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Abstract: With the increasing applications of unmanned aerial vehicles (UAVs) in surveying, mapping,
rescue, etc., the security of autonomous flight in complex environments becomes a crucial issue.
Deploying autonomous UAVs in complex environments typically requires them to have accurate
dynamic obstacle perception, such as the detection of birds and other flying vehicles at high altitudes,
as well as humans and ground vehicles at low altitudes or indoors. This work’s primary goal is to
cope with both static and moving obstacles in the environment by developing a new framework for
UAV planning and control. Firstly, the point clouds acquired from the depth camera are divided into
dynamic and static points, and then the velocity of the point cloud clusters is estimated. The static
point cloud is used as the input for the local mapping. Path finding is simplified by identifying
key points among static points. Secondly, the design of a trajectory tracking and obstacle avoidance
controller based on the control barrier function guarantees security for moving and static obstacles.
The path-finding module can stably search for the shortest path, and the controller can deal with
moving obstacles with high-frequency. Therefore, the UAV can deal with both long-term planning
and immediate emergencies. The framework proposed in this work enables a UAV to operate in a
wider field, with better security and real-time performance.

Keywords: obstacle avoidance; environmental features; unmanned aerial vehicle; control barrier
function

1. Introduction

Unmanned aerial vehicles (UAVs) have been used more often in several industries in
recent years, including surveying and mapping, rescue, patrol, reconnaissance and cluster
attacks [1–5]. With the miniaturization of onboard computers and stereo cameras, UAVs
can replace humans to complete complex tasks in harsh environments. Moreover, the
rapid development of simultaneous localization and mapping (SLAM) has realized UAV
autonomous flight in unknown environments [6,7]. As a result, the safe flight of UAVs has
become a hot topic, and motion planning and control are inextricably linked to safety.

Recently, UAV motion planning has made great progress. The Fast planner [8–10]
adopts a kinodynamic and topological method to search for a safe and feasible trajectory
in the discretized control space of a quadrotor, achieving good experimental results in
static environments. The topology-guided kinodynamic (TGK) planner [11] is a lightweight
planner, but moving obstacles are not considered. The Ego planner [12] takes an optimistic
approach to simplify the front-end path search, optimizing rough initial paths into feasible
trajectories, making the algorithm more lightweight without using a Euclidean signed
distance function (ESDF) map. In general, two main path planning methods include
searching-based and sampling-based. Searching-based methods can often find the optimal
path, but it takes more time in 3D grid maps [13–15]. The sampling-based method can
quickly find the reachable path, but it is often a suboptimal solution [16–18].

Furthermore, some local planners concerning a dynamic environment have been
proposed recently. The vision-based dynamic environment motion planning of quadrotors
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by online replanning was realized in [19], but the framework for avoidance was limited by
the frequency of the planner. The EB-RRT local planner, proposed in [20], performed real-
time optimal motion planning for a mobile robot in a dynamic environment by combining
the elastic band and RRT. The work improved the planner but presented more expensive
computational complexities. As shown in Figure 1, a lightweight and reactive method is
more applicable for safety when there is a moving obstacle blocking the origin trajectory.
The UAV should have the ability to avoid obstacles whilst tracking the origin trajectory.

As for obstacle avoidance control of an unmanned system, there are many methods
for safety verification. Two popular approaches are the Hamilton–Jacobi (HJ) reachable set
and the control barrier function (CBF) [21,22]. As the dimensions of state space increase,
computing the HJ reachability set becomes increasingly expensive, while the CBF offers
real-time system safety with low computational complexity [22]. Therefore, the CBF has
been applied in many fields, such as bipedal robots [23] and mobile vehicles [24]. However,
the CBF cannot be directly used in high-order systems for its special property. For this
reason, Q. Nguyen used the CBF for the safety of high-relative-degree systems, using
back-stepping to derive the control inputs, which is complex and difficult [25].

