated with the edge (ci, cj) ∈ E. We consider the drone
flying from customer ci to customer cj as shown in Figure 2 where hi is the end point
of the take-off process and hj is the start point of the landing process. The routing cost
u(ci, cj) is the sum of distances of the take-off process, flying directly from hi to hj, and the
landing process.

u(ci, cj) = d(ci, hi) + d(hi, hj) + d(hj, cj) (1)

ic jc

ih jh

Figure 2. Drone routing cost model.

Let Di ∼ D(µ, σ), (i = 1, · · · , i = n) be the random daily demand of customer ci.
We use µ and σ to denote the mean and standard deviation of the daily demand for each
customer. We assume all customer daily demands are revealed before the drones are sent
out on each day.

There are m drones to be sent out to be responsible for meeting the daily demands of all
customers. We define a delivery trip of the drone i denoted as T =< c0, ci, ci+1, · · · , cj, c0 >
where a drone departs from the depot c0, serves a sequence of customers from customer ci
to customer cj, and then returns the depot c0. The delivery trip cost for the drone i can be
represented as follows.

Ui(T) = u(c0, ci) +
j−1

∑
m=i

u(cm, cm+1) + u(cj, c0) (2)

where u(c0, ci) and u(cj, c0) are the traveling distance between the depot c0 and the served
customer, u(cm, cm+1) denotes the delivery distance of the neighboring customer served by
the drone i. In our model, we do not restrict the number of the delivery trip that the drone i
can fly. We define Γi as the set of all the delivery trips for the drone i. We assume each drone
has limited capacity Q where it can only serve a part of customers with a total demand of
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Q in one delivery trip before returning to the depot c0 for refilling the capacity. Due to the
limited capacity for one delivery trip, the customer demand can be met by multiple drones.
Table 1 lists the main notations and symbols used in this paper.

Table 1. Main notations and symbols used in the paper.

Symbol Description

ci i-th customer

hi i-th taking off (landing) point

Vj j-th drone

n, m Number of customers, drones

Q Drone capacity

d(ci, cj) Distance between ci and cj

D̃j Demand for j-th customer

Γi Delivery trip set for i-th drone

Ui(.) Traveling cost function for i-th drone

Φi Primary serving customer set for i-th drone

Ψi Extended serving customer set for i-th drone

K Number of overlapped serving customers

ej Remaining capacity after serving primary customers

wj Amount of demand in primary serving customer set

aj Staring time of time window for j-th customer

bj Ending time of time window for j-th customer

3.3. Problem Formulation

We consider the problem of determining the delivery trip for at most m drones towards
minimizing the total expected delivery trip cost of all of the drones under the constraint
that the total demand of all the served customers in one delivery trip should be no more
than the limited capacity Q of the drone. We formulate the Multiple drOne collaborative
Routing dEsign problem for meeting the daily stochastic demands of all customers under
capacity constraint (MORE) as follows.

(P1)min
Γi

m

∑
i=1

∑
T∈Γi

E(Ui(T)) (3)

s.t. ∀T ∈ Γi, ∑
cj∈T,j 6=0

D̃j ≤ Q, (4)

∀D̃j ∼ D(µ, σ), (j = 1, · · · , i = n) (5)

where D̃j is a kind of realization of the random daily demand for customer cj. Our
optimization goal is to determine the delivery trip set Γi for each drone while meeting the
daily random demand of all customers to minimize the total expected delivery trip cost of
all of drones.

The MORE problem (P1) is NP-hard.

Proof. The MORE problem can be polynomially reduced to the realm of the classical
vehicle routing problem with stochastic demand, which has proved to be NP-hard.

Therefore, our MORE problem is NP-hard.
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3.4. Algorithm Overview

In this subsection, we describe our algorithm via a toy example. Our algorithm as
shown in Algorithm 1 is mainly divided into four steps. Figure 3 shows the distribution
of customer positions and drone positions; all of the drones are located in depot station
c0, waiting to deliver commodities to customers. The demands of all customers are not
revealed for drones. First, we approximately solve the traveling salesman problem (TSP)
with the goal of minimizing the total traveling cost. We relabel the customer according
to the order in the TSP tour by picking an arbitrary customer and orientation in the TSP
as the starting customer and orientation. For simplicity, we pick the starting customer
and its orientation in the TSP tour as our first customer and orientation in the relabeled.
We obtain the relabeled customer set {c1, · · · , c12}. Second, we divide the customers into
three groups where the number of groups is determined by the number of drones. We
calculate the number of customers in each group N = 4. Then, the three group sets of
customers are Φ1 = {c1, · · · , c4}, Φ2 = {c5, · · · , c8}, and Φ3 = {c9, · · · , c12}, respectively.
We assign the three groups customers to the drones as their primary serving customer set
as shown in Figure 4. Third, we set the overlapped number of the serving customer for the
drone as K = 1. We can obtain the extended serving customer set for each drone as shown
in Figure 5. Fourth, we use Algorithm 2 to find the delivery trip for each drone to meet the
demand of all customers as shown in Figure 6.

0c

1c

2c

3c

4c

5c

6c

7c8c

9c

10c 11c

12c

Figure 3. Topology of customer and drone positions.

Figure 4. Primary customer assignment.
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Figure 5. Extended customer assignment.

1 2D =

2 1D =

3 0D =

4 1D =

5 1D =

6 2D =

7 2D =

8 1D =

9 1D =

10 1D =

11 2D =
12 1D =

1 5Q =

2 5Q =

3 5Q =

Figure 6. Delivery trip for each drone.

