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Abstract: This paper proposes a novel robust orientation estimator to enhance the accuracy and
robustness of orientation estimation for inertial–magnetic sensors of the small consumer–grade drones.
The proposed estimator utilizes a trust–region strategy within a nonlinear optimization framework,
transforming the orientation fusion problem into a nonlinear optimization problem based on the
maximum likelihood principle. The proposed estimator employs a trust–region Dogleg gradient
descent strategy to optimize orientation precision and incorporates a Huber robust kernel to minimize
interference caused by acceleration during the maneuvering process of the drone. In addition, a
novel method for evaluating the performance of orientation estimators is also presented based on
visuals. The proposed method consists of two parts: offline calibration of the basic cube using
Augmented Reality University of Cordoba (ArUco) markers and online orientation measurement
of the sensor carrier using a nonlinear optimization solver. The proposed measurement method’s
accuracy and the proposed estimator’s performance are evaluated under low–dynamic (rotation)
and high–dynamic (shake) conditions in the experiment. The experimental findings indicate that the
proposed measurement method obtains an average re–projection error of less than 0.1 pixels. The
proposed estimator has the lowest average orientation error compared to conventional orientation
estimation algorithms. Despite the time–consuming nature of the proposed estimator, it exhibits
greater robustness and precision, particularly in highly dynamic environments.

Keywords: onboard sensor fusion; nonlinear optimization; visual measurement; drone
orientation estimator

1. Introduction

The accuracy of orientation estimation plays a crucial role in enhancing the overall
performance of drones. Numerous drone applications can benefit from accurate orientation
estimation, including navigation, perception, autonomous flight, and task execution [1–6].
Firstly, improving the orientation precision in navigation applications can reduce the likeli-
hood of unintended route deviation and ensure maritime safety in dynamic environments.
Secondly, using predicted orientation information from motion sensors can mitigate the
deficiencies of motion distortion in the perception system of visual detectors equipped with
low–altitude drones. This characteristic enhances the output precision of the data fusion
odometer in the perception system, allowing drones to make decisions based on precise
perception data [3,4]. In addition, by increasing the accuracy of orientation estimation,
drones can substantially enhance the dependability and efficiency of autonomous flight
and task completion. By approaching the target direction, drones can implement tasks
more precisely, resulting in safer and more efficient operations for applications such as
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plant protection and aerial photography [5,6]. In summary, improving the precision of
orientation estimation has significant practical value.

Small consumer-grade drones commonly employ Micro Electrical System (MEMS)
inertial–magnetic sensors as onboard orientation sensors. An inertial–magnetic sensor
consists of a tri–axis gyroscope, a tri–axis accelerometer, and a tri–axis magnetometer.
The magnetometer measures the intensity of magnetic induction. Under the condition of no
interference from external magnetic fields, the measured value of the magnetic sensor is the
geomagnetic vector, which is the tangent direction of the geomagnetic field in the magnetic
induction line of the drone location (pointing to the north magnetic pole). Accelerometer
is used to measure the specific force of the drone, which incorporates the acceleration of
gravity and the acceleration of the drone’s motion. The direction of the gravity vector is
perpendicular to the Earth’s surface and points toward the Earth’s center, which can be
considered perpendicular to the Earth’s surface within a small range. The angular velocity
of the drone is measured using gyroscopes. By measuring the geomagnetic vector, drones
equipped with inertial–magnetic sensors could correct their heading without interference
from an external magnetic field [7]. It is clear that the airborne inertial–magnetic sensor’s
orientation fusion method offers a broader range of possible applications than the inertial
measurement unit (IMU).

Two significant factors affect the orientation precision of inexpensive drones. First,
the inherent limitations of the MEMS devices used in these drones, such as gyroscope drift
and random drift, necessitate more precise integrated gyroscope orientation measurements.
The second factor is the effect of drone maneuvering acceleration on the measurement of
gravitational acceleration, which impacts the precision of orientation estimation. Using
the gravity acceleration vector and geomagnetic vector to correct the orientation of drones
is the central concept of current mainstream orientation estimation algorithms, which
aim to circumvent the issues listed above. These algorithms can be broadly categorized
into two groups. The first type of complementary filtering algorithm and its derivative
methods [8–11] combine sensor data with a high signal–to–noise ratio, such as the high–
frequency component of gyroscope data and the low-frequency component of other sensor
(accelerometer and magnetic sensors) data, based on device characteristics. The Mahony
filter [10] and Madgwick filter [11] are two typical implementations of complementary
filters. The Mahony filter takes advantage of the benefits of accelerometers and gyroscopes
by modifying fusion process weights using proportional and integral (PI) controllers
in the frequency domain to establish a complementary relationship between gyroscope
and accelerometer outputs and to reduce drift errors. For efficient quaternion updates,
the Madgwick filter employs a gradient descent algorithm. It utilizes boundary conditions
to determine the filter gain, ensuring that convergence speed is not less than the speed of
orientation changes. This form of algorithm is frequently utilized in tiny consumer drones.
The second group consists of algorithms that employ Kalman filters [12–15], such as the
extended Kalman filter (EKF) [12] and error–state Kalman filter (ESKF) [13–15]. These
algorithms use sensor covariance–based measurement data combinations to recursively
rectify and reduce the orientation estimator’s variance, enhancing its accuracy. The Kalman
filter is optimal for linear systems with minimal variance and relies on precise prior sensor
parameter knowledge. Inaccurate filtering parameters can lead to convergence on incorrect
solutions, thereby causing inconsistency [14]. Compared to the nominal variable, the ESKF
state variable is an error quantity, which is a minor quantity that changes slowly. Utilizing
error variables permits filters to linearize the ideal model more precisely.

To enhance the precision and robustness of orientation estimation, we propose a novel
estimator based on a nonlinear optimization framework that is inspired by the Madgwick
filter and ESKF. Three stages make up the proposed algorithm. From the quaternion
kinematics equation, we first derive an a priori solution for the orientation variable. Next,
we derive an optimization problem for the increment of orientation variables based on
the principle of maximum likelihood. The trust–region solver is then used to update the
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orientation quaternion. We incorporate Huber robust kernel functions into the solver to
reduce the effect of maneuvering acceleration on measurements of gravity.

We also propose a method for measuring orientation using a monocular camera to
evaluate the precision performance of the estimator. The proposed measurement method
consists of two stages: the offline calibration of the Base Cube (where the sensor is attached
to a Base Cube Augmented Reality University of Cordoba (ArUco) [16,17] marker–labeled)
and the online measurement of sensor orientation. During the calibration procedure, we
generate multiple data pairings using the Perspective–n–Point (PnP) [18] algorithm and
combine them with a nonlinear optimization solver to determine the relative rotation
relationship between adjacent markers. We also measure the relative rotation of the Base
Cube frame to the sensor body frame, which is used for orientation alignment when
evaluating the estimator’s performance. We use the calibration parameters during the
measurement phase to directly measure the sensor’s orientation with the PnP algorithm to
increase measurement efficacy.