As a result, we aim to establish a more generic architecture of planning and control to
handle the common environment. On the one hand, incremental establishment of feature
points of the static environment can make the path shorter and search faster. A more
simplified front-end can be developed by detecting the environmental feature points to
quickly find the shortest path. Concretely, corner points in a static environment are obtained
by 3D point cloud feature extraction. In case the target cannot be reached directly, the
shortest path always passes through the obstacle corners. Based on the construction of
the boundary point graph, only the corner points become expanded when expanding the
neighbour nodes. A small amount of data is maintained in an open list, saving memory for
queue sorting and neighbour node expanding. On the other hand, the essential difference
between planning and control is that motion planning has no feedback over a long period
of time, which is an open-loop control, while control has feedback over a shorter period,
which is closed-loop planning. Moving obstacles have uncertain displacement in a planning
period, so the open-loop method is unsuitable. Figure 1 shows that moving obstacles in the
local map occupy the original trajectory in the replanning horizon, and the UAV has no time
to plan a new trajectory. The two main modules in this work are the environment feature-
based (EF) planner and the trajectory tracking and obstacle avoidance (TTOA) controller.

The main contributions of this work are listed as follows:

(1) EF planner

We proposed an efficient planner where front-end path finding is based on the en-
vironment feature points of obstacles, and the back-end trajectory optimization uses the
convex hull property of a B-spline curve to ensure the safety of the trajectory from the
corners of obstacles. Our planner can quickly find the shortest path and achieve a smooth
and safe trajectory.

(2) TTOA controller

Our developed controller is based on the CBF and can track the trajectory while
avoiding moving obstacles in the environment with a small amount of computation without
losing the original tracking.

(3) EF-TTOA framework for a common environment

The EF-TTOA is a more general architecture that deals with the common environment.
The new framework can make an autonomous UAV have both long-term planning ability
and temporary adaptability.

The rest of the paper is arranged as follows. Section 2 introduces the detailed method
of UAV planning and control in a common environment where static and dynamic obstacles
exist simultaneously. Section 3 describes the implementation of the simulation experiment
based on the robot operating system (ROS). Section 4 presents the conclusions from this
work and briefly describes future work.
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(a) (b)

Figure 1. The original trajectory will be blocked by obstacles in the next moment. Circles filled with
dots represent dynamic obstacles, while polygons filled with lines represent the static environment.
(a) A smooth trajectory is given by the motion planner through the clear space safely. (b) Two dynamic
obstacles blocking the original trajectory.

2. Methods

The goal of this work is to address a UAV’s autonomous navigation in typical sur-
roundings. We proposed a framework for planning and controlling a quadrotor UAV to
achieve both target arrival and obstacle avoidance. The schematic diagram of the planning
and control method flow is presented in Figure 2. Firstly, it is necessary to classify the
detected continuous frames of point clouds into two classes, dynamic and static. The static
point clouds are built as a map, while the dynamic point clouds are removed and used as
the input for the trajectory tracking and obstacle avoidance (TTOA) controller after position
and velocity estimation. Second, both the front- and back-end of the suggested EF planner
have seen significant development. Path finding only focuses on a few key points that are
boundary and corner points of the point cloud map. The back-end generates a B-spline
curve based on the path and optimizes the trajectory by using the convex hull property.
Finally, the TTOA controller is designed including trajectory tracking control and obstacle
avoidance control based on the CBF. The TTOA controller can track the planned trajectory
and avoid moving obstacles.

Figure 2. The proposed framework of the path planner and obstacle avoidance control for static and
moving obstacles.
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2.1. EF Planner

A requirement for the motion planning and control of the UAV is the perception of
obstacles. Obstacles in the real world can be both moving and static. We use DBSCAN [26]
and the voting of an individual point to classify obstacles based on several continuous
frames of the point cloud [27]. The overall process is shown in Figure 3. First, the average
velocity of each point cloud is calculated after ground filtering and down-sampling. Then
the velocity of each point cloud cluster is obtained by Equation (1), where vi is the velocity
of obstacle, t is time, pt and pt−1 represent the position in current and previous frame,
respectively, n is the number of points contained in the cluster, and ∆t represents the
time interval between two frames. When the point cloud velocity vi is greater than vmax
(0.3 m· s−1), the object is categorized as a dynamic object because the UAV is already at
risk from it. Furthermore, if a point’s velocity exceeds vmax, the point will vote for it to be
dynamic. The obstacle will be recognized as a dynamic obstacle if the ratio of dynamic
votes Nvote over valid points Nvalid is higher than another threshold Dratio, represented
in (2). Finally, two classifications of dynamic and static obstacles are obtained.

vi =
1
n ∑

pt − pt−1

∆t
(1)

Dratio =
Nvote

Nvalid
(2)

Figure 3. The process of point cloud clustering and classification.

