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Abstract: Automatic modulation classification (AMC) is one of the most important technologies in
various communication systems, including drone communications. It can be applied to confirm the
legitimacy of access devices, help drone systems better identify and track signals from other commu-
nication devices, and prevent drone interference to ensure the safety and reliability of communication.
However, the classification performance of previously proposed AMC approaches still needs to be
improved. In this study, a dual-stream spatiotemporal fusion neural network (DSSFNN)-based AMC
approach is proposed to enhance the classification accuracy for the purpose of aiding drone commu-
nication because SDDFNN can effectively mine spatiotemporal features from modulation signals
through residual modules, long-short term memory (LSTM) modules, and attention mechanisms. In
addition, a novel hybrid data augmentation method based on phase shift and self-perturbation is
introduced to further improve performance and avoid overfitting. The experimental results demon-
strate that the proposed AMC approach can achieve an average classification accuracy of 63.44%,
and the maximum accuracy can reach 95.01% at SNR = 10 dB, which outperforms the previously
proposed methods.

Keywords: deep learning; attention mechanism; data augmentation; automatic modulation
classification (AMC); spatiotemporal feature fusion; drone communication

1. Introduction

Automatic modulation classification (AMC) is the process of identifying the modula-
tion types of communication signals, which has been widely applied in various communi-
cation systems for enhancing communication efficiency, ensuring security, and enabling
safe and reliable drone operations [1–4]. In drone communications, it can also play an
important role for distinguishing signals between drones, detecting unauthorized devices
or signals, enabling automated control for optimal communication performance, and so
on [5,6].

Traditional AMC methods can be classified into two categories: likelihood-based (LB)
methods and feature-based (FB) methods. LB methods [7,8] typically involve significant
computational complexity or require prior knowledge about the channel or noise [9]. FB
methods [10,11] are based on expert features derived from time–frequency analysis and
statistical theory. However, it is difficult to process massive signal samples in parallel,
and the classification accuracy does not meet expectations. Moreover, with the rapid
development of communication technologies, the electromagnetic environment has become
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increasingly complex, modulation schemes have become more diverse, and signal density
has increased rapidly. As a result, traditional AMC methods are becoming increasingly
unable to meet current application requirements.

In recent years, deep learning (DL) has been applied in wireless communication
fields [12–18], and there are many DL-based AMC methods for addressing the challenges
encountered in physical-layer wireless communications, including AMC [19–27]. In 2016,
Shea et al. [28] first used convolutional neural networks for modulation classification for
the first time, demonstrating the feasibility of neural networks in the field of AMC. In 2019,
Ramjee et al. [29] extended the existing research by proposing three architectures for AMC:
CLDNN, LSTM, and ResNet. The authors reported an classification accuracy of 90% in
scenarios with high SNR using their proposed approach [29]. However, it is worth noting
that despite incorporating both spatial and temporal features in the CLDNN model, the
authors did not fully exploit the potential synergy between these features. This observation
suggests that there is room for further improvement and optimization in utilizing spatial
and temporal information effectively within the CLDNN architecture. In their 2020 study
on automatic modulation classification (AMC), Zhang et al. introduced a novel dual-
stream model that combines the strengths of CNN and LSTM networks [9]. This model
diverges from previous research by simultaneously incorporating both temporal and spatial
features of the data, thereby effectively capturing feature interactions and spatiotemporal
characteristics inherent in complex raw time signals. However, despite the utilization of a
dual-stream architecture, it should be noted that the LSTM+CNN structure employed in
this study may still be considered relatively simplistic, limiting its ability to fully exploit
and extract more refined and effective features. In 2021, Liao et al. [30] presented a novel
and efficient end-to-end learning model for automatic modulation classification that learnt
from time domain in-phase and quadrature data [30]. The model demonstrated improved
accuracy and reduced training and prediction time. However, since the authors only
utilized IQ data for training, the accuracy improvement was limited. Chang et al. proposed
a multitask learning-based deep neural network, for modulation classification [31]. This
network effectively integrates I/Q data and A/P data, achieving high classification accuracy.
However, the model encounters a challenge in distinguishing between WBFM and AM-
DSB at high SNR. Table 1 presents an evaluation of the strengths and weaknesses of the
related work.

Table 1. Related Works.

Related Works DNN Strength Weakness

Shea et al. [28] CNN
Innovative use of deep learning for modulation
recognition achieved significant accuracy
improvement compared to traditional methods.