4. Approximation Algorithm for MORE

As MORE is NP-hard and difficult to be directly tackled using the precise algorithm,
in this section we first design an approximation algorithm to solve MORE. Then, we
theoretically analyze the effectiveness of our proposed algorithm for MORE.

4.1. Solution for MORE

Our approximation algorithm described in Algorithm 1 for MORE consists of four
steps. First, we find the shortest path that visits all of the customers and returns to the
depot by solving the classical Travelling Salesman Problem (TSP). we relable the customers
according to the order and the orientation in the TSP tour. We call this step relabelling
customers. Second, we divide the relabelled customers into disjoint groups. Each group is
served by one drone. We call this step primary customers assignment. Third, we assign the
overlapped served customers for each drone, which we call extended customers assignment.
Finally, we design a greedy algorithm to determine the delivery trips for each drone, which
we call finding delivery trips. Next, we give a description in detail of these four steps one
by one in the following four subsections.
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4.1.1. Relabelling Customers

In this step, we only consider that a drone starts from the depot c0, passes through all
the customers in customer set C once, and finally returns to the depot c0 with the goal of
minimizing the total traveling distance, which can be transformed into the TSP problems.
Therefore, we formulate the TSP problem as follows.

(P2)min
xij

∑
(i,j)∈E

u(i, j)xij (6)

s.t. ∑
j∈C0,(i,j)∈E

xij = 1, ∀i ∈ C0 (7)

∑
i∈C0,(i,j)∈E

xij = 1, ∀j ∈ C0 (8)

∑
j 6∈C0,i∈C0,(i,j)∈E

xij ≥ 1, ∀S ⊂ C0, 2 ≤ |S| ≤ n (9)

Algorithm 1 General Algorithm for MORE.

Input: Customer C, drone capacity Q, observed daily demand D̃1, · · · , D̃n.
Ouput: A sequence of serving customers for individual delivery trips.
Solve TSP problem with the instance C0 as input to obtain new customer sequence;
Divide new customer sequence into m disjoint groups to obtain primary customer set;
Assign extended customers to obtain extended customer set;
Call Algorithm 2 with the instance ( Φ1 · · ·Φm, Ψ1 · · ·Ψm, Q, D̃1 · · · D̃n) as input to
obtain the delivery trip;
Output the individual delivery trip.

We use the cutting-plane method, iteratively solving linear programming relaxations
of the problem P2. As shown in Figure 7, we can obtain the TSP tour by solving problem P2.

Figure 7. TSP tour.

We pick an arbitrary customer and its orientation in the TSP tour as our starting
customer and orientation. Then, we relabel all customers according to their order in the
TSP tour from the starting customer. For simplicity, we pick the first customer and its
orientation in the TSP tour as our starting customer and orientation. Then, we relabel
all customers and obtain the new number for each customer. Note that we use the new
number of all customers in the next section.
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4.1.2. Primary Customers Assignment

At this step, we divide n customers into m disjoint groups. Each group is served
by one drone. That is, each drone is primarily assigned to serve N = n

m customers.
We use Φj to denote the primary serving customer set for drone j. According to the
new number of customers, we set the primary serving customer set for drone j to be
Φj = {c(j−1)N+1, · · · , cjN} for 1 ≤ j ≤ m. Each primary serving customer set contains
exactly N customers, and each customer is contained in exactly one primary serving
customer set. While the primary customer assignment is simple and intuitive, it fails to
coordinate drones to improve the collaborative effectiveness in dealing with random daily
demands. This motivates us to consider extended customers assignment as the next step.

In Figure 4, as there are 3 drones, we divide 12 customers into 3 disjointed groups.
Each drone is primarily assigned to serve 4 customers. After renumbering the customers at
the first step, we set the primary serving customers for 3 drones to be Φ1 = {c1, · · · , c4},
Φ2 = {c5, · · · , c8}, and Φ3 = {c9, · · · , c12}, respectively.

4.1.3. Extended Customers Assignment

To improve the collaborative effectiveness of multiple drones to meet the random
daily demands, we consider the k-overlapped serving customers of drones, where k is
the parameter. k can take any integer value from 0 to n. We define the extended serving
customer set as the primary serving customers plus k additional customers. We use Ψj to
denote the extended serving customer set for drone j. We set extended serving customer
set for drone j to be Ψj = {c(j−1)N+1, · · · , cmin{jN+k,n}} for 1 ≤ j ≤ m− 1, and Ψm = Φm.
For k = N, the extended serving customer set of drone j is the concatenation of the primary
serving customers for adjacent drones (drone j and drone j + 1). Therefore, the extended
serving customer set of drone j and j + 1 overlap at Φj+1, which leads to collaboratively
assigning drones to meet the random daily demand for customer set Φj+1. In executing
the delivery for customers at the next step, our strategy uses drone j to ensure that the
demands of all customers in the primary serving set Ψj are met while using the remaining
capacity of drone j to meet the demands of customers in the additional segment of the
extended serving customer set Φj.

In Figure 5, we set k = 1. Drone 1 and 2 can serve 4 customers, while drone 3 can
serve 3 customers. We can obtain the extended serving customers for 3 drones to be
Ψ1 = {c1, · · · , c5}, Ψ2 = {c5, · · · , c9}, and Ψ3 = {c9, · · · , c12}, respectively.