2.1.1. Environment Feature Detection

The planner processes the static point cloud following the aforementioned classifica-
tions, while the controller handles the dynamic point cloud due to its temporal variability.
The obstacle space is much smaller than the free space, so our work just focuses on the key
points of static environments in path searching. Inspired by time elastic bands (TEB) [28,29]
and jump point search (JPS) [30,31], a new front-end local planning approach is proposed.
Similar to the elastic band, Figure 3 shows that the path stretches into a straight line when
there are no obstacles between the starting point and the target. The elastic band will always
go around some obstacle corners when the start point and target are blocked. Therefore, the
planner includes two parts, the extraction of environmental feature points and the design of
a path planner based on these points. To efficiently identify the shortest path in a complex
environment, the system must concentrate on the boundary feature points of obstacles. By
constructing a graph based on these points, we can perform a graph search algorithm to
find the optimal path Figures 4 and 5.

Feature extraction for the down-sampled occupancy grid map can greatly reduce the
search time. Only the edge and corner information is taken into account when determining
the actual path, while the point cloud occupation is used as the gradient information
for the three-dimensional convolution with the Prewitt kernel [32]. By selecting the
appropriate kernel, the key feature points of the environment can be effectively obtained.
Algorithm 1 demonstrates the entire proposed environment feature detection system for
motion planning. To extract features from a grid map’s point cloud, a sliding window is
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used to convolve in three dimensions, moving in different directions. This process computes
the point gradient changes within the window and ultimately calculates each point’s Harris
response value. These values allow for the characterization of each individual point in the
point cloud. The occupation map is a binary map that distinguishes between obstructed
and free configuration spaces. In this type of map, areas with obstacles are represented
by “true” while “false” represents free space. Subsequently, the occupation gradient is
calculated so that the gradient changes of each point are summed in Equation (3).

S(x, y) = ∑
u

∑
v

w(u, v)[I(u, v)− I(u + x, v + y)]2 (3)

The gradient change can be simplified by the first two items of the Taylor expansion
and then expressed as a difference by (4).

I(u + x, v + y) ≈ I(u, v) +
dI
dx

(u, v)x +
dI
dy

(u, v)y (4)

Therefore, the occupation gradient of this point changes as shown in Equation (5).

S(x, y) ≈∑
u

∑
v

w(u, v)[
dI
dx

(u, v)x +
dI
dy

(u, v)y]2 (5)

The covariance matrix M is constructed after the gradient change in each direction
of the obstacle point cloud is obtained. The response value R of points can be obtained
through matrix M, where R = det(M)− k · trace(M)2, and sparse corner points can be
obtained by further filtering, as shown in Algorithm 1.

Figure 4. The shortest path between two points.

Figure 5. Feature extraction of environmental point cloud information can quickly provide accurate
information for path searching. Blue blocks represent obstacles occupying the grid map and green
points represent feature points of obstacles.
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Algorithm 1 Environment feature detection
Result: Write here the result
Pos←− ConnerDetection(Start);
Target←−Initial();
PCs = ∅;
FeaturePoints=∅;
while Pos != Target do

PCs←−Subscribe(Local Point Clouds within FOV) ;
PCs.DownSampling () ;
Convolution3D(PCs);
[Nx,Ny,Nz]←−NormalVector(PCs);
for point ∈ PCs do

M←−Construct(Nx,Ny,Nz);
R←−ResponseOfDetector(M);
Non-MaxThreshold(R);
FeaturePoints.push(point);

end
end

2.1.2. Path Planning

In contrast to the random search method of local sampling, this work establishes
the sparse search space with points as a visual graph on the basis of accurately obtaining
the potential waypoints and then uses the heuristic search algorithm to finally obtain the
shortest path. This work uses Algorithm 2-based A* for path finding. P is the feature points
set and G is the graph constructed by these points. Unlike the traditional A*, the neighbour
node of each point is not the neighbour node of the grid map but all the visual nodes after
collision detection at a certain point. In addition, the global search space can be stored for a
return trip. It is unnecessary to repeatedly map and search the explored environment as it
can be reused with one accurate exploration.