In the experimental portion, four experiments are conducted to assess the precision of
visual measurement and the performance of the orientation estimator: PnP algorithm accu-
racy testing, adjacent marker calibration accuracy testing, hand–eye calibration accuracy
testing, and estimator performance testing. According to the test results, the ArUco–based
orientation estimation is highly accurate, and all the combined algorithms that participated
in the test achieve positive results. The P3P algorithm combined with the Dogleg optimizer
obtains the lowest rotation error in all five test sets. The utmost attitude residual after
alignment, as determined by the hand–eye calibration results, is 0.044 rad. Using the
measured reference orientation, the performance of complementary filters (Mahony [10]
and Madgwick [11]) and ESKF on the Advanced ARM Machine (ARM) platform, as well
as the performance of the proposed estimator, are evaluated. The proposed algorithm
displays a small average orientation error (absolute value) under low– and high–dynamic
conditions. Under highly dynamic conditions, the performance advantage of the proposed
algorithm is particularly evident, indicating that it is more resistant to the interference of
maneuvering acceleration.

As a supplement, we assess the estimator’s efficiency on the ARM and X86–64 plat-
forms. According to the experimental findings, the Madgwick filter [11] has the quickest
calculation speed for orientation. The average runtime of the proposed estimator for a
single frame on the ARM platform is 22.4 ms, while on the X86-64 platform, it is 2.67 ms. Al-
though it is time–consuming, the proposed algorithm can calculate orientation in real–time
and is more accurate and robust than traditional algorithms.

The main contributions of this paper are as follows:

1. We propose a novel nonlinear optimization algorithm for improving the bearing esti-
mation of inexpensive airborne inertial–magnetic sensors. The proposed algorithm
utilizes the Huber robust kernel to suppress maneuvering acceleration interference of
the drone and a trust-region strategy to optimize positioning precision. The experi-
ments indicate that our algorithm has significant advantages in orientation accuracy
under high–dynamic conditions.

2. We propose a method for measuring orientation with a monocular camera based on
nonlinear optimization and evaluate the measurement error of the proposed method
in depth.

3. We evaluate the accuracy and robustness of the proposed estimator, complementary
filtering algorithms, and typical implementations of Kalman filtering algorithms
relative to visual reference orientation under low– and high–dynamic conditions
on the ARM platform. In addition, we assess the operational effectiveness of the
aforementioned algorithms on the X86–64 and ARM platforms, which can serve as a
reference for airborne multimodal fusion units.
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2. Related Work
2.1. Trust–Region Optimization Algorithm

As a solver for nonlinear optimization problems, the trust–region algorithm has
widespread application in multi–sensor fusion and visual localization. The nonlinear opti-
mization framework has demonstrated higher accuracy in sensor fusion localization [19,20]
compared to KF algorithms due to optimization algorithms’ capability to iteratively im-
prove the precision of optimization variables throughout the process. The primary objective
of the trust–region algorithm is to solve the cost function within a bounded region by choos-
ing an appropriate step size for each iteration. The Levenberg–Marquardt (LM) algorithm
and Dogleg algorithm are typical trust–region algorithm implementations [21]. The gra-
dient descent strategy is the primary difference between the two algorithms. The LM
algorithm accomplishes optimization by balancing the step size of the local model and the
quality (descent ratio) by adjusting the damping factor. The damping factor is introduced
in the LM algorithm to guarantee the positive definiteness of the Hessian matrix, thereby
ensuring that the iteration is always in the direction of decreasing the loss function value.
The Dogleg algorithm calculates Gaussian–Newton and gradient descent steps indepen-
dently during each iteration step and chooses the updated trajectory and step size based on
the trust zone radius. For small–scale optimization problems, the Dogleg algorithm usually
has a faster convergence speed compared to the LM algorithm [22]. In order to enhance
the accuracy of orientation estimation and measurement, we draw inspiration from the
nonlinear optimization framework and employ the trust-region algorithm as a solver. We
aim to optimize the estimation process and refine the measurements by leveraging the
trust-region algorithm.

2.2. Perspective–n–Point Algorithm

A fundamental task in visual orientation measurement is to recover the camera’s pose
relative to a reference frame using a camera projection model. This involves associating
image coordinates with corresponding points in the real world, allowing for the estimation
of the camera’s pose. Typically, the Perspective–n–Point (PnP) algorithm is utilized for
this purpose, as it attempts to precisely compute the camera’s position and orientation
based on the correspondence between 3D reference points and their 2D image projections.
By employing the PnP algorithm, we can effectively recover the camera’s pose from visual
measurements and align it to the reference coordinate system. The Perspective–n–Point
(PnP) algorithm [19] is a class of camera orientation estimation algorithms. It computes the
camera’s position and orientation based on its projection model, using known 3D points
and their image projection points. Practical applications of the PnP algorithm include
robot navigation, augmented reality, autonomous transportation, and 3D reconstruction.
As illustrated in Figure 1, the input of the PnP algorithm are the object points in the
reference frame and their corresponding image points in the camera normalized camera
coordinate system. The output are the camera’s rotation and translation matrices . Standard
PnP algorithm implementations include Perspective-3-Point (P3P) [23–25], direct linear
transform (DLT) [26], EPnP [27], and UPnP [28]. The P3P algorithm solves the rotation
and translation matrices of the camera based on the geometric relationship between object
points and image points. The DLT algorithm solves the PnP problem using linear equations.
The EPnP algorithm is a nonlinear optimization–based algorithm that solves the rotation
and translation matrices of the camera by minimizing the re–projection error in the camera
frame. The UPnP algorithm is also a nonlinear optimization based algorithm. Unlike the
EPnP algorithm, the UPnP algorithm augments its optimization variables with internal
camera parameters. In this paper, we endeavor to measure the orientation of the proposed
estimator using a monocular camera. Due to the sensitivity of the optimization algorithm
to the initial value, we use the PnP algorithm to measure the orientation as the initial value
and a nonlinear optimization solver to enhance the accuracy of the attitude measurement.
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Figure 1. Description of Perspective–n–Point (PnP) Algorithm. The objective of the algorithm is to
determine the relative rotation Rc

r ∈ R3×3 and translation tc
r ∈ R3 between the reference frame and

the camera frame. pr
i ∈ R3 represents one of the object points in the reference coordinate system.

p̄r
i ∈ R2 represents the corresponding image point of pr

i in the normalized camera frame.

2.3. ArUco Marker

The Augmented Reality University of Cordoba (ArUco) marker is a form of landmark
based on two–dimensional codes (as depicted in Figure 2) that is widely used in robot pose
estimation and augmented reality [29,30]. Each ArUco marker has a unique identifier (ID),
and the position and posture of the markers can be determined by distinguishing the black
and white squares within the ArUco marker, as well as their spatial relationships and
labeling rules [31]. The ArUco marker’s recognition process begins with preprocessing
operations, such as denoising and graying, to enhance the efficacy of subsequent processing.
The designated edges are then extracted using edge detection algorithms, such as the Canny
operator. The intersection sites on the edge are then identified, and the binary encoding of
the markers is converted into identifiers by the marking rules. The ArUco marker is highly
durable and adaptable to different illumination and noise environments [32]. In order to
guarantee the precision of orientation assessment, we employ the ArUco marker as a visual
reference in this paper.