4.1.4. Finding Delivery Trips

At this step, we design our strategy by sequentially determining delivery trips for
drones from 1 to m. We follow three basic principles while finding delivery trips for drones.
First, each drone starts a delivery trip from depot c0 with full capacity Q and ends a delivery
trip by returning to depot c0. Second, the delivery trip of drone j must first satisfy the
demand for all customers in its primary serving customer set Φj that have not been satisfied
by the drone j− 1, and skip customers with zero demand. Third, if there is a remaining
capacity of drone j after the demands for all customers in its primary serving customer set
Φj are met, drone j will continue to use its remaining capacity to satisfy the demands in the
additional segment of its extended serving customer set Ψj.

We define some notations used in designing our algorithm for finding delivery trips.
For each drone Vj, csj represents the first customer that it serves and cej represents the
last customer that it serves; wj represents the amount of demand in its primary serving
customer set Φj; ej is the remaining capacity after satisfying the demands in its primary
serving customer set Φj; ẽj denotes the portion of the remaining capacity ej that will be
used to satisfy the demands in the additional segment of its extended serving customer
set Ψj. We illustrate our algorithm of finding delivery trips in Algorithm 2. Generally, we
divide Algorithm 2 into three modules. In the first module, we determine the portation of
the remaining capacity ej that will be used to satisfy the demands in the additional segment
of its extended serving customer set Ψj and the total carried demand of the drone. In the
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second module called the finding served customer module, for each drone Vj, it finds the
first served customer csj using capacity ˜ej−1 in primary serving customer set Φj and the
last served customer cej using capacity ẽj in extended serving customer set Ψj. In the third
module called the determining individual delivery trip module as shown in Algorithm 2,
the drone with the total carried demand serves the customers starting from the first served
customer csj in its first delivery trip, and it skips the customers with zero demand. It will
stop serving customers in its first delivery trip in the three situations. First, when the total
demands of served customers have achieved the total carried demand of the drone, the
drone finishes its first delivery trip. Second, when the total demands of served customers
have achieved their capacity, the drone finishes its first delivery trip. If there are remaining
customers to be served, the drone can start a new delivery trip after returning to the depot
c0. Third, when all customers, from the first customer to the last customer, have been served,
the drone finishes its first delivery trip.

Algorithm 2 Algorithm for Determining Delivery Trips.

Input: Primary serving customer set Φ1 · · ·Φm, extended serving customer set Ψ1 · · ·Ψm,
drone capacity Q, observed daily demand D̃1 · · · D̃n.
Ouput: Delivery trip for each drone.
Calculate the total demand ˜DΦ1

˜DΦm of each primary serving customer set;
Calculate the total demand of the additional segment of the extended serving customer
set;
for each drone Vj

if j == 1
Set wj = ˜DΦj

else
Set wj = ˜DΦj − ej−1

if wj == 0
Set ẽj = ˜ej−1 − ˜DΦj

Set the total filled demand of drone Vj Fj = 0
else

Set ẽj = min(Q ∗ dwj/Qe − wj, D̃Ψj)

Set Fj =wj + ẽj
Finding the first served customer csj using capacity ˜ej−1 in primary serving customer

set Φj;
Finding the last served customer cej using capacity ẽj in extended serving customer

set Ψj;
Call Algorithm 3 with the instance (csj , cej , Fj) as input to obtain the delivery trips.

Output the delivery trip for each drone.

4.2. Theoretical Analysis for MORE

In this subsection, we theoretically analyze the performance of our proposed algorithm
for MORE.

Lemma 1. We have the following:

Z∗ ≥ 2µ

Q

n

∑
i=1

u(ci, c0), (10)

where Z∗ denotes the travel cost of reoptimization.
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Lemma 2. We have the following:

Z∗ ≤ 2µ

Q

n

∑
i=1

u(ci, c0) + (1− 1
Q
)(L∗ + 2umax)), (11)

where L∗ denotes the optimal TSP distance traveling through all customers.

Theorem 1. Suppose the relabelling customer sequence [c0, c1, · · · , cn, c0] forms an α-optimal TSP
tour. Let Z and ravg denote the expected total delivery distance and the average number of delivery
trips per drone under our MORE algorithm for the fixed k. Then, as n and m are scaled to infinity
while fixing N, we can obtain

lim
m→+∞

Z
Z∗

=
Qravg

Nµ
. (12)

Proof. Suppose β1, β2, β3, and β4 are universal constants. Under our MORE algorithm, let
rj be the expected number of delivery trips of drone j. Then the expected distance traveled
by drone j can be approximately

2rj ∑
jN
i=(j−1)N+1

u
(ci, c0)N + β1lj, (13)

where u(ci, c0) is the distance from customer ci to the depot c0, lj is the total distance of
the customer sequence in the delivery trip of drone j. According to the Markov chain
convergence theorem, rj is approximately equal to each other, we can get

lim
m→+∞

m

∑
j=1
|rj − ravg| ≤ β2. (14)

Therefore, the expected total delivery distance Z of our MORE algorithm is approximately

2ravg ∑n
i=1 u(ci, c0)

N
+ β3

m

∑
j=1

lj + β4. (15)

Applying the lower bound from Lemma 1, we can obtain

Z
Z∗
≤

2ravg ∑n
i=1 u(ci ,c0)
N + β3 ∑m

j=1 lj + β4
2µ
Q ∑n

i=1 u(ci, c0)
(16)

As m goes to inifinity, we have

lim
m→+∞

Z
Z∗
≤ lim

m→+∞

2mravg
N ∑n

i=1 u(ci, c0)
2µ
Q ∑n

i=1 u(ci, c0)
(17)

= lim
m→+∞

Qmravg

Nµ
=

Qravg

Nµ
. (18)
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Applying the upper bound from Lemma 1, we can obtain

lim
m→+∞

Z
Z∗
≥

2ravg ∑n
i=1 u(ci ,c0)
N + β3 ∑m

j=1 lj + β4
2µ
Q ∑n

i=1 u(ci, c0) + (1− 1
Q )(L∗ + 2umax))

(19)

= lim
m→+∞

2mravg
N ∑n

i=1 u(ci, c0)
2µ
Q ∑n

i=1 u(ci, c0)
(20)

= lim
m→+∞

Qmravg

Nµ
=

Qravg

Nµ
. (21)

Algorithm 3 Algorithm for splitting customers into the individual delivery trip.