Only explored the application of CNN for modulation
recognition.

Ramjee et al. [29]

CLDNN
Both time and spatial features were extracted from
IQ signals, resulting in a more diverse feature set.

Using only IQ data for feature extraction results in
insufficiently diverse feature sets.

ResNet Further exploration was conducted on top of CNN. The time feature of IQ data was neglected.

LSTM
RNNs were utilized to extract time information from
IQ signals for modulation recognition.

The absence of convolutional neural networks (CNNs)
for spatial feature extraction is a limitation.

Zhang et al. [9] CNN-LSTM
Features were extracted separately from IQ and AP
data for modulation recognition.

Extracting temporal features from the spatial
features extracted by CNN may have an impact on
the accuracy of modulation recognition.

Liao et al. [30] SCRNN
The accuracy of the model is ensured while reducing
the required training time.

Extracting features solely from IQ data limits
the diversity of the features.

Chang et al. [31]

MLDNN
Explored the interaction features and temporal
information of both IQ and AP data, which resulted
in a significantly improved accuracy rate.

The WBFM modulation scheme is highly susceptible
to misclassification as AM-DSB.

CGDNN2
The parameter estimator and the parameter
transformer were introduced, resulting in a
significant reduction in the model’s parameter count.

The design of the model architecture lacks significant
innovation, impeding the extraction of improved features.
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In this study, we propose an AMC method using hybrid data augmentation and a dual-
stream spatiotemporal fusion neural network (DSSFNN), where the former is to expand
training samples to prevent model overfitting, while the latter is a parallel architecture to
extract the spatiotemporal features for high classification performance. In detail, the spatial
feature extraction branch is responsible for IQ data, while the temporal feature extraction
branch is designed for AP data. The features extracted from these branches are fused for
modulation classification. The contributions of the paper are listed as follows:

• We propose a hybrid data augmentation method based on phase shift and self-
perturbation, which can effectively expand training samples without introducing
additional information.

• We propose a DSSFNN structure for AMC, which can extract features from both the
spatial and temporal dimensions of data. Compared to the single-dimensional feature
extraction method, the features extracted by DSSFNN are more diverse and effective,
which improve the accuracy of AMC.

The remaining parts of this paper are as follows: Section 2 elaborates on the problem
formulation. In Section 3, a detailed description of the proposed AMC method is provided,
including the data augmentation technique and the dual-stream spatiotemporal fusion neu-
ral network (DSSFNN) architecture. Section 4 presents the simulation results and analysis.
Finally, in Section 5, the conclusions drawn from the study are presented, highlighting the
contributions of the proposed method.

2. Problem Formulation
2.1. Signal Model

The complex baseband signal model [32] can be represented equivalently without
losing generality as follows:

x(t) = s(t) ∗ h(t) + n(t), t ∈ [1, T] (1)

where the received signal is represented by x(t), s(t) represents the modulated signal, the
channel is represented using h(t), and n(t) represents zero-mean complex AWGN with a
bilateral power spectral density of N0/2 [32].

2.2. Dual-Stream Data

In this paper, an IQ signal along with the AP data were used as the training data for
model training. In general, signal reception equipment can be used to receive signals in a
communication channel and store them in the format of IQ data. The AP data can then be
obtained from the IQ data using mathematical formulas. This approach is commonly used
in the field of digital signal processing for wireless communication systems. The model for
storing signal data in IQ format is shown as follows:

x[i] = xI [i] + jxQ[i] (2)

where, xI [i] and xQ[i] represent the real and imaginary parts of the IQ signal of the i-th
signal, respectively. By decomposing IQ data into in-phase and quadrature components
and calculating their amplitudes and phases, one can obtain corresponding AP data. This
process can be represented as:

Ai =
√

I2
i + Q2

i (3)

ϕi = arc tan
(

Qi
Ii

)
(4)

where Ii and Qi represent the real and imaginary parts of the IQ signal, Ai represents the
amplitude of the ith data in AP data, and ϕi represents the phase of the ith data in AP data.