Algorithm 2 Path finding

P←− ConnerDetection(Start);
G←− CreateGraph( P,Target);
OPEN = ∅;
CLOSE = ∅;
OPEN.push(START) ;
while OPEN != ∅ do

N←− OPEN.popMin() ;
CLOSE.push(N);
if N=Target then

return true;
break ;

else
for M ∈ unexpanded neighbors o f N do

if g(M)=infinite then
g(M)←− g(N) + CNM ;

OPEN.push(N);
else if g(M) > g(N) + CNM then

g(M)←− g(N) + CNM ;
end

end
end

end
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2.1.3. Trajectory Generation and Optimization

Because this cannot be fed directly to the UAV for operation after using the above
method to find the shortest path, it is necessary to generate a safe, smooth and dynamic fea-
sible trajectory. The trajectory must be dynamically feasible for the UAV and collision-free.
We use the uniform B-spline curve as the UAV trajectory. Because of its benefits, we utilize a
B-spline curve for the UAV’s trajectory. For instance, the convex hull property and features
of a B-spline derivative are still a B-spline curve. Both of these properties effectively assist
us to ensure that the trajectory is collision-free during gradient optimization. The former
property makes it simpler for us to impose the dynamic constraints of the UAV on the
trajectory. The three basic elements of a B-spline curve are the degree Pb, control points
{Q0, Q1, . . . , QN} and knot vector [t0, t1, . . . , tM]. The complete description of the B-spline
curve used here is as defined in Equation (6).

p(s(t)) = s(t)T Mpb+1qm

s(t) = [1 s(t) . . . spbt(t)]T

qm = [Qm−Pb Qm−Pb+1 Qm−Pb+2 . . . Qm]
(6)

where pb set as 3 and Mpb is a constant matrix [33], QN ∈ R3. The cost function is defined
in Equation (7).

J = Jc + Jd (7)

where Jc and Jd ensure the safety and dynamic feasibility of the trajectory, respectively.
The trajectory optimization is based on the ESDF map. In order to ensure the smooth-

ness and safety of the trajectory, we transform the trajectory optimization of this work into
an optimization problem with inequality constraints, as shown in Equation (8). The smooth-
ness of the trajectory is the goal of the objective function. Using the B-spline’s convex hull
property, the constraint inequality makes sure that the trajectory close to the obstacle’s
corner does not encroach into its interior.

The convex quadrilateral produced by four knots on either side of the corner point
is outside the obstruction, according to the inequality constraint, guaranteeing the safety
of the associated stage. Figure 6 illustrates the steps taken to develop the initial trajectory
into a feasible trajectory. The green line shows the optimum safety trajectory, while the
red arrows indicate the gradient field formed by obstacles that push the orange initial
trajectory outward.

Jc =
N−pb+1

∑
i=pb−1

‖Qi+1 − 2Qi + Qi−1‖

s.t.(AQi:i+3 − BQj) · ∇esd f (Qj) ≥ 0

(8)

where Qj is the corner point in the initial path and∇esd f (Qj) represents the gradient vector
of the ESDF map at the corner point. The matrices A and B represent the convex hull and
are defined below.

A =


1 0 0 0
0 0 0 1
−1 1 0 0
0 0 1 −1

, B =


1
1
0
0

.

Jd is an additional cost function ensuring the dynamic feasibility of the UAV, as shown
in Equation (9). This achieves the dynamic feasibility of the entire trajectory by punishing
points that exceed the UAV’s velocity and acceleration control points.

Jd =
N−pb

∑
i=pb−1

fd(Vi) +
N−pb

∑
i=pb−2

fd(Ai) (9)
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where fd(v) = max(0, v2 − v2
max)

2, Vi =
Qi+1−Qi

∆t and Ai =
Qi+1−Qi

∆t represent the velocity
and acceleration at each trajectory control point, respectively.