Input: First served customer csj , last served customer cej , filled demand Fj, drone capacity
Q, observed daily demand D̃1, · · · , D̃n.
Ouput: A sequence of serving customers for the individual delivery trip.
Initialize the dictionary ddic for all customers with zero;
Set i = 0
While i ≤ (ej − sj)

Set current serving customer cur = csj+i;
For d ∈ ˜Dsj+i

If ∑ ddic == Fj
Set i = ej − sj
Break this loop;

If the total demands of served customers achieve the drone capacity
End the current delivery trip, start a new delivery trip;

If the current customer cur needs to be served
Serve the current customer cur with 1 demand;
Set ddic[cur]+ = 1

Set i+ = 1
Output the individual delivery trip.

5. MORE with Time Window Constraint for Customers

In this section, we consider a special case of MORE problem (MORE-TW for short) that
consider the time window constraint for each customer. We first formulate the MORE-TW
problem. Then, we propose an algorithm for MORE-TW.

5.1. Problem Definition for MORE-TW

The special case of MORE problem, MORE-TW, is to determine the delivery trip for
at most m drones towards minimizing the total expected delivery time of all the drones
under the constraint that each customer should be served after the starting time of the time
window. Formally, MORE-TW can be defined as follows.

(P3)min
Γi

m

∑
i=1

∑
T∈Γi

E(
Ui(T)

V
)

s.t. ∀T ∈ Γi, ∑
cj∈T,j 6=0

D̃j ≤ Q,

∀T ∈ Γi, ∀cj ∈ T,
u(c0, cm) + ∑

j−1
m=i u(cm, cm+1)

V
≥ aj,

∀D̃j ∼ D(µ, σ), (j = 1, · · · , i = n)
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where V is the speed of the drone, and aj is the starting time of the time window for
customer cj.

5.2. Solution for MORE-TW

We illustrate our algorithm in Algorithm 4. First, we only consider that a drone starts
from the depot c0, passes through all customers in customer set C, and finally returns to
the depot c0 with the goal of minimizing the total traveling time under the constraint that
each customer should be served between its time window, which can be transformed into
the vehicle routing problem with a time window. Therefore, we solve the classical vehicle
routing problem with a time window to obtain a VRP tour. We pick an arbitrary customer
and its orientation in the VRP tour as the starting customer and orientation. We relabel
all customers according to their order in the VRP tour to obtain new customer sequences.
Second, we divide the new customer sequence into m disjoint groups to obtain the primary
customer set Φ1 · · ·Φm. Third, we assign k-overlapped serving customers of drones to
obtain the extended customer set Ψ1 · · ·Ψm. Fourth, we use Algorithm 2 on the primary
customer set and extended customer set to obtain the individual delivery trip for each
drone.

Algorithm 4 General Algorithm for MORE-TW.

Input: Customer C, time window ti = [ai, bi] for each customer ci, drone capacity Q,
observed daily demand D̃1, · · · , D̃n.
Ouput: A sequence of serving customers for the individual delivery trip.
Solve vehicle routing problem with time windows with the instance (C, t) as input to
obtain new customer sequence;
Divide new customer sequence into m disjoint groups to obtain primary customer set;
Assign extended customers to obtain extended customer set;
Call Algorithm 2 with the instance ( Φ1 · · ·Φm, Ψ1 · · ·Ψm, Q, D̃1 · · · D̃n) as input to
obtain the delivery trip;
Output the individual delivery trip.

6. Simulation Results

In this section, we conduct a simulation experiment to verify the performance of our
proposed MORE algorithm in therm of drone capacity Q, number of customers n, number
of overlapped served customers k, and number of drones m.

6.1. Simulation Setup

In our simulation, unless otherwise stated, we set Q = 100, n = 200, m = 20, k = 10,
D̃j ∼ U(0, 8), (j = 1, · · · , i = n) and our area size is 100 km × 100 km. We consider the
overall traveling cost as a metric for the evaluation of MORE. Moreover, each experimental
result is obtained by averaging the results for 100 topologies of customers.

6.2. Baseline Setup

We develop three other algorithms for comparison with MORE, i.e., Selected Cus-
tomers Dedicated Trips (SCDT), where the primary customer sets are determined via our
proposed algorithm for the TSP problem, the extended customer sets are the same as
the primary customer sets; Grouping Customers Overlapped Trips (GCOT), where the
primary customer sets are determined by grouping the customers of the neighborhood, the
extended customer sets are obtained using our extended customer assignment method; and
Grouping Customers Dedicated Trips (GCDT). We set n = 20, m = 4, k = 5 and Q = 20.
We can obtain the delivery paths of our proposed MORE algorithm and SCDT algorithm
as shown in Figures 8 and 9. As shown in Figure 8, there are three drones to be set out to
meet all the demands of the customers while there are three drones to be set out as shown
in Figure 9.
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Figure 8. Delivery trips of MORE algorithm.
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6.3. Performance Comparison for MORE
6.3.1. Impact of Drone Capacity Q

Our simulation results show that, on average, MORE outperforms SCDT, GCOT, and GCDT
by 26.83%, 73.77%, and 74.57%, respectively, in terms of Q. Figure 10 shows that the overall
traveling cost for four algorithms first decreases with drone capacity Q when Q is small
because the larger the drone capacity, the more customers can be met in one delivery trip by
drone. Then, the overall traveling cost keeps relatively stable when Q exceeds 90 because
the capacity is large enough for customers to meet almost all its assigned customers.
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Figure 10. Q, vs. traveling cost.