Figure 2. The patterns of Augmented Reality University of Cordoba (ArUco) marker. The sequence
of marker patterns’ ID from left to right is 0∼5.

3. Overview of Proposed Algorithm

As depicted in Figure 3, we propose an orientation estimator based on a nonlinear
optimization framework and a vision-based measurement method of sensor orientation.
The proposed estimator continues to rectify the orientation of the sensor using the gravity
acceleration vector and geomagnetic vector. To improve the orientation accuracy, we
endeavor to decouple the iterative process of solving the orientation problem from the
timeline and seek the optimal solution for the orientation at each time step. Based on
this concept, we transform the orientation estimation problem into a maximum likelihood
based nonlinear optimization problem. Since the optimization problem is sensitive to the
initial value, we estimate the orientation by solving the quaternion kinematics equation
a priori. Then, we use the likelihood model of the gravity vector and magnetic vector to
construct the cost function and the trust–region solver to optimize the orientation so that
the iterative process is always in the orientation of gradient decline, thereby enhancing the
optimization efficiency. Since the accelerometer’s measured value is the specific force of
the carrier, it incorporates the carrier’s maneuvering acceleration. We implement Huber
robust kernels [33] in the solver to adaptively suppress the anomalous interference of
these measurements on orientation updates, enhancing the estimator’s robustness under
conditions of high dynamicity.
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Figure 3. A pipeline of the proposed algorithm consists of two components, robust orientation
estimator (yellow part) and measurement of sensor orientation (blue part). Only the stereo camera’s
left eye is utilized in the online measurement procedure.

To evaluate the efficacy of the proposed orientation fusion algorithm, we also propose
a method for measuring orientation using a monocular camera. Two components comprise
the proposed method: offline calibration of the Base Cube and online measurement. We
connect the sensor to the Base Cube and position ArUco markers with distinct patterns
on each cube’s six surfaces. The objective of the offline calibration section is, therefore,
to precisely measure the relative rotation of the adjacent markers and the relative rotation
of the Base Cube frame concerning the sensor frame (hand–eye calibration). The former
is intended to harmonize the measurement reference during the rotation process, while
the latter is intended to align the orientation when evaluating the estimator’s performance.
In the online measurement phase, we use the PnP algorithm directly to determine the
orientation of the Base Cube based on the calibrated parameters and to align it to the sensor
frame at the onset.

Four frames are defined to facilitate the expression of the proposed algorithm, as shown
in Figure 4. We use the East-North-Upper (ENU) inertial frame, where the sensor is located
at the initial time t0, as the inertial reference frame F I . F b represents the sensor body frame,
whereas we use the device frame of the gyroscope. The accelerometer and magnetic part
of measurement data will be projected onto F b. Fm0 represents the BC frame, which is
also the marker frame of ID(0). In addition, we use Fmi to denote the marker frame of
ID(i). Each ArUco marker’s frame is unique, and the z-axis is perpendicular to the marker’s
external orientation. F c represents the spatial camera frame of the measuring camera.
The z-axis is the optical center pointing outward along the camera’s optical axis, the x-axis
is to the right, and the y-axis is downward.

Figure 4. An overview of the coordinate system used in this paper.

In addition, Table 1 displays the symbols and rules we used in this paper.
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Table 1. The declarations of symbols and rules.

Symbols Description

X Bold capital letters represent matrices
x Bold lowercase letters represent vectors
x Scalar
x̃ Measurement value of sensor
p̆ Probability
q Normalized quaternion

[q]im The imaginary part of a quaternion
x◦ Optimal value
F Coordinate system

The above rules do not apply to table headers.

4. Proposed Robust Orientation Estimator

This section introduces three components of the robust orientation estimator in depth:
the quaternion kinematic, the cost function of field measurement, and the robust trust–
region solver.

4.1. Quaternion Kinematic

The Hamiltonian quaternion q is used as this paper’s parameterized form of the
orientation variable. The Hamiltonian quaternion can be represented as:{

q|q = [w, v]T , w ∈ R, v ∈ R3
}

(1)

If qI
b(t) is the sensor body frame F b relative inertial reference system F I orientation

quaternion, then the quaternion kinematic is as follows:

q̇I
b(t) =

1
2

Ω(ωb(t))qI
b(t) (2)

Ω(ωb) =

[
0 −ωb

T

ωb −ω∧b

]
, ω∧b =

 0 −ωbz ωby
ωbz 0 −ωbx
−ωby ωbx 0

 (3)

where ωb = [ωbx ωby ωbz]
T represents the angular velocity of body frame F b. To derive

the quaternion qI
b,k at time k, we digitally discretize Equation (2). The k + 1 time interval ∆t

orientation quaternion qI
b,k+1 derived by median integration is:

qI
b,k+1 = qI

b,k +
1
2
(q̇I

b,k + q̇I
b,k+1)∆t (4)

4.2. Cost Function of Field Measurement

The field vectors (gravity vector and magnetic vector) at the sensor location can be
approximated as constant vectors in R3 in a narrow range. In theory, using field vectors in
two separate coordinate systems can restore relative rotation between coordinate systems.
An accelerometer’s measured value is the specific force, which incorporates gravity and
the carrier’s maneuvering acceleration. Because of the interference of carrier maneuvering
acceleration, the precision of the observed value of gravity acceleration is unclear. Thus,
we model the uncertainty of carrier maneuvering acceleration as the noise term ηa ∈ R3

and obtain the measurement model as follows:

ãk = [(qI
b,k)
∗ ⊗ q(g I)⊗ qI

b,k]im + ηa (5)

q(ãk) = [0 ãk]
T (6)
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where ãk ∈ R3 is the accelerometer measurement value at time k. (qI
b,k)
∗ is the conjugation

of the quaternion qI
b,k. The gravity vector in F I is denoted by g I . The imaginary component

of the quaternion q is represented by [q]im. Assume that ηa ∼ N (03×1, σa), while σa ∈ R3

is the gravity measurement variance. Then, we obtain the likelihood probability of the
gravity measurement, which is:

p̆(ãk|qI
b,k) = λa exp

1
2
(ea,k(q

I
b,k, ãk)

TΣ−1
a ea,k(q

I
b,k, ãk)) (7)

ea,k(q
I
b,k, ãk) = [(qI

b,k)
∗ ⊗ q(g I)⊗ qI

b,k]im − ãk (8)

where λa is a constant that is independent of qI
b,k. g I is the gravity in reference frame F I .

The cost function of the measured gravity at time k is defined as ea,k(qI
b,k, ãk) ∈ R3.