Drones 2023, 7, 346 4 of 15

2.3. Problem Description

Modulation classification is the process of determining the modulation scheme used
by a received signal based on the sampled signal sequence x = [x(1), x(2), · · · , x(T)], from
a candidate set M = [M1, M2, · · · , MN ] of N modulation schemes.The deep-learning-based
modulation classification scheme can be represented as [32]:

M̂ = arg max f (Mi|x; W), Mi ∈ M (5)

where M̂ represents the predicted value of the modulation classification type, Mi represents
the true value of the modulation classification type, M represents the set of modulation
schemes [32], f (W) represents the deep learning model that maps the signal sample x to
the modulation classification type M̂, and W represents the parameter weights of the model.
The deep-learning-based modulation classification scheme can be simplified as the task of
obtaining a high-precision deep learning model f (W).

3. Our Proposed Robust AMC Method
3.1. The Framework of the Proposed Method

Our proposed robust AMC method based on hybrid data augmentation and dual-
stream spatiotemporal fusion neural network is illustrated in Figure 1.

Figure 1. The overall architecture of automatic modulation classification method based on hybrid
data augmentation and dual-stream spatiotemporal fusion neural network.

The proposed scheme consists of three key parts: hybrid data augmentation, AP
information extraction, and dual-stream spatiotemporal fusion neural network. The hybrid
data augmentation includes phase transformation data augmentation and self-perturbation
data augmentation. The IQ data is fed into the model as the raw input, which first goes
through the hybrid data augmentation part. This increases the amount of data and makes
the data features more rich and diverse. After that, the augmented data are used to extract
amplitude and phase information. The IQ data and AP data after data augmentation
will be fed into the dual-stream spatiotemporal fusion neural network for modulation
classification. The IQ data are fed into the spatial feature extraction branch for extracting
spatial features. The AP data are fed into the temporal feature extraction branch to extract
temporal features. The spatial features and temporal features will be fused at the end and
fed into a fully connected layer for classification.

3.2. Hybrid Data Augmentation

In real-world scenarios, due to the complex electromagnetic environment, the received
signals by the receiver are often not as satisfactory as expected. At the same time, deep
learning models often fail to extract good features and are prone to overfitting due to
insufficient training samples. To enhance the robustness and generalization ability of the
trained deep learning model, a data augmentation algorithm is proposed in this paper.
The proposed algorithm performs phase transformations on the original data to generate
data samples at different phases, thereby increasing the quantity of the training data and
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effectively preventing the occurrence of model overfitting. Next, the augmented data will
be subjected to self-perturbation data augmentation, a method that enhances data diversity
and helps the model learn different features.

3.2.1. Phase-Shift Data Augmentation

Phase transformation is a simple and effective data augmentation method in the field
of modulation classification. By varying the phase angle, data can be obtained at different
phase angles, thereby achieving the purpose of data augmentation. The phase-shift data
augmentation process can be represented as [33]:[

R(x̃)
L(x̃)

]
=

[
cos θ − sin θ
sin θ cos θ

][
R(x)
L(x)

]
(6)

where x denotes the original data, x̃ denotes the augmented data, R() and L() represent
the operations performed on the real and imaginary parts, and θ takes the values 0, π

2 , π,
and 3π

2 .

3.2.2. Self Perturbation Data Augmentation

Data augmentation through self-perturbation refers to the process of randomly crop-
ping a portion of the data and then splicing it back into the remaining data. Assuming the
data to be augmented with self-perturbation are denoted as D, the remaining data after
cropping are denoted as Dcut, the length of the remaining data after cropping is denoted as
|Dcut|, and a random segment taken from the original data is denoted as s. The process of
self-perturbation data augmentation can be represented as follows:

DOutPut = Dcut[0:p] + s + Dcut[p:|Dcut |] (7)

where DOutPut represents the output of the self-perturbation data augmentation algorithm,
and p represents a random position within Dcut.

The self-perturbation algorithm involves cropping some parts of a sequence and
adding them to random positions, which expands the data while enriching its features
in automatic modulation classification. This approach has the potential to improve the
model’s generalization performance—its ability to perform well on data outside the training
set. Some advantages of this algorithm include:

• Enhancing data diversity: The self-perturbation algorithm enhances the robustness
and generalization ability of a model by adding new variations to the dataset. This
augmentation of data diversity can enable the model to better capture the features of
the dataset and improve its accuracy.

• Reducing overfitting: Overfitting is a common problem in machine learning, and the
self-perturbation algorithm can reduce the risk of overfitting by increasing the size of
the dataset. This is because training the model on more data can help to better learn
the true distribution of the dataset.