Figure 6. The brown line is the initial path, the green curve is the optimized path and the red arrows
are the gradient direction formed by the obstacles. The black dotted lines are the convex hull ensuring
the safety of the trajectory.

2.2. TTOA Controller

In this section, the TTOA controller is developed from the CBF based on quadrotor
dynamics. First, the basic theory of the CBF is introduced and a more common method is
developed based upon it. Second, the TTOA controller is designed for flexible trajectory
tracking and obstacles avoidance.

2.2.1. Control Barrier Function

Firstly, a non-linear affine control system is considered in Equation (10).

ẋ = f (x) + g(x)u (10)

where x ∈ Rn, f : Rn → Rn , g : Rn×m → Rn are locally Lipschitz. u(x, t) is the input of
the system. Similar to the control-Lyapunov function (CLF) expanded from the Lyapunov
function, the CBF is an extension-form barrier function to systems with control inputs.
The ordinary Lyapunov function is used to verify a system’s stability while CLF is used to
find feasible control such that the system can be brought to the zero state asymptotically.
The CBF is used to limit the controller so that the system state x does not enter domain D.
Therefore, the difference is that the former ensures the stability of the system, while the
latter ensures the safety of the system. Considering affine systems (10), the main role of the
CBF is to construct a safe set described as the barrier function h(x) : D ⊂ Rn → R, yielding
Equation (11):

C = {xεD ⊂ Rn : h(x) ≥ 0}
∂C = {xεD ⊂ Rn : h(x) = 0}
Int(C) = {xεD ⊂ Rn : h(x) > 0}.

(11)

By designing a suitable control input invariant set, the system state is limited to the
safe set C. Let C ⊂ D ⊂ Rn be the super-level set of a continuously differentiable function
h : D → R, then h is a CBF if an extended class K∞ function γ exists for the control
system (Figure 7).

sup
u∈U

[
L f h(x) + Lgh(x)u

]
≤ γ(h(x)) (12)
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where ḣ(x) = L f h(x) + Lgh(x)u for all x ∈ D. Usually, a CBF-QP is used to form a
quadratic programming (QP) problem as shown in Equation (13).

u(x) = arg min
u∈Rm

1
2
(u− un)

T H(u− un)

s.t.
[

L f h(x) + Lgh(x)u
]
≥ −γ(h(x)) (13)

As a powerful tool for system safety, the CBF requires that the first derivative of the
barrier function must explicitly include control input u(x, t), which cannot be directly
applied to high-order systems. A high-relative-degree constraint means that the n-order
derivative of the obstacle function contains a control input, n ≥ 2. Therefore, this work
proposes a new type of CBF for quadrotors by using the relative velocity and position
between the UAV and obstacles.

Figure 7. Block diagram of the closed-loop system.

2.2.2. TTOA Controller Design

The translation and rotation of a quadrotor, described as the Newton–Euler function,
is shown in Equation (14). The UAV’s position is controlled by changing its thrust f ∈ R
and altitude R ∈ SO(3), controlled by moment M ∈ R3.

x = v̇s.

mv̇s. = mge3 + f Re3

Ṙ = RΩ̂

JΩ̇ + Ω× JΩ = M

(14)

where x ∈ R3 and v ∈ R3 are the position and velocity of the UAV, respectively, and f is
the thrust of the UAV. Ω ∈ R3 represents the angular velocity of the UAV, J ∈ R3×3 is the
inertia matrix with respect to the body-fixed frame. e3 = [0; 0; 1] ∈ R3 is z-axis of the inertial
frame. The hat map .̂ : R3 → so(3) aims to convert a vector into an anti-symmetric matrix.