Given that a vector’s rotation in R3 remains constant at any angle around itself,
a single field vector cannot uniquely correspond to the orientation of the relative inertial
reference frame. The quaternion determined by Equation (5) can only spin the sensor
to the horizontal plane and cannot uniquely calculate the heading angle. In order to
construct the measurement model of the magnetic vector, we, therefore, employ the strategy
of the Madgwick filter [9], which opts for a fixed heading angle. Assuming that the
magnetometer’s measured values only include the geomagnetic vector. As depicted in
Figure 5, initially, it can be seen that the geomagnetic vector m̃b,k measured by the sensor at
time k is transformed into the inertial reference frame F I using the quaternion determined
by gravity vector to obtain m̌I,k. Next, m̌I,k is rotated around the z–axis of F I to obtain
m̂I,k in the YOZ plane. Based on the preceding analysis, the following measurement model
for the geomagnetic vector can be derived:

m̌I,k =

m̌x
I,k

m̌y
I,k

m̌z
I,k

 = R(qI
b,k)m̃b,k + ηm (9)

R(qI
b,k) =

 1− 2q2
y − q2

z 2(qxqy − qwqz) 2(qxqz + qwqy)

2(qxqy + qwqz) 1− 2q2
x − q2

z 2(qyqz − qwqx)
2(qxqz − qwqy) 2(qyqz + qwqx) 1− 2q2

x − q2
y

 (10)

where ηm ∼ N (03×1, σm) is the noise term of geomagnetic measurement. The following
can be deduced from the geometric relationship between m̌I,k and m̂I,k:

m̂I,k =

m̂x
I,k

m̂y
I,k

m̂z
I,k

 =


√
(m̌x

I,k)
2 + (m̌y

I,k)
2

0
m̌z

I,k

 (11)

At this juncture, the geomagnetic vector probability model can be represented as:

p̆(m̃b,k|qI
b,k) = λm exp

1
2
(em,k(m̃k, m̌k, qI

b,k)
TΣ−1

m em,k(m̃k, m̌k, qI
b,k)) (12)

em,k(m̃k, m̌k, qI
b,k) = R(qI

b,k)
Tm̂I,k − m̃k (13)

λm is a constant that is independent of qI
b,k. m̃k is the magnetometer measurement

value at time k. Σm represents the covariance matrix of the measured geomagnetic
vector. The cost function of the measured geomagnetic vector at time k is defined as
em,k(m̃k, m̌k, qI

b,k). Taking into account the independence of the gravity measurement and
magnetometer measurement, the probability model for the field measurement at time k is
as follows:

p(ãk, m̃k|qI
b,k) = p(ãk|qI

b,k)p(m̃k|qI
b,k) (14)
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By applying negative logarithms to both sides of the preceding equation, the orienta-
tion fusion problem can be transformed into a nonlinear optimization problem involving
the variable qI

b,k:
(qI

b,k)
◦ = arg min

qI
b,k

(eT
a,kΣ−1

a ea,k + eT
m,kΣ−1

m em,k) (15)

Figure 5. A schematic of geomagnetic vector rotation. To determine the heading angle uniquely, we
rotate m̌I,k about the z-axis of the reference frame F I in the YOZ plane to obtain m̂I,k.

4.3. Robust Trust-Region Solver

The construction of Equation (15) relies on two assumptions: the measured values
of the tri–axial accelerometer include only the gravity vector and the measured values of
the tri–axial magnetometer include only the geomagnetic vector. In practice, the motion
condition of the sensor only sometimes conforms to the assumptions mentioned above.
If maneuvering acceleration or external magnetic field interference is introduced, the op-
timized solution will deviate from the actual value. Sensor measurements that do not
conform to the above assumptions should be penalized during optimization. We introduce
the Huber robust kernel to evaluate the efficacy of measurement data and eradicate out-
liers, increasing the cost function to enhance its anti-interference capacity. Consequently,
the trust–region optimization problem outlined by Equation (15) can be reformulated
as follows:

(qI
b,k)
◦ = arg min

qI
b,k

1
2 ∑

i∈{a,m}
κi

(
eT

i,kΣ−1
i ei,k

)
(16)

κi(x) =

{
1
2 x2 , |x| ≤ c
c(|x| − 1

2 c) , otherwise
(17)

where κi(x) represents the Huber kernel function [34]. c is a control parameter of the Huber
kernel. According to references [33,35], if the value of x in Equation (17) follows a Gaussian
distribution, then the asymptotic effectiveness of c = 1.34 for linear regression is 95%. We
take this conclusion as the foundation for controlling the parameter.

The use of explicit quaternions for optimization may result in over–parameterization.
In R3, rotation has three degrees of freedom, and quaternions have four parameters,
which can lead to the singularity of the Hessian matrix if the method implemented has
a second–order convergence rate. Even though the trust–region method regularizes the
cost function, over–parameterization still causes it to degenerate into a gradient descent
algorithm, which slows convergence [35]. To circumvent the over–parameterization issue,
we project quaternion into the so(3) ∈ R3 and apply perturbation δθ ∈ so(3) to obtain the
Jacobi of the cost function relative to the optimization variable δθ. By making first-order
Taylor expansion of ei,k close to the nominal value and eliminating terms of higher order,
we obtain:

ẽi,k(θ(q) + δθ) ≈ ei,k + Ji
kδθ (18)

Ja
δθ =

∂ea,k

∂δθ
=

∂ea,k

∂q
∂q
∂δθ

, Jm
δθ =

∂em,k

∂δθ
=

∂em,k

∂q
∂q
∂δθ

(19)
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∂q
∂δθ

=
1
2


−qx −qy −qz
qw −qz qy
qz qw −qx
−qy qx qw

 (20)

∂ea,k

∂q
= 2

−qy qz −qw qx
qx qw qz qy
0 −2qx −2qy 0

 (21)

∂em,k

∂q
= 2

 qzm̂y − qym̂z qym̂y − qzm̂z −2qym̂x + qxm̂y − qwm̂z −2qzm̂x + qwm̂y + qxm̂z
−qzm̂x + qxm̂z qym̂x − 2qxm̂y + qwm̂z qxm̂x + qzm̂z −qwm̂x − 2qzm̂y + qym̂z
qym̂x − qxm̂y qzm̂x − qwm̂y − 2qxm̂z qwm̂x − qzm̂y − 2qym̂z qxm̂x + qym̂y

 (22)

where Ja
δθ and Jm

δθ represent the Jacobi of the relative orientation increment δθ of the cost
function for the gravity and geomagnetic vectors, respectively (the derivation procedure
for Equation (20) is shown in Appendix A). We use the Ceres Solver [35] to address the
trust-region optimization problem. A pipeline of the proposed robust orientation estimator
is depicted in Figure 6.

Figure 6. A pipeline of proposed estimator.

5. Proposed Method for Orientation Measurement Based on Vision

The suggested approach has two components, which are offline baseline cube calibra-
tion (calibration of nearby markers and hand–eye calibration) and online measurement,
as seen in Figure 7.