• Simplicity and ease of implementation: The self-perturbation algorithm is relatively
simple to implement, requiring only a small amount of manipulation on the original
data. Compared to other complex data augmentation techniques, self-perturbation
algorithm has lower implementation costs and higher practicality.

• No introduction of additional information: The self-perturbation algorithm achieves
data augmentation by cropping parts of the original data and then splicing them
together. This approach ensures that no additional information is introduced into the
data. In contrast, adding noise as a form of data augmentation introduces additional
information that may sometimes affect classification performance.
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3.3. Dual-Stream Spatiotemporal Fusion Neural Network
3.3.1. Spatial Feature Extraction Module for IQ Data

The proposed AMC method includes a spatial feature extraction module for IQ data,
which is based on ResNeXt [34] and a self-attention mechanism [35]. ResNeXt is used
to compute the real and imaginary parts of the IQ signal, which are then used to extract
features from the spatial dimension of the IQ data [34]. The self-attention mechanism is
employed to weight the feature maps and enhance the discriminability of the features [35].
This spatial feature extraction module plays a crucial role in the overall AMC method, as it
enables the extraction of informative features from the IQ data, which are then used for
modulation classification. ResNeXt can be represented as:

y = H(x) + F(x) (8)

where x denotes the input data, H(x) represents the mapping function, and F(x) refers to
the residual block. The residual block can be expressed as:

y = F(x, {Wi}) + x (9)

In the residual block represented above, F(x, {Wi}) denotes the mapping function,
and Wi represents the weight parameters. To improve the performance and efficiency of
the network, ResNeXt introduces grouped convolutions into the residual block F(x, {Wi}).
The input data x are divided into several groups with the same number of channels; then, a
convolution operation is performed on each group of data. Finally, the convolution results
of each group are merged. Grouped convolutions can be expressed as:

Yi = ∑ j∈Groupi Kj ∗ Xj (10)

where the notation X represents the input data, Y represents the output data, K denotes the
convolution kernel, Group denotes the partitioning of the input data into multiple groups,
i denotes the i-th group, and j denotes the channel within each group [34].

At the final stage of the spatial feature extraction module, a self-attention mechanism
was employed [35]. The purpose is to feed the extracted features into a self-attention
mechanism, with the aim of computing weights to enhance the more salient features.
The calculation process of the self-attention mechanism can be divided into three parts:
computing the attention scores, computing the weighted sum, and computing the output.
For any element xi in the input data, the formula for calculating its attention scores ai with
respect to other elements can be expressed as:

ai = so f t max (
qiKT
√

dk
) (11)

where qi, K ∈ Rdk represents the elements in the input sequence, which represent queries
and keys, and dk represents the dimensionality. The attention score ai represents the
relevance between the ith element in the input sequence and other elements. The function
so f t max is used to normalize the attention scores. Using the attention scores ai, each
element in the input data can be weighted and summed to obtain a weighted sum z, which
can be represented as:

z =
n

∑
i=1

aivi (12)

where vi ∈ Rdv represents the value of the i-th element in the input sequence, and dv is the
dimension of the value representation. The output sequence y is obtained by applying a
linear transformation and a non-linear activation to the weighted sum z:
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yi = ReLU(Woz + bo) (13)

where Wo ∈ Rdh×dv and bo ∈ Rdh are weight matrices and bias vectors used for linear
transformation. dh denotes the dimensionality of the output representation, and ReLU is a
non-linear activation function.

In the spatial feature extraction branch of DSSFNN, three ResNet blocks are stacked,
each consists of a one-dimensional 2 × 32 convolutional layer, two base blocks, and a max
pooling layer. After each base block in the spatial feature extraction branch of DSSFNN,
a ReLU activation layer and a one-dimensional batch normalization layer are added to
prevent overfitting. We made appropriate adjustments to the grouping convolutions
proposed by Xie et al. in 2017 [34]. Specifically, we designed four branches for each base
block, with each branch composed of three convolutional layers. After passing through the
three convolutional layers in each branch, the data from the four branches are combined.
In addition, we also added a shortcut connection between the input and output of the base
block, which can help reduce the occurrence of gradient explosion and vanishing problems
while deepening the network, as well as accelerate the convergence speed of the model.
The detailed structures of the ResNet block and base block are illustrated in Figure 2.

(a) ResNet block (b) Base block

Figure 2. ResNet block and base block architecture.