In contrast to the traditional tracking controller [34], the controller in this work needs
to deal with static and moving obstacles on the track. The block diagram of the closed-loop
system is shown in Figure 7. The main work this section describes the controller’s design.
xd and b1d are the desired position and yaw obtained from the trajectory, respectively.
Quadratic optimization is used to constrain the thrust of the UAV to ensure safety when
facing obstacles. Before this, the desired roll angle of the UAV is altered according to
the barrier function h(·). The new desired altitude R∗ is used as the reference input
of the altitude tracking controller. Finally, trajectory tracking, quadratic optimization
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constrained by the CBF, altitude modulation and altitude tracking constitute the complete
TTOA controller.

In order to avoid moving obstacles, the CBF needs to contain motion information of
the obstacle. Therefore, a velocity obstacle method is introduced into the CBF to constrain
the velocity of the UAV. The CBF proposed this work can be defined by Equation (15)

h(x) = vT
r Hvr − r2

ovT
r vr (15)

where H = [dTdI − ddT ] is a symmetric matrix, constructed from the distance between the
UAV and the obstacle. ro is the radius of the obstacle contour. vr is the velocity of the UAV
relative to the obstacle. h(x) ≥ 0 indicates that vr is falling into the obstacle area during
flight. Through the Lie derivative of h(x), we can obtain ḣ(x) from Equation (16).

ḣ(x) = 2Hvr v̇r + vT
r Ḣvr − 2r2

ovT
r v̇r (16)

where vr = ge3 − f
m R∗e3 , Ḣ = vT

r d + dTvr − 2dvT
r . R∗ = RdRθ presents rolling based

on the original expected altitude, while Rd and Rθ are the desired altitude and rotation
matrices of the UAV, respectively. According to the dynamics of the trajectory, we can
adjust the feasible roll of the UAV to avoid obstacles. c and s represent cos(ϑ) and sin(ϑ),
respectively. ϑ is a function of h(x) and b is a sign function describing the left or right roll of
the UAV, obtained according to the original trajectory. Roll satisfies the dynamic constraints
of the UAV by adjusting l and k.

Rϑ =

 1 0 0
0 c −s
−1 s c

, ϑ =
bπ

2(1 + el−kB(x))

Therefore, by rewriting Formula (13), trajectory tracking and obstacle avoidance can
be transformed into a QP problem by Equation (17). To avoid obstacles in real time, the
optimal control must be solved online at each step. It is easy to find a closed-form solution
to the QP program. For a low-dimensional QP with clear physical meaning, finding a
closed-form solution greatly improves the real-time performance. In this work, the objective
function is the quadratic function concerning thrust. As shown in Figure 8, gradient zones
Oi represent constraints caused by obstacles. f ∈ [0, fmax] is the feasible control space and
the approach of each obstacle will form a constraint to the UAV. The vertical lines are far
from the nominal thrust fn, when no obstacles are encountered. The constraints of the
optimization problem are not activated, so the optimal control is the nominal inputs. As the
obstacle approaches, the feasible control input space decreases as the lines move closer, and
the optimal solution occurs at the lowest intersection of the lines and the quadratic curve.

u(x) = arg min
u∈Rm

1
2
( f − fn)

2

s.t.
[

L f hi(x) + Lghi(x)u
]
≥ −γ(hi(x))

f ≤ fmax

(17)

where i indicates the serial number of the obstacles. Finally, the TTOA controller contains
two parts: thrust and attitude. A reasonable expected altitude R∗ can expand the feasible
range of the UAV’s thrust. In general, this can improve the obstacle avoidance ability of
the UAV.

f ∗ = fn −
max(Lghi(x) fn − γhi(x))

Lghi(x)

R∗ = RdRϑ

(18)
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Figure 8. Illustration of QP constrained by the CBF.

3. Simulation and Discussion

We simulated the EF planner and TTOA controller with static and mixed environments,
respectively. The static environment was randomly generated by a point cloud map kit for
random tests. The more general situation included dynamic and static obstacles, simulated
in the ROS-Gazebo-PX4 SITL environment. Figure 9 shows the simulation framework in
the general obstacle environment. All modules were simulated on an Intel Core i7-10700F
CPU@2.9GHz with 16 G SSD.

Figure 9. Framework of the simulation.