Figure 7. A pipeline of the proposed method for orientation measurement. The proposed method
involves offline calibration and online measurement steps. The segment on offline calibration consists
of two steps: calibration of markers and calibration of hand–eye.
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On the exterior surface of the Base Cube endowed with internal inertial–magnetic
sensors, six markers with distinct patterns are positioned. Offline calibration aims to align
the measured marker orientation to the sensor frame. Determining the orientation of the
Base Cube frame relative to the sensor frame necessitates two stages, namely, the calibration
of adjacent markers and the calibration of hand–eye. The purpose of the adjacent marker
calibration is to measure the relative rotation between the markers so that the rotation of
the Base Cube frame can be determined whenever the camera measures any marker.

In adjacency calibration, we rotate the camera to aim at the target marker pair on
the premise that the stationary Base Cube is in the field of view of the camera. The PnP
algorithm is used to solve the qc

mi
and qc

mj
of two adjacent markers as the observation data

for the optimization problem based on the projection relationship between the corner points
and object points obtained from each marker measurement. To optimize the accuracy of
qmi

mj , we develop a cost function based on rotation residuals.
During hand–eye calibration, the measuring camera is fixed, and the Base Cube is

rotated within its field of view. Before we derive q
m0,tj
m0,ti

and q
b,tj
b,ti

within each alignment
interval, we align the pose calculated by the proposed estimator with the pose measured
by the camera based on the timestamp. Using the least squares method, we calculate the
relative rotation of the sensor body frame F b relative to the Base Cube frame Fm0 ; while
evaluating an estimator, the results of hand–eye calibration will be utilized to align the
orientation sequences of different algorithms.

In the measurement procedure, markers with re–projection errors exceeding 50 pixels
are eliminated. The observation marker with the smallest re-projection error is chosen as
a current orientation measurement. The online measurement of the reference direction is
performed the PnP algorithm. All measured values will be converted to the sensor frame
at the initial time t0 using the calibrated parameters qb

m0
and qmi

mj .
This section describes the camera model of the proposed method and calibration procedure.

5.1. Pinhole Camera Model and Re–Projection Error

We use the pinhole camera model to simulate the projection relationship of the camera,
as shown in Figure 8. OuXuYu represents pixel frame. OcXcYcZc and O

′
X
′
Y
′

represent the
spatial camera frame and the camera plane frame, respectively.

Figure 8. A pinhole model of the camera. The camera model specifies the projection relationship
between object points in the reference frame and image points in the pixel frame.

The pinhole model can be represented as:

[
u
1

]
=

1
pc

z
Kpc =

1
pc

z

 fx 0 cx
0 fy cy
0 0 1

pc
x

pc
y

pc
z

 (23)

pc =

[
R(qc

r) tc
r

0T 1

][
p
1

]
(24)
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where fx, fy is the focus length of camera. cx, cy is the principle point of camera in pixel
frame. p ∈ R3 is the random point in reference frame F I , whereas pc is the projection of p
in camera frame F c. u ∈ R2 is the pixel coordinate of p. R(qc

r) and tc
r represent the rotation

matrix and translation vector, respectively, of F I relative to F c.
Errors in the geometry and installation of the lens in front of the camera can distort

the optical path of the camera’s imaging. The spherical error of the lens itself, which
alters the path of light propagation, contributes to distortion. Due to the unevenness of
the projection and photosensitive sensors during camera assembly, there is a difference
between the imaging pixels and the ideal value. The process described above can be
represented by radial distortion and tangential distortion. The effect of camera distortion
can be characterized as a polynomial expression:

ũr = (1 + k1r2 + k2r4 + k3r6)u (25)

ũt =

[
ux + 2p1uxuy + p2(r2 + 2u2

x)
uy + p1(r2 + 2u2

y) + 2p2uxuy

]
, u =

[
ux
uy

]
(26)

where [k1, k2, k3]
T is the coefficient of radial distortion. [p1, p2] is the tangential distortion

coefficient. ũ represents the raw image point. ũ, ũr, and ũr are the original image point,
the radial corrected image point, and the tangential corrected image point, respectively.
We use the Kalibr [36] tools in advance to calibrate the measurement camera’s internal
parameters and distortion coefficients and rectify the camera.

According to Equation (24), the re–projection error can be defined as the quadratic
modulus of the vector difference between the object point in the reference frame. It is
the pixel coordinate measured by the camera. Using the re-projection error permits the
construction of an optimization problem for camera orientation. On the other hand, it can
also be used to validate orientation accuracy. The re–projection error er of marker (ID = i)
at time tm can be expressed as:

er =
4

∑
j=0
||
[

uj
1

]
− 1

p̄z
Kp̄||2 (27)

[
p̄
1

]
=

[
R(qc

mi ,tm
) tc

mi ,tm

0T 1

][
pr

j
1

]
, p̄ =

 p̄x
p̄y
p̄z

 (28)

5.2. Calibration of Adjacent Markers

ArUco markers with distinct ID labels are placed on the six faces of Base Cube, as
depicted in Figure 9a,b so that the measuring camera can capture the reference frame of
the cube and measure its orientation as the cube rotates in any orientation. To facilitate the
calculation, we chose five optimization variables based on the adjacency relationship of
markers as set Sq =

{
qm0

m2 , qm0
m3 , qm0

m4 , qm0
m5 , qm2

m1

}
, as shown in Figure 9c.
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Figure 9. The overview of Base Cube, which is used as a measurement standard. (a,b) depict the
placement of six ArUco markers on the outer surface, while (c) depicts the calibrated path and
associated variables. The calibration objective is to identify the five relative rotations in Sq.

For each image, we first obtain a pair of data
{

qc
mi

, qc
mj

}
regarding the adjacent marker

orientation qmi
mj ∈ Sq using the P3P method. We define the orientation error for the

optimization variable qmi
mj in image l as follows:

ei,j
l = 2[qmi

mj
⊗ (qc

mj
)−1 ⊗ qc

mi
]im (29)

By combining β images containing observation pairs and minimizing orientation
errors, it is possible to construct the following optimization problem:

(qmi
mj
)◦ = arg min

q
mi
mj

Θi,j = arg min
q

mi
mj

β

∑
l=0

(ei,j
l )Tei,j

l (30)

We optimize and solve Equation (30) with the Ceres solver [35], and the Jacobi Jij,l
δθ (the

derivation method is illustrated in Appendix B) can be calculated (Equation (29)) for the
orientation increment as follows:

R((qc
mj
)−1 ⊗ qc

mi
)L(qmi

mj
) =

[
λ λ̄1×3

λ3×1 Λ3×3

]
(31)

Jij,l
δθ =

∂ei,j
l

δq
= Λ3×3 (32)

R[q] =
[

wI3×3 −vT

v wI3×3 − v∧

]
, L[q] =

[
wI3×3 −vT

v wI3×3 − v∧

]
(33)

5.3. Calibration of Hand–Eye

The objective of hand–eye calibration is to determine the rotational relationship be-
tween the Base Cube frame Fm0 and the sensor body frame F b. Figure 10 shows the
method of calibration. ti and tj represent the timestamps of two adjacent images. Using
the proposed visual measurement method, we measure qc

m0,ti
,qc

m0,tj
at two distinct times.