We incorporated a Transformer Encoder with a self-attention mechanism as the core
into the end of the spatial feature extraction branch. By utilizing the characteristics of the
self-attention mechanism, the feature weights of the extracted features are calculated, which
enhances the core features and accelerates convergence while improving the accuracy of
modulation classification. The excellent performance of the self-attention mechanism can
mainly be attributed to the following aspects:

• Global information: the self-attention mechanism [35] can consider the entire sequence
of information while processing the information at each position.

• Interpretability: the self-attention mechanism [35] can increase the interpretability of
the model by assigning different weights to information from different positions.

• Addressing long-range dependencies: the self-attention mechanism can solve the prob-
lem of long-range dependencies, where the model is capable of correctly processing
distantly related contextual information.

• Powerful feature representation capability: the self-attention mechanism can fuse infor-
mation from different positions to obtain powerful feature representation capability.
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3.3.2. Time Feature Extraction Module for AP Data

The time feature extraction module for AP data is constructed based on the LSTM
model [36]. The LSTM model is capable of extracting temporal features from both phase and
amplitude information, while addressing the issues of gradient vanishing and exploding in
traditional RNN models. The LSTM architecture comprises a memory cell and three gating
components, namely, the input gate, output gate, and forget gate.

Due to the limited feature information contained in low-dimensional word vectors, in
order to enhance the LSTM’s ability to extract temporal information, the input data need
to be first expanded with word vector extensions in the time feature extraction module.
Suppose the length of the input AP data is T; then, the shape of the input data X is T × 2.
The word vector expansion can be represented as follows:

Y = WX + b (14)

where W represents a linear layer weight matrix of size 2× E, b represents a bias vector, E
represents the dimensionality of the extended word vectors, and Y denotes the extended
word vectors. With word vector expansion, the input data are expanded from T × 2 to
T × E, as shown in Figure 3.

Figure 3. Word vector expansion.

The time feature extraction module consists of two layers of LSTM. After passing
through the first layer of LSTM, the model will extract the data outputted by the output
gate of the last LSTM unit. The extracted data are then subjected to another word vector
expansion operation and fed into the next layer of LSTM for further temporal feature
extraction. Finally, the outputted information is sent to the feature fusion module for
feature fusion.

3.3.3. Spatiotemporal Feature Fusion Mechanism

In the feature fusion module, we concatenated the temporal and spatial features and
then fed the concatenated feature vector as input to a linear layer for further processing.
Specifically, assuming the dimensionality of the temporal features is dt and the dimension-
ality of the spatial features is ds, we concatenate them along the feature dimension to obtain
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a new feature vector of dimensionality dt+s = dt + ds. The resulting new feature vector
obtained by concatenating the temporal features and spatial features is fed into a linear
layer, where it undergoes a linear transformation to obtain a new feature vector that can be
used for further task processing. This process can be represented as follows:

H = Linear([xt, xs]) (15)

where the notation [xt, xs] denotes the concatenation of temporal and spatial features, while
Linear(·) represents the linear transformation applied to this concatenated feature vector.

3.3.4. Loss Functions and Optimization Algorithms

In this paper, the cross-entropy loss function is adopted as the objective function to
solve the multi-class classification problem. As for the optimizer, the AdamW optimizer is
used with a training cycle of 128 and a learning rate of 0.001.

4. Experimental Results

The experimental results of the proposed automatic modulation classification method
(AMC) are presented in this section of the paper, which includes an evaluation of the
proposed hybrid data augmentation algorithm for the dual-stream spatiotemporal fusion
neural network (DSSFNN) model. The classification accuracy is evaluated with and without
the hybrid data augmentation algorithm. This study also investigates the optimal architec-
ture of the DSSFNN model, evaluating the necessity of the number of LSTM layers, ResNet
structure, and self-attention mechanism. The performance of the proposed approach is
compared with other state-of-the-art models in terms of classification accuracy, and the
findings indicate that the proposed method surpasses the performance of the existing
methods. Additionally, the classification performance of the DSSFNN model on different
modulation types under various SNR conditions is analyzed, showing that the proposed
method is effective in real-world scenarios.