3.1. Simulation of the EF Planner with a Static Environment

The EF planner proposed in this work is implemented in C++11 with an open project
3D point cloud processing point cloud library (PCL). Feature extraction and path search
is based on down-sampled environmental obstacle point clouds. The back-end trajectory



Drones 2023, 7, 359 12 of 16

optimization adopts the B-spline optimization method and uses the gradient of the ESDF
map to push the trajectory to a more spacious position.

In Figure 10, the blue blocks are obstacles in the environment, the green points are the
corresponding feature points, and the purple disks and curve represent the UAV and its
trajectory, respectively. The UAV marks and stores the edges and corners of the obstacle
when continuously exploring the unknown environment, and the environmental feature
points on the whole flight path are saved in a small storage memory.

Figure 10. The quadrotor UAV autonomous flight with the proposed planner in dense environments.

The trajectory of the UAV bypassing obstacles is continuous and smooth. Figure 11
shows the comparison of time consumption for path finding and the length of the trajectory
from (0,0,1) to (5,0,1) with different obstacle densities. Each group of data is the average of
10 tests. The path found by the proposed method in this work is obviously the shortest.
The proposed planner takes less time than the state-of-the-art planners as the barriers
become sparse. The EF planner can quickly search for the shortest path and generate
a trajectory within 10 ms. Compared with the planner in [9], only feature points are
considered in the process of path finding, reducing the sampling time and increasing the
accuracy of the path. The search space of the proposed method is reduced to a sparse set
of points, thus reducing the search time. However, as the density of obstacles increases,
the proposed method requires more time to process the point cloud of features. Therefore,
when the obstacle density is greater than 0.25, the proposed method takes more time
than [9]. Therefore, the proposed method is unsuitable for situations where obstacles
exceed 0.4. Generally speaking, 0.4 is already an extremely large number of obstacles.

3.2. Simulation of the Proposed Framework with a Mixed Scene

In order to verify the performance of the EF-TTOA framework in mixed scenarios,
we realized this simulation with the ROS-Gazebo-PX4 open-source platform. As shown
in Figure 12, the simulation environment is built in Gazebo. The UAV needs to cross the
obstacle-filled environment from the initial position (0,0,1) to the goal (45,0,1.25). There is
no effective way to deal with moving people and coloured cubes in the environment using
the existing planners. The EF-TTOA framework can improve the success rate of the task.

Figure 13 shows the comparison of the actual flight trajectory with [9,12]. The planned
and real trajectory of the proposed work are red and blue, respectively. The planner
proposed in [9] fails to deal with moving dynamic obstacles, while the planner proposed
in [12] always flies with a longer trajectory. It can be seen that the UAV can not only fly
smoothly in the static environment, but also fly safely in the environment with moving
obstacles. Figure 14 shows the position and yaw of the UAV. The simulation shows
that our approach is able to find the shortest and smoothest path compared with the
existing planners. In addition, our method is more applicable because the dynamic obstacle
avoidance problem is delegated to the obstacle avoidance controller with higher-frequency.
Compared with existing methods, our method has the advantage of a stronger ability to
deal with a dynamic environment. In the simulation, it was found that adding roll angle
modulation can more easily realize the obstacle avoidance-based CBF.
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Figure 11. Comparison of the proposed and state-of-the-art planners in terms of time and distance,
varying the obstacle density. The horizontal axis represents the proportion of the volume occupied by
obstacles in the space.

Figure 12. Task environment in the ROS-Gazebo-PX4 SITL simulator.

Figure 13. Comparison of the actual flight trajectory with [9,12].
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Figure 14. Position and yaw of the UAV.

4. Conclusions

In this work, a systematic planning and control technique for autonomous and flexible
obstacle avoidance for UAVs is proposed. The EF planner constructs a fast front-end with a
smaller search space and back-end with concise optimization for smoothness and corner
collision-free trajectories. The control input is obtained by solving the CBF-QP problem
with a closed-form solution. For moving obstacles, the controller rather than the planner
performs the actions faster. Therefore, the EF-TTOA framework can handle more general
scenarios. This technology is of great significance to other UAVs.

For further consideration, the method will be extended to fixed-wing UAVs for flying
past obstacles, similar to a bird moving sideways or contracting its wings through a
narrow channel.
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