Using the proposed orientation estimator, we obtain qI
b,ti

and qI
b,tj

.
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Figure 10. A schematic depiction of the hand–eye calibration method. We obtain q
b,tj
m0,ti

along two
distinct paths (red path and blue path) and formulate the least squares problem in order to solve qb

m0
.

The yellow gradient arrow in the figure represents the timeline, and the timeline’s vertical trajectory
represents the same period.

Based on two distinct orientation solving strategies, the following relationship can be
determined:

qb
m0
⊗ (qc

m0,tj)
−1 ⊗ qc

m0,ti = (qI
b,tj)
−1 ⊗ qI

b,ti ⊗ qb
m0

(34)

Let,
qm0,tj

m0,ti = (qc
m0,tj)

−1 ⊗ qc
m0,ti, qb,tj

b,ti = (qI
b,tj)
−1 ⊗ qI

b,ti (35)

By substituting Equation (35) for Equation (34), we obtain:

(R[qm0,tj
m0,ti ]−L[q

b,tj
b,ti ])q

b
m0

= H
tj
ti

qb
m0

= 04×1 (36)

By combining the aforementioned relationships across tau time intervals, we are able
to derive:

[(H
tj
ti
)T , (H

tj+1
ti+1

)T , · · · , (H
tj+τ−1
ti+τ−1

)T ]T4τ×4qb
m0

=Hqb
m0

= 04τ×1 (37)

We use the SVD decomposition method to solve Equation (37), qb
m10

is the eigenvector

corresponding to the minimum eigenvalue ofHTH [37].

6. Experiment and Discussion

The testing endeavor consists of three distinct phases. Evaluation of the calibration
precision of the Base Cube is the first step. We evaluate the accuracy of the adjacent marker
and hand–eye calibration of the Base Cube and the influence of various PnP algorithms.
In the second portion of the experiment, the accuracy of the proposed algorithm for
estimating reference trajectories will be evaluated. In the first two investigations, we
measure the accuracy of orientation estimation using re-projection error. The primary
objective of the third experiment is to evaluate the positional precision of the proposed
algorithm in relation to the measured reference trajectory. We compare and evaluate the
accuracy of Madgwick, Mahony, ESKF, and proposed algorithm in relation to the reference
measurement orientation. In this portion of the experiment, in order to quantitatively
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analyze the horizontal orientation accuracy and heading orientation accuracy of all the
above estimators, quaternions are converted into Euler angles in ZYX order:

ψ = arctan
2(qwqz + qxqy)

1− 2(q2
y + q2

z)

θ = arcsin 2(qwqy − qzqx)

φ = arctan
2(qwqx + qyqz)

1− 2(q2
x + q2

y)

(38)

where ψ, θ, and φ are the yaw angle, pitch angle, and roll angle, respectively.

6.1. Environment of Experiments

As shown in Figure 11, the experiment utilized MPU9250 [38] as an inertial–magnetic
sensor, which included a tri-axis accelerometer, a tri–axis gyroscope, and a tri-axis magne-
tometer. The computer for running the algorithm is an ARM-based Raspberry4B [39] with
4× Cortex-A57 1.5 GHz@8 GB. The MPU9250 sensor communicates with the ARM com-
puter via the Inter-Integrated Circuit (I2C) bus, and the sensor is sampled at 150 Hz during
the experiment. Before the investigation, MPU9250 is calibrated [38] and installed in an
ArUco-labeled (83 × 83 (mm)) Base Cube on each surface. The tag ID of the marker begins
at 0∼5 and increases in sequence. The camera used for the orientation measurement is the
left-eye infrared camera of a Realsense-D435i [40], with a resolution of 848 × 480@30 Hz.
Before testing, we calibrated the camera’s internal parameters and distortion coefficients
with the Kalibr [36] tool.

Figure 11. The hardware experiment environment. The MPU9250 (right sub-image) sensor is
mounted on an orthogonal reference bracket within the Base Cube. The left sub-image shows the
Raspberry4B computer.

6.2. Experiment of Calibration for Base Cube

As shown in Figure 12a–e, for the adjacent marker calibration experiment, we keep
the Base Cube stationary and move the measurement camera to acquire five sets of videos
containing adjacent markers (V02∼V21). During each group’s video capture, we attempt to
move the camera as much as possible while ensuring that the two markers to be calibrated
are within the camera’s field of view.

Figure 12. Image samples of the test set used for calibration of adjacent markers. The subgraphs
(a∼e) represent randomly selected patterns from videos of test sets V02, V03, V04, V05, and V21,
respectively. The test set names correspond to the subscripts of the variables in Sq.
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As shown in Figure 13, we first examine the distribution of re–projection error pixels
using the P3P, DLT, and EPnP methods on five test sets. The test results show that the P3P
method and DLT algorithm are more accurate for the test data. The variance of the error
pixel distribution is marginally more remarkable in the DLT algorithm than in P3P, and P3P
performs the best. The proportion of corner numbers with re–projection errors within
1 pixel is 88.9%, 96.5%, 97.5%, 97.9%, and 94.0% using the P3P algorithm. We analyze that
the suboptimal performance of the EPnP algorithm may be because only four control points
can be provided for each ArUco marker and that the insufficient number of control points
renders the EPnP optimization iteration inadequate.

Figure 13. The performance comparison of PnP algorithms. The PnP algorithm is used to generate
data pairings to calibrate adjacent markers. This figure depicts the pixel coordinate distribution of
re–projection error for each ArUco marker in five test videos utilizing the participating P3P, DLT,
and EPnP algorithms. Each vertical column represents the V02, V03, V04, V05, and V21 test sets.
The effects of the P3P, DLT, and EPnP algorithms are depicted from left to right. The regions within
the red circle represent regions with a 1-pixel re–projection error. The points of different colors in the
scatterplot section are to distinguish adjacent points.

The P3P and DLT algorithms are then used to generate observation data for calibrating
adjacent markers. As shown in Table 2, we select the orientation results from 100 images
with the minimum re-projection error in each test set as observation pairs for optimization
and statistical analysis of the test results. Θi,j

initial is the sum of squared residuals of the

observed data pair (calculated using Equation (30)), while Θi,j
f inal is the sum of squared

residuals following optimization. The final column of the table displays the optimal values
for calibrating the relative orientations of the five markers in set Sq.

According to Table 2, the sum of the observed data pairs generated by the P3P method
and the DLT method is relatively low, with a maximal value of 1.23 (approximately 0.9 deg)
in the V21 dataset using the DLT algorithm. This indicates that the ArUco marker recognizes
corners with high precision. Comparing the residuals before and after optimization reveals
that the Dogleg and LM algorithms both obtained optimal optimization results on the
dataset presented in this paper, while the P3P+DL algorithm performs the best. According
to the calibration results, the relationship between the rotation matrices of several adjacent
markers is qualitatively consistent with the defined coordinate system.
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Table 2. The results of adjacent markers calibration.