4.1. Simulation Environment, Parameters, and Performance Metrics

To demonstrate the performance of the proposed AMC scheme, the dataset used in this
paper to evaluate the proposed scheme is the RML2016.10a open radio machine learning
dataset. This dataset contains 220,000 samples comprising 11 modulation types, each
with 20 SNR levels ranging from −20 dB to 18 dB [28]. Each sample includes two signal
components, I and Q, each with 128 samples per component. During the experiments, 70%
of the data sets were randomly assigned to the training set, while 15% were assigned to
the validation set and 15% were assigned to the test set. In our experiments, the training
environment employed a Windows 11 operating system, with an NVIDIA RTX 3060 GPU
utilized for training the models. Python was used as the programming language, and the
deep learning models were constructed using the PyTorch framework.

4.2. Ablation Experiment of Hybrid Data Augmentation Algorithm

Figure 4 is referenced in this paper to present comparative results between the
DSSFNN model trained by the hybrid data augmentation method and other methods.
The outcomes exhibit a notable improvement in the classification accuracy of the DSSFNN
model trained by the hybrid data augmentation approach as compared to the model trained
without it. This finding highlights the effectiveness of the hybrid data augmentation method
in improving the classification accuracy of AMC.

When −20 dB 6 SNR 6 18 dB, the mean classification accuracy of the DSSFNN model
trained without hybrid data augmentation is 60.90%. The DSSFNN model trained solely
with the self-perturbation data augmentation scheme attained a mean accuracy rate of
62.52%. The mean classification accuracy attained by the DSSFNN model trained exclu-
sively by the phase-shift data augmentation scheme is 62.60%. The DSSFNN model trained
with the data augmentation approach proposed in this paper achieved a mean classification
accuracy of 63.44%. The proposed hybrid data augmentation approach improved the
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mean classification accuracy of DSSFNN by 2.54%. The experimental outcomes validate
the efficacy of the suggested approach in improving the classification accuracy of the
DSSFNN model.

0 5 10 15
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w/o mixed DA [60.90%]
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Figure 4. Performance comparison of DSSFNN modulation classification under various data aug-
mentation methods.

4.3. Ablation Experiment of DSSFNN

Figure 5 illustrates the changes in modulation classification accuracy of the DSSFNN
model under different structures of the base block. It can be observed from the graph
that the highest classification accuracy of 93.75% is achieved when the number of grouped
convolutions is two. When the number of grouped convolutions is set to four, the highest
classification accuracy achieved by the model is 95.01%. On the other hand, when the
number of grouped convolutions is set to six, the model’s highest classification accuracy
is 93.81%. When the number of grouped convolutions exceeded four, the accuracy of the
model decreased slightly. The experimental results suggest that increasing the number of
branches in the DSSFNN model leads to a slight decrease in the classification accuracy after
a certain threshold. Therefore, in this study, the number of grouped convolutions in the
base block of the DSSFNN model was set to four.

In addition, we also conducted experiments on DSSFNN without using group con-
volutions. The results show that the DSSFNN model with group convolutions achieved
significantly higher accuracy compared to the one without group convolutions.

Figure 6 illustrates the variation in the DSSFNN modulation classification accuracy
for different numbers of LSTM layers and after deleting the Transformer Encoder. When
the Transformer Encoder was removed from the DSSFNN model, a significant decrease
in accuracy was observed. At a high signal-to-noise ratio (SNR), the average accuracy of
the model was only 90.89%. When a single layer of LSTM was used, the DSSFNN model
achieved an average accuracy of 92.00%. Compared with the models without attention
block and with a single LSTM layer, the proposed DSSFNN model in this paper improved
the average accuracy by 1.91% and 0.8%, respectively, under high signal-to-noise ratio
conditions. The experimental results demonstrate that using a double-layer LSTM in the
DSSFNN model can achieve the best classification accuracy. Moreover, the presence or
absence of a self-attention mechanism has a significant impact on the accuracy of the
DSSFNN model. Table 2 shows the results of the ablative experiments of DSSFNN under a
high SNR case.
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Figure 5. Performance comparison of DSSFNN modulation classification using different base block
architectures.
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Figure 6. Performance comparison of different LSTM layer numbers and self-attention mechanisms
on the accuracy of DSSFNN model.

Table 2. DSSFNN experimental results of ablation study under different SNR scenarios.