6.3.2. Impact of Number of Customers n

Our simulation results show that, on average, MORE outperforms SCDT, GCOT, and GCDT
by 31.15%, 68.55%, and 72.51%, respectively, in terms of n. Figure 11 shows that the overall
traveling cost for four algorithms grows almost linearly as the number of customers
increases from 20 to 320. This is because when the customers are uniformly distributed,
the delivery trip patterns for these four algorithms will not change too much as the number
of customers increases.
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Figure 11. n, vs. traveling cost.

6.3.3. Impact of Number of Overlapped Served Customers k

Our simulation results show that, on average, MORE outperforms SCDT, GCOT, and GCDT
by 23.37%, 76.70%, and 77.29%, respectively, in terms of k. Figure 12 shows the overall
traveling cost for four algorithms almost stays stable with k. This is because the algorithm
of SCDT and GCDT is not affected by k. Our algorithm first keeps stable when k does
not exceed 10, and reaches the minimum cost when the number of overlapped served
customers is 10. While k exceeds 10, Our algorithm keeps stable, which states that the
overall cost is minimum when we select k as the number of primary serving customers.
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Figure 12. k, vs. traveling cost.

6.3.4. Impact of Number of Drones m

Our simulation results show that, on average, MORE outperforms SCDT, GCOT, and GCDT
by 19.02%, 78.90%, and 79.60%, respectively, in terms of m. Figure 13 shows the overall
traveling cost for four algorithms stays almost stable with m. Because when the number of
drones is small, the drone can fly multiple delivery trips to meet the demands of customers.
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7. Limitation

The key novelty of this paper is taking stochastic demand into consideration. How-
ever, we ignore the impact of weight on the maximum speed, maximum flight time, and
maximum distance of drones. In the future, we will consider more characteristics of drones
in designing our delivery routing. The main idea of our proposed algorithm for stochastic
demands can be used in designing the new algorithm by taking more characteristics of
drones into consideration. For example, the first three steps considering stochastic demands
can be used due to the robust consideration for demands.

8. Conclusions

The key novelty of this paper is first taking into consideration the stochastic demand
for customers and capacity constraints for each drone for designing drone delivery trips.
The key contributions of this paper are formulating the problem of determining drone
delivery trips with stochastic demands for customers, proposing an effective algorithm,
and conducting simulations to verify our theoretical findings. The key technical depth
of this paper is in converting the original NP-hard problem to the realm of the classical
vehicle routing problem, decoupling the interrelated relationship of stochastic demands
and capacity constraint. Our simulation experimental result shows that our proposed
algorithm achieves good performance and can outperform the other comparison algorithm
by 79.60 percent.

Author Contributions: Conceptualization, methodology, and theoretical analysis, N.Y. and B.D.;
validation and simulation, Y.W. and M.Z.; writing—original draft preparation, H.D., Y.Q. and C.Y.;
visualization, Y.W.; supervision, H.D.; project administration, M.Z. All authors have read and agreed
to the published version of the manuscript.



Drones 2023, 7, 362 19 of 21

Funding: This research was funded in part by the National Natural Science Foundation of China
under Grant No. 62102378, No. 62102079, and No. 61971439, in part of Jiangsu Provincial Double-
Innovation Doctor Program JSSCBS20211351 and JSSCBS20211336, and in part of the Science and
Technology Project of Jiangsu Province under Grant BZ2020001.

Data Availability Statement: The data presented in this study are available on request from the
first author.

Acknowledgments: The authors acknowledge the editors and the anonymous referees for their
valuable comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Commercial Drone Market Size. Available online: https://www.grandviewresearch.com/industry-analysis/global-commercial-

drones-market (accessed on 25 May 2023).
2. Otto, A.; Agatz, N.; Campbell, J.; Golden, B.; Pesch, E. Optimization approaches for civil applications of unmanned aerial vehicles

(UAVs) or aerial drones: A survey. Networks 2018, 72, 459–474. [CrossRef]
3. Rao Mogili, U.M.; Deepak, B.B.V.L. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018,

133, 502–509. [CrossRef]
4. Restas, A. Drone Applications for Supporting Disaster Management. World J. Eng. Technol. 2015, 3, 316–321. [CrossRef]
5. Emmanouil, N.; Eleni, B.; Vlahogianni, I.; Golias, J.C. Unmanned Aerial Aircraft Systems for transportation engineering: Current

practice and future challenges. Int. J. Transp. Sci. Technol. 2016, 5, 111–121.
6. Thiels, C.A.; Aho, J.; Zietlow, A.; Jenkins, D. Use of unmanned aerial vehicles for medical product transport. Air Med. J. 2015, 34,

104–108. [CrossRef]
7. Shraim, H.; Awada, A.; Youness, R. A survey on quadrotors: Configurations, modeling and identification, control, collision

avoidance, fault diagnosis and tolerant control. Transp. Res. Procedia 2018, 33, 14–33. [CrossRef]
8. Sutheerakul, C.; Kronprasert, N.; Kaewmoracharoen, M.; Pichayapan, P. Application of Unmanned Aerial Vehicles to Pedestrian