Test
Sets Algorithm Θi,j

initial(rad2) Θi,j
f inal(rad2) Sq

V02

P3P + LM 0.14 0.12  0.026671 0.999550 0.013753
0.003705 0.013857 −0.999897
−0.999637 0.026617 0.004074

P3P + DL 0.14 0.05
DLT + LM 0.52 0.09
DLT + DL 0.52 0.08

V03

P3P + LM 0.27 0.13 −0.999812 0.018883 0.004257
0.004184 0.003887 0.999984
0.018899 0.999814 0.003808

P3P + DL 0.27 0.06
DLT + LM 0.51 0.15
DLT + DL 0.51 0.08

V04

P3P + LM 0.53 0.32  0.018059 0.002907 0.999830
−0.999826 0.004741 0.018045
0.004688 −0.999985 0.002992

P3P + DL 0.53 0.06
DLT + LM 1.22 0.21
DLT + DL 1.22 0.08

V05

P3P + LM 0.54 0.09 −0.020668 0.015480 −0.999667
−0.998713 0.046645 0.019926
−0.046321 0.998792 0.016424

P3P + DL 0.54 0.08
DLT + LM 1.14 0.15
DLT + DL 1.14 0.24

V21

P3P + LM 0.38 0.09 0.008058 0.027544 0.999588
0.021205 −0.999391 0.027710
0.999743 0.021420 0.007469

P3P + DL 0.38 0.06
DLT + LM 1.23 0.31
DLT + DL 1.23 0.09

DL—Dogleg algorithm.

As depicted in Figure 14, we fix the camera position and rotate the Base Cube within
the camera’s field of view during the hand–eye calibration experiment. Based on the
calibrated result qb

m0
, we test the error between the measurement and fusion orientations,

as depicted in Figure 15. The maximal angle errors for roll, pitch, and yaw are 0.044 rad,
0.031 rad, and 0.029 rad, respectively, as depicted in the figure, which indicates that the
calibration results are highly accurate.

Figure 14. The visualization of hand–eye calibration.

Figure 15. The error results of hand–eye calibration. The left, center, and right images depict the
angle errors following roll, pitch, and yaw calibration, respectively.
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6.3. Experiment of Orientation Measurement Accuracy

Before evaluating the performance of the proposed visual measurement algorithm,
we conduct orientation measurement accuracy experiments to confirm that the orientation
obtained by the proposed visual measurement method can serve as a reference pose. The
test data consists of two consecutively captured recordings representing the sensor’s low–
dynamic and high–dynamic conditions. In low–dynamic experiments, we endeavor to
rotate the Base Cube in 3D space at various speeds as much as possible. We add more
rapid movements to the high–dynamic experiments to simulate the interference of drone
maneuvering acceleration. We first calculate the orientation sequences of two test data
using the P3P and Dogleg optimization algorithms and then evaluate the accuracy of the
solved orientation sequence and the performance of the proposed visual measurement
method by calculating the mean re-projection error of the ArUco marker corners of the
orientation sequence based on the corresponding image frames of the orientation sequence.
The test outcomes are depicted in Figure 16. The verification results of the re-projection
errors for the reference poses of the two test sets are distributed within a 2-pixel diameter
circle, with average re-projection errors of 0.06 and 0.08 pixels.

Figure 16. The distribution of visual measurement orientation re–projection error. (a,b) represent
the statistical information of the re-projection error of two image sequences (low–dynamic and high–
dynamic) utilized to evaluate the orientation estimation algorithms. The scatter plot illustrates the
distribution of re–projection error points within the pixel plane. The points of different colors in the
scatterplot section are to distinguish adjacent points.

6.4. Experiment of Orientation Estimation Precision

In the orientation fusion accuracy test, we align the orientation data measured from
the image data in the test dataset (low–dynamic and high–dynamic datasets) with the
orientation data obtained from the orientation fusion algorithm. We evaluate the orientation
fusion results of the ESKF filter, Madgwick filter, and Mahony filter, in addition to the
proposed algorithm, on the two test datasets.

The orientation outcomes and orientation errors (magnitude of Euler angle error in
three directions) of four algorithms tested in low–dynamic settings are shown in Figure 17.
The proposed estimator and the Madgwick filter react immediately to the input data, while
the ESKF filter and Mahony filter first go through a convergence process. It is clear from
the test results for the orientation error (the last column of the figure) that, in low–dynamic
environments, the four algorithms used in the test perform similarly. We believe this
is due to the high signal–to–noise ratio of the gyroscope and the sluggish maneuvering
acceleration of the carrier under low–dynamic conditions (during rotation).

As depicted in Figure 18, we subsequently analyze the error of the Euler angle in
detail. Without considering the convergence process, the amplitude level of heading angle
error (yaw) of the four test filters is substantially greater than that of the horizontal angle
error (pitch and roll), as demonstrated in the graph (ordinate scale). Comparing the last line
to the other lines in the figure reveals qualitatively that the proposed algorithm has a low
error angle fluctuation range. The error value for the Euler angle in Figure 18, as shown
in Table 3, is supported by statistics. We find that the proposed estimator has an average
orientation error of 0.076 rad, which is lower than those of the other three algorithms.
The average value of the orientation error is 62.9% less than that of ESKF, 41.5% less than
that of Madgwick, and 44.5% less than that of Mahony. The maximum value of the angular
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error magnitude is reduced by 75.2%, 36.3%, and 90.4%, respectively. A comparison of each
Euler angle error in detail reveals that our estimates for all other indicators are optimal,
except the minimum angle error amplitude of the Madgwick filter and the minimum pitch
average angle error of the ESKF.

Figure 17. A comparison of orientation estimation results under low–dynamic conditions.

Table 3. A comparison of orientation errors under low–dynamic condition (rad).

Algorithm εnorm
max εnorm

avg εroll
max εroll

avg ε
pitch
max ε

pitch
avg ε

yaw
max ε

yaw
avg

ESKF 3.141 0.205 0.059 0.011 0.038 0.005 0.241 0.188
Madgwick 0.470 0.130 0.094 0.013 0.067 0.001 0.266 0.081

Mahony 1.205 0.136 0.158 0.016 0.062 0.004 1.185 0.076
Proposed 0.299 0.076 0.039 0.004 0.034 0.016 0.296 0.015

εnorm represents the modular length of composite vector [εroll , εpitch, εyaw]T .