Models
Results under Different SNR Scenarios

Average ACC Max ACC
0 2 4 6 8 10 12 14 16 18

DSSFNN 90.21 93.95 92.64 93.24 92.73 95.01 93.72 93.46 93.62 92.85 93.14 95.01
DSSFNN w/o DA 85.44 89.81 89.98 91.55 90.45 91.73 91.68 91.33 91.44 91.04 90.45 91.73

DSSFNN w/ phase-shift DA 88.24 92.98 91.70 93.24 92.28 94.28 93.50 93.45 92.86 92.80 92.54 94.28
DSSFNN w/ self-perturbation DA 88.08 90.68 91.04 91.51 91.43 91.81 93.20 91.80 92.20 92.13 91.39 93.20

DSSFNN w/ 2 channels 88.54 92.46 92.06 92.28 92.10 93.75 93.16 92.73 92.54 91.99 92.17 93.75
DSSFNN w/ 6 channels 89.21 93.01 91.82 92.48 92.38 93.81 93.09 93.07 92.84 92.24 92.40 93.81

DSSFNN w/o grouped convolutions 86.73 91.17 90.07 91.72 90.94 92.87 91.99 92.23 91.59 91.01 91.03 92.87

4.4. Our Proposed Method vs. Existing Methods

Figure 7 illustrates a comparison between the proposed approach and existing modula-
tion classification methods, including ResNet [29], CLDNN [29], CNN-LSTM [9], SCRNN [30],
CNN4 [31], MLDNN [31], CGDNN [31], and the proposed DSSFNN model. Among the
models compared, MCLDNN achieved the lowest classification accuracy. Specifically,
when 0 dB 6 SNR 6 18 dB, the mean accuracy achieved by MCLDNN was 81.06%, with a
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maximum classification accuracy of 81.74%. ResNet attained a mean accuracy of 82.82%
at an SNR of [0, 18] dB. The average classification accuracy of CNN4 was 83.36%, with a
maximum accuracy of 84.8%. The average accuracy of the LSTM-CNN dual-stream model
was only 60.97%, which partially demonstrates the effectiveness of the proposed model in
this paper. Comparatively, under high SNR circumstances, SCRNN, CLDNN, and CGDNN
demonstrated exceptional performance. The average classification accuracy of SCRNN
was 89.92%. The average classification accuracy of CLDNN was 90.61%. The average
classification accuracy of CGDNN2 was 91.65%. The modulation classification scheme
proposed in this paper achieves the utmost classification accuracy. Specifically, at high
SNR, the proposed modulation classification scheme achieved an accuracy rate of 93.14%,
with the highest accuracy rate being 95.01%. The experimental results indicate that the
modulation classification scheme proposed in this paper can achieve a relatively advanced
level and outperforms other schemes.
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Figure 7. Comparison of modulation classification results between DSSFNN and other models.

Figure 8 shows a comparison of classification results obtained by the proposed mod-
ulation classification scheme and SCRNN at SNR = 10 dB. Based on the figure, it can be
observed that at aaa, the proposed modulation classification scheme in this paper shows
significant improvement compared to SCRNN in the classification of QAM64 and WBFM
modulation schemes, with an increase of 17% and 16%, respectively. However, the modu-
lation classification accuracy of the proposed scheme for WBFM modulation style is still
not high enough. Therefore, how to improve the classification accuracy of deep learning
models for WBFM modulation style is a research problem worthy of further investigation.
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(a) SC-RNN, SNR = 0 dB (b) SC-RNN, SNR = 10 dB

(c) Our proposed, SNR = 0 dB (d) Our proposed, SNR = 10 dB

Figure 8. Modulation classification comparison of SC-RNN and proposed model under different
SNR scenarios.

5. Conclusions

This paper proposed a robust AMC method based on data augmentation and deep
learning models, which achieves high-precision classification of signal modulation methods.
Firstly, a hybrid data augmentation method was selected to augment the original data. By
using data augmentation, the trained model can have higher robustness and generalization
ability and can effectively suppress overfitting during the training process. Additionally, it
should be noted that AMC plays a crucial role in drone communication due to the require-
ment of reliable data transmission between drones and ground stations. Next, this paper
proposed a novel AMC method, DSSFNN, which adopts a parallel design to extract both
temporal and spatial features separately and fuses them for high-precision classification of
most modulation schemes. A method for spatial and temporal feature extraction, based on
two independent branches and dual-stream components, was developed. This approach
ensures diversity between spatial and temporal features while preventing the extraction of
features from previously extracted ones, effectively eliminating potential factors that may
degrade model performance. By conducting experiments on the publicly available dataset
RML2016.10a and comparing with existing models, the proposed modulation classification
scheme in this paper achieved the highest classification accuracy, reaching an advanced
level in terms of accuracy.
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