Traffic Monitoring and Management for Shopping Streets. IEEE Aerosp. Electron. Syst. Mag. 2017, 25, 1717–1734. [CrossRef]
9. Mark, C.T.; Liu, J. Unmanned Aircraft System Applications in Construction. Procedia Eng. 2017, 196, 167–175.
10. Chao, C.; He, X.; Jiang, M. Route adptive fusion for UAVs based on dynamic programing. Command. Inf. Syst. Technol. 2022, 13,

35–41.
11. Wang, J.; Sun, R. GPS/Beidou combined high accuracy positioning method for urban drones. Command. Inf. Syst. Technol. 2022,

13, 23–26.
12. Wang, W.; Dai, H.; Dong, C.; Xiao, F.; Zheng, J.; Cheng, X.; Chen, G. Deployment of Unmanned Aerial Vehicles for Anisotropic

Monitoring Tasks. IEEE Trans. Mob. Comput. 2022, 21, 495–513. [CrossRef]
13. Wang, W.; Dai, H.; Dong, C.; Cheng, X.; Wang, X.; Yang, P.; Chen, G.; Dou, W. Placement of Unmanned Aerial Vehicles for

Directional Coverage in 3D Space. IEEE/ACM Trans. Netw. 2022, 28, 888–901. [CrossRef]
14. Xiang, C.; Zhou, Y.; Dai, H.; Qu, Y.; He, S.; Chen, C.; Yang, P. Reusing Delivery Drones for Urban Crowdsensing. IEEE Trans. Mob.

Comput. 2023, 22, 2972–2988. [CrossRef]
15. Yoo, W.; Yu, E.; Jung, J. Drone delivery: Factors affecting the public’s attitude and intention to adopt. Telemat. Inform. 2018, 35,

1687–1700. [CrossRef]
16. Amazon Drone Delivery Was Supposed to Start By 2018. Available online: https://time.com/6093371/amazon-drone-delivery-

service/ (accessed on 25 May 2023).
17. UPS Flight Forward, CVS to Launch Residential Drone Delivery Service in Florida Retirement Community to Assist in Coronavirus

Response. Available online: https://about.ups.com/sg/en/newsroom/press-releases/innovation-driven/ups-flight-forward-
cvs-to-launch-residential-drone-delivery-service-in-florida-retirement-community-to-assist-in-coronavirus-response.html (ac-
cessed on 25 May 2023).

18. Zipline and Intermountain Healthcare Begin Drone Deliveries in the Salt Lake Valley. Available online: https://www.flyzipline.
com/press/zipline-and-intermountain-healthcare-begin-drone-deliveries-in-the-salt-lake-valley (accessed on 25 May 2023).

19. Drone Package Delivery Market. Available online: https://www.suasnews.com/2021/04/drone-package-delivery-market-
worth-39013-million-by-2030-exclusive-report-by-marketsandmarkets (accessed on 25 May 2023).

20. Cheng, C.; Adulyasak, Y.; Rousseau, L.-M. Drone routing with energy function: Formulation and exact algorithm. Transp. Res.
Part 2020, 139, 364–387. [CrossRef]

21. Dorling, K.; Heinrichs, J.; Geoffrey, G.M.; Magierowski, S. Vehicle Routing Problems for Drone Delivery. IEEE Trans. Syst. Man.
Cybern. Syst. 2016, 47, 70–85. [CrossRef]

22. Troudi, A.; Addouche, S.-A.; Dellagi, S.; El Mhamedi, A. Sizing of the Drone Delivery Fleet Considering Energy Autonomy
Sustainability 2018, 10, 3344. [CrossRef]

23. Figliozzi, M.A. Lifecycle modeling and assessment of unmanned aerial vehicles (Drones) CO2e emissions. Transp. Res. Part
Transp. Environ. 2017, 57, 251–261. [CrossRef]

https://www.grandviewresearch.com/industry-analysis/global-commercial-drones-market
https://www.grandviewresearch.com/industry-analysis/global-commercial-drones-market
http://doi.org/10.1002/net.21818
http://dx.doi.org/10.1016/j.procs.2018.07.063
http://dx.doi.org/10.4236/wjet.2015.33C047
http://dx.doi.org/10.1016/j.amj.2014.10.011
http://dx.doi.org/10.1109/MAES.2018.160246
http://dx.doi.org/10.1016/j.trpro.2017.05.131
http://dx.doi.org/10.1109/TMC.2020.3012791
http://dx.doi.org/10.1109/TNET.2020.2974923
http://dx.doi.org/10.1109/TMC.2021.3127212
http://dx.doi.org/10.1016/j.tele.2018.04.014
https://time.com/6093371/amazon-drone-delivery-service/
https://time.com/6093371/amazon-drone-delivery-service/
https://about.ups.com/sg/en/newsroom/press-releases/innovation-driven/ups-flight-forward-cvs-to-launch-residential-drone-delivery-service-in-florida-retirement-community-to-assist-in-coronavirus-response.html
https://about.ups.com/sg/en/newsroom/press-releases/innovation-driven/ups-flight-forward-cvs-to-launch-residential-drone-delivery-service-in-florida-retirement-community-to-assist-in-coronavirus-response.html
https://www.flyzipline.com/press/zipline-and-intermountain-healthcare-begin-drone-deliveries-in-the-salt-lake-valley
https://www.flyzipline.com/press/zipline-and-intermountain-healthcare-begin-drone-deliveries-in-the-salt-lake-valley
https://www.suasnews.com/2021/04/drone-package-delivery-market-worth-39013-million-by-2030-exclusive-report-by-marketsandmarkets
https://www.suasnews.com/2021/04/drone-package-delivery-market-worth-39013-million-by-2030-exclusive-report-by-marketsandmarkets
http://dx.doi.org/10.1016/j.trb.2020.06.011
http://dx.doi.org/10.1109/TSMC.2016.2582745
http://dx.doi.org/10.3390/su10093344
http://dx.doi.org/10.1016/j.trd.2017.09.011


Drones 2023, 7, 362 20 of 21

24. Joshuah, K.S.; Samaras, V.; O’Neill, E.R.; Lubers, A.; Mitchell, A.S.; Ceperley, D. Energy use and life cycle greenhouse gas
emissions of drones for commercial package delivery. Nat. Commun. 2018, 9, 409.