Figure 19 depicts the outcomes of a test conducted under highly dynamic conditions.
The amplitude range of the angle error (the yellow area in the last column) reveals that
our estimator has the smallest error fluctuation and maximum orientation accuracy. This
demonstrates that the proposed estimator is able to effectively suppress the perturbation
of maneuvering acceleration. Figure 20 demonstrates that among the three Euler angles,
our estimator’s horizontal angle error and heading angle error are substantially better
than those of other algorithms. From Table 4 (statistical data of Figure 19), it can be
seen that the maximum orientation errors of the proposed algorithm are 80.9%, 90.0%,
and 54.6% lower than those of the ESKF, Madgwick filter, and Mahony filter, respectively.
The average orientation error was 51.4%, 29.9%, and 25.5% lower, respectively. Our filter
outperforms all others except the Madgwick filter, which has the most precise pitch average
angle error accuracy. Combining testing under high–dynamicand low–dynamic conditions
reveals that our estimator exhibits optimal performance and robustness, particularly under
high–dynamic conditions.
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Figure 18. A comparison of orientation errors in Euler angle under low–dynamic conditions. Each row
from top to bottom represents the test result of ESKF, Madgwick filter, Mahony filter, and proposed
estimator. Each column from left to right displays the comparison results for roll, pitch, and yaw
angle in that order.

Figure 19. A comparison of orientation estimation results in under high–dynamic conditions.
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Figure 20. A comparison of orientation errors in Euler angle under high–dynamic conditions. Each
row from top to bottom represents the test result of ESKF, Madgwick filter, Mahony filter, and pro-
posed estimator. Each column from left to right displays the comparison results for roll, pitch,
and yaw angle in that order.

Table 4. A statistical analysis of orientation errors under high–dynamic conditions (rad).

Algorithm εnorm
max εnorm

avg εroll
max εroll

avg ε
pitch
max ε

pitch
avg ε

yaw
max ε

yaw
avg

ESKF 3.141 0.514 0.347 0.046 0.177 0.027 2.598 0.198
Madgwick 5.995 0.299 0.450 0.044 0.359 0.014 1.169 0.168

Mahony 1.324 0.253 0.254 0.044 0.187 0.016 1.317 0.217
proposed 0.600 0.138 0.179 0.021 0.055 0.030 0.598 0.029

εnorm represents the modular length of composite vector [εroll , εpitch, εyaw]T .

6.5. Efficiency Test of Orientation Estimation Algorithm

In the concluding phase of the experiment, the efficiency of the proposed algorithm
and three other algorithms are measured. Comparatively, we also evaluate the algorithm’s
performance on the X86–64 platform. The X86–64 platform hardware environment is a
laptop with an Intel I7–8750H 2.2GHz central processing unit (CPU). In the efficiency
test, we conduct experiments to determine the time required by four algorithms in both
high–dynamicity and low–dynamicity scenarios. The evaluation utilizes the same inertial–
magnetic sensor data in the orientation estimation accuracy experiment. Table 5 displays
the time required by each algorithm to solve sensor data for a single frame.

The result in Table 5 shows that the Madgwick filter has the highest efficiency in both
testing groups, and the efficiency of the proposed estimator is not significantly different
from the other three algorithms. Our estimator takes longer to solve single–frame sensor
data, especially in highly dynamic settings. We believe that the reason may be due to the
fact that the proposed algorithm solves each input data frame iteratively, which makes
the initial value of the iteration suboptimal under high–dynamic conditions, making it
challenging to find the optimal orientation. On the proposed algorithm ARM platform,
the average time to solve low–dynamic and high–dynamic directions is 9.78 ms (102.25 Hz)
and 22.46 ms (44.52 Hz), respectively. The estimator’s output frequency can still satisfy
the real–time demands of airborne navigation applications and a multi–sensor data fusion
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positioning apparatus. In airborne multi–sensor fusion mapping applications, for instance,
the proposed estimator has a higher calculation frequency than the real–time image frame
frequency (typically 30 Hz, with the human eye recognizing coherent images at a rate of
24 frames per second), allowing for more accurate direction prediction for the airborne
mapping module.

Table 5. A comparison of estimation efficiency.

Test Data Algorithm tARM
avg (ms) tARM

max (ms) tX86−64
avg (ms) tX86−64

max (ms)

Low dynamics

ESKF 0.913 24.998 0.164 0.276
Madgwick 0.007 0.626 <0.001 0.018

Mahony 0.081 3.938 0.105 0.102
Proposed 9.781 53.269 0.102 0.109

High dynamics

ESKF 0.864 13.737 0.167 0.393
Madgwick 0.008 1.231 <0.001 0.008

Mahony 0.078 3.842 0.011 0.041
Proposed 22.468 78.200 2.678 9.815

7. Conclusions

Using a trust region nonlinear optimization framework, we proposed a robust orienta-
tion estimation algorithm to counteract the effect of drone maneuver acceleration on the
attitude solution process and enhance direction estimation precision. We also proposed a
visual attitude measurement method for evaluating the efficacy of the proposed orientation
estimator. Based on measured reference orientations, we evaluated and contrasted the
performance of the complementary filter, Kalman filter, and the proposed estimator under
low–dynamic conditions (rotation) and high–dynamic conditions (shake). The proposed
method of measuring orientation with P3P and a nonlinear optimization solver resulted
in an average re–projection error of fewer than 0.1 pixels. The proposed estimator has the
slightest mean orientation error under low– and high–dynamic conditions. The proposed
estimator exhibits better robustness and precision under high–dynamic conditions.
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Appendix A

The ∂q
∂θ in Equation (20) cam be computed as:

∂q
∂θ

= lim
δθ→0

q⊗
[

1
1
2 δθ

]
− q⊗

[
1
0

]
δθ

=
1
2

lim
δθ→0

R(
[

0
δθ

]
)q

δθ
=

1
2

lim
δθ→0


0 −δθx −δθy −δθz

δθx 0 δθz −δθy
δθy −δθz 0 δθx
δθz δθy −δθx 0




qw
qx
qy
qz


[
δθx δθx δθx

]T (A1)

∂q
∂θ

=
1
2


−qx −qy −qz
qw −qz qy
qz qw −qx
−qy qx qw

 (A2)

Appendix B

The Jij,l
δθ in Equation (32) can be computed as:

Jij,l
δθ = 2 lim

δθ→0

[qmi
mj ⊗

[
1

1
2 δθ

]
⊗ (qc

mj
)−1 ⊗ qc

mi
− qmi

mj ⊗
[

1
0

]
⊗ (qc

mj
)−1 ⊗ qc

mi
]im

δθ
(A3)

Jij,l
δθ = 2 lim

δθ→0

[R((qc
mj
)−1 ⊗ qc

mi
)(qmi

mj ⊗
[

1
1
2 δθ

]
)−R((qc

mj
)−1 ⊗ qc

mi
)(qmi

mj ⊗
[

1
0

]
)]im

δθ
(A4)

Jij,l
δθ = lim

δθ→0

[R((qc
mj
)−1 ⊗ qc

mi
)L(qmi

mj)

[
0
δθ

]
]im

δθ
(A5)

Jij,l
δθ = lim

δθ→0

[

[
λ λ̃1×3

λ3×1 Λ3×3

][
0
δθ

]
]im

δθ
(A6)

Jij,l
δθ = lim

δθ→0

Λ3×3δθ

δθ
= Λ3×3 (A7)
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