25. Kirschstein, T. Comparison of energy demands of drone-based and ground-based parcel delivery services. Transp. Res. Part
Transp. Environ. 2020, 409, 102209. [CrossRef]

26. D’Andrea, R. Guest Editorial Can Drones Deliver? IEEE Trans. Autom. Sci. Eng. 2014, 11, 647–648. [CrossRef]
27. Huang, H.; Andrey, V.S.; Huang, C. Round Trip Routing for Energy-Efficient Drone Delivery based on a Public Transportation

Network. IEEE Trans. Transp. Electrif. 2020, 6, 1368–1376. [CrossRef]
28. Chase, C.M.; Amanda, G.C. The flying sidekick traveling salesman problem: Optimization of drone-assisted parcel delivery.

Transp. Res. Part C Emerg. Technol. 2015, 54, 86–109.
29. Chase, C.M.; Ritwik, R. The multiple flying sidekicks traveling salesman problem: Parcel delivery with multiple drones. Transp.

Res. Part C Emerg. Technol. 2020, 110, 368–398.
30. Ritwik, R.; Chase, M. The multiple flying sidekicks traveling salesman problem with variable drone speeds. Transp. Res. Part C

Emerg. Technol. 2020, 120, 102813.
31. Kitjacharoenchai, P.; Ventresca, M.; Moshref-Javadi, M.; Lee, S.; Jose, M.A.; Tanchoco, P.; Brunese, A. Multiple traveling salesman

problem with drones: Mathematical model and heuristic approach. Comput. Ind. Eng. 2019, 129, 14–30. [CrossRef]
32. Schermer, D.; Moeini, M.; Wendt, O. Algorithms for solving the vehicle routing problem with drones. In Asian Conference on

Intelligent Information and Database Systems; Springer International Publishing: Dong Hoi City, Vietnam, 2018; pp. 352–361.
33. Di Puglia Pugliese, L.; Guerriero, F. Last-Mile Deliveries by Using Drones and Classical Vehicles. In International Conference on

Optimization and Decision Science; Springer International Publishing: Sorrento, Italy, 2017; pp. 557–565.
34. Schermer, D.; Moeini, M.; Wendt, O. A matheuristic for the vehicle routing problem with drones and its variants. Transp. Res. Part

D Emerg. Technol. 2019, 106, 166–204. [CrossRef]
35. Bartholdi, J.J., III; Platzman, L.K.; Collins, R.L.; Warden, W.H., III. A minimal technology routing system for meals on wheels.

Interfaces 1983, 13, 1–8. [CrossRef]
36. Jaillet, P. A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Oper. Res. 1988,

36, 929–936. [CrossRef]
37. Lei, H.; Laporte, G.; Guo, B. The vehicle routing problem with stochastic demands and split deliveries. Infor Inform. Syst. Res.

Oper. Res. 2012, 50, 59–71. [CrossRef]
38. Ledvina, K.; Qin, H.; Simchi-Levi, D.; Wei, Y. A New Approach for Vehicle Routing with Stochastic Demand: Combining Route

Assignment with Process Flexibility. Oper. Res. 2022, 70, 2655–2673. [CrossRef]
39. Agatz, N.; Bouman, P.; Schmidt, M. Optimization Approaches for the Traveling Salesman Problem with Drone. Transp. Sci. 2018,

52, 965–981. [CrossRef]
40. Bouman, P.; Agatz, M.; Schmidt, M. Dynamic programming approaches for the traveling salesman problem with drone. Networks

2018, 72, 528–542. [CrossRef]
41. Dayarian, I.; Savelsbergh, M.; Clarke, J.-P. Same-Day Delivery with Drone Resupply. Transp. Sci. 2020, 54, 229–249. [CrossRef]
42. Carlsson, J.G.; Song, S. Coordinated Logistics with a Truck and a Drone. Manag. Sci. 2017, 64, 4052–4060. [CrossRef]
43. Ha, Q.M.; Deville, Y.; Pham, Q.D.; Hà, M.H. On the min-cost Traveling Salesman Problem with Drone. Transp. Res. Part C Emerg.

Technol. 2018, 86, 597–621. [CrossRef]
44. Emine, E.S.; Yurek, H.C.; Ozmutlu, F. A decomposition-based iterative optimization algorithm for traveling salesman problem

with drone. Transp. Res. Part C Emerg. Technol. 2018, 91, 249–262.
45. Campbell, J.F.; Corberan, A.; Plana, I.; Sanchis, J.M. Drone arc routing problems. Networks 2018, 72, 543–559. [CrossRef]
46. Poikonen, S.; Golden, B. The mothership and drone routing problem. INFORMS J. Comput. 2020, 32, 249–262. [CrossRef]
47. Pasha, J.E.; Purkayastha, Z.; Fathollahi-Fard, S.; Amir, M.; Ge, Y.-E.; Lau, Y.-Y.; Dulebenets, M.A. The drone scheduling problem:

A systematic state-of-the-art review. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1–24. [CrossRef]
48. Raivi, A.M.; Huda, S.A.; Alam, M.M.; Moh, S.A. Drone Routing for Drone-Based Delivery Systems: A Review of Trajectory

Planning, Charging, and Security. Sensors 2023, 23, 1463. [CrossRef] [PubMed]
49. Gu, R.; Yang, L.; Mark, P. Dynamic truck–drone routing problem for scheduled deliveries and on-demand pickups with

time-related constraints. Transp. Res. Part C Emerg. Technol. Sens. 2023, 151, 1–25. [CrossRef]
50. Andy, M.H. Integrated scheduling of m-truck, m-drone, and m-depot constrained by time-window, drop-pickup, and m-visit

using constraint programming. Transp. Res. Part C Emerg. Technol. 2018, 91, 1–14.
51. Sorbelli, F.B.; Corò, F.; Palazzetti, L.; Pinotti, C.M.; Rigonin, G. How the Wind Can Be Leveraged for Saving Energy in a

Truck-Drone Delivery System. IEEE Trans. Intell. Transp. Syst. 2023, 24, 4038–4049. [CrossRef]
52. Xia, Y.; Zeng, W.; Zhang, C.; Yang, H. A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent

drones. Transp. Res. Part Methodol. 2023, 171, 80–110. [CrossRef]
53. Sorbelli, F.B.; Cristina, M.P.; Rigonin, G. On the Evaluation of a Drone-Based Delivery System on a Mixed Euclidean-Manhattan

Grid. IEEE Trans. Intell. Transp. Syst. 2023, 24, 1276–1287. [CrossRef]
54. Liu, B.; Ni, W.; Liu, R.P.; Guo, Y.J.; Zhu, H. Optimal Routing of Unmanned Aerial Vehicle for Joint Goods Delivery and In-Situ

Sensing. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3594–3599. [CrossRef]
55. Lee, S.; Hong, D.; Kim, J.; Baek, D.; Chang, N. Congestion-Aware Multi-Drone Delivery Routing Framework. IEEE Trans. Veh.

Technol. 2022, 71, 9384–9396. [CrossRef]

http://dx.doi.org/10.1016/j.trd.2019.102209
http://dx.doi.org/10.1109/TASE.2014.2326952
http://dx.doi.org/10.1109/TTE.2020.3011682
http://dx.doi.org/10.1016/j.cie.2019.01.020
http://dx.doi.org/10.1016/j.trc.2019.06.016
http://dx.doi.org/10.1287/inte.13.3.1
http://dx.doi.org/10.1287/opre.36.6.929
http://dx.doi.org/10.3138/infor.50.2.059
http://dx.doi.org/10.1287/opre.2022.2304
http://dx.doi.org/10.1287/trsc.2017.0791
http://dx.doi.org/10.1002/net.21864
http://dx.doi.org/10.1287/trsc.2019.0944
http://dx.doi.org/10.1287/mnsc.2017.2824
http://dx.doi.org/10.1016/j.trc.2017.11.015
http://dx.doi.org/10.1002/net.21858
http://dx.doi.org/10.1287/ijoc.2018.0879
http://dx.doi.org/10.1109/TITS.2022.3155072
http://dx.doi.org/10.3390/s23031463
http://www.ncbi.nlm.nih.gov/pubmed/36772502
http://dx.doi.org/10.1016/j.trc.2023.104139
http://dx.doi.org/10.1109/TITS.2023.3234627
http://dx.doi.org/10.1016/j.trb.2023.03.003
http://dx.doi.org/10.1109/TITS.2022.3189948
http://dx.doi.org/10.1109/TITS.2022.3225269
http://dx.doi.org/10.1109/TVT.2022.3179732


Drones 2023, 7, 362 21 of 21

56. Kong, F.; Li, J.; Jiang, B.; Wang, H.; IEEE; Song, H. Trajectory Optimization for Drone Logistics Delivery via Attention-Based
Pointer Network. IEEE Trans. Intell. Transp. Syst. 2022, 24, 4519–4531. [CrossRef]

57. Alan, L.E.; Juan, C.; Morales, C.; Savelsbergh, M. The vehicle routing problem with stochastic demand and duration constraints.
Transp. Sci. 2010, 44, 473–492.

58. Gendreau, M.; Jabali, O.; Rei, W. Future Research Directions in Stochastic Vehicle Routing. Transp. Sci. 2016, 50, 1163–1173.
[CrossRef]

59. Secomandi, N.; Margot, F. Reoptimization Approaches for the Vehicle-Routing Problem with Stochastic Demands. Oper. Res.
2009, 57, 214–230. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TITS.2022.3168987
http://dx.doi.org/10.1287/trsc.2016.0709
http://dx.doi.org/10.1287/opre.1080.0520

	Introduction
	Related Work
	Problem Definition and Algorithm Overview
	Assumptions
	Drone Routing Cost Model
	Problem Formulation
	Algorithm Overview

	Approximation Algorithm for MORE
	Solution for MORE
	Relabelling Customers
	Primary Customers Assignment
	Extended Customers Assignment
	Finding Delivery Trips

	Theoretical Analysis for MORE

	MORE with Time Window Constraint for Customers
	Problem Definition for MORE-TW
	Solution for MORE-TW

	Simulation Results
	Simulation Setup
	Baseline Setup
	Performance Comparison for MORE
	Impact of Drone Capacity Q
	Impact of Number of Customers n
	Impact of Number of Overlapped Served Customers k
	Impact of Number of Drones m


	Limitation
	Conclusions
